

 UnicodeSmuggler

 v0.1.0

 Table of contents

 	UnicodeSmuggler

 	LICENSE

 	
 Modules

 	UnicodeSmuggler

UnicodeSmuggler

Because it seemed like a good idea at the time, this is a quick implementation of the ideas in
Paul Butler's blog post Smuggling arbitrary data through an emoji
as a small Elixir package.
UnicodeSmuggler is a simple stenography utility that will hide text by attaching it to any Unicode character
as a list of invisible "variation selectors". The character will render as normal in most unicode-compatible
applications. UnicodeSmuggler (or anything else compatible with Paul Butler's code) can later be used to extract the hidden text.
As Paul makes clear this is, at best, an underhand hack and misuse of the Unicode standard. On the other hand,
it's an interesting trick, I thought it would be fun to implement, and this library may possibly be of use
for detecting such tricks in the wild.

 Features

	Encode text in a Unicode character
	Decode text hidden in a Unicode character
	Find hidden text in a string
	Remove hidden text from a Unicode character
	Accidentally confuse JetBrains' IDEs like RubyMine and cause mysterious problems in your own tests
	Ducks

 Examples

 Encoding

 UnicodeSmuggler.encode!("Aw yiss!")
 # => "🦆󠄱󠅧󠄐󠅩󠅙󠅣󠅣"

 Decoding

 UnicodeSmuggler.decode!("🦆󠄱󠅧󠄐󠅩󠅙󠅣󠅣")
 # => "Aw yiss!"

 Trimming

 UnicodeSmuggler.trim("🦆󠄱󠅧󠄐󠅩󠅙󠅣󠅣")
 |> UnicodeSmuggler.decode!()
 # => nil

 Installation

If available in Hex, the package can be installed
by adding unicode_smuggler to your list of dependencies in mix.exs:
def deps do
 [
 {:unicode_smuggler, "~> 0.1.0"}
]
end

 Documentation

Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/unicode_smuggler.

 Contributing

You can request new features by creating an issue,
or submit a pull request with your contribution.

 Copyright and License

Copyright (c) 2025 Pete Birkinshaw
UnicodeSmuggler is MIT licensed.

 Disclaimer

Use at your own risk

LICENSE

MIT License

Copyright (c) 2025 Pete Birkinshaw

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

UnicodeSmuggler

UnicodeSmuggler
Because it seemed like a good idea at the time, this is a quick implementation of the ideas in
Paul Butler's blog post Smuggling arbitrary data through an emoji
as a small Elixir package.
UnicodeSmuggler is a simple stenography utility that will hide text by attaching it to any Unicode character
as a list of invisible "variation selectors". The character will render as normal in most unicode-compatible
applications. UnicodeSmuggler (or anything else compatible with Paul Butler's code) can later be used to extract the hidden text.
As Paul makes clear this is, at best, an underhand hack and misuse of the Unicode standard. On the other hand,
it's an interesting trick, I thought it would be fun to implement, and this library may possibly be of use
for detecting such tricks in the wild.

 Features

	Encode text in a Unicode character
	Decode text hidden in a Unicode character
	Find hidden text in a string
	Remove hidden text from a Unicode character
	Accidentally confuse JetBrains' IDEs like RubyMine and cause mysterious problems in your own tests
	Ducks

 Examples

 Encoding

UnicodeSmuggler.encode!("Aw yiss!")
=> "🦆󠄱󠅧󠄐󠅩󠅙󠅣󠅣"

 Decoding

UnicodeSmuggler.decode!("🦆󠄱󠅧󠄐󠅩󠅙󠅣󠅣")
=> "Aw yiss!"

 Trimming

UnicodeSmuggler.trim("🦆󠄱󠅧󠄐󠅩󠅙󠅣󠅣")
|> UnicodeSmuggler.decode!()
=> nil

 Summary

 Functions

 decode!(container)

 Decodes and returns the hidden text in the specified container character.

 encode!(text, container \\ "🦆")

 Hides the text passed as the first parameter in the container character passed as the second parameter.

 ensure_single!(text)

 scan(text)

 Scans a string for hidden text and returns any found fragments in a list.

 smuggling?(text)

 Returns true if hidden text is found in the passed string, otherwise false.

 trim(text)

 Accepts a single character and returns it without hidden text. Hopefully.

 Functions

 decode!(container)

 @spec decode!(container :: binary()) :: binary() | nil

Decodes and returns the hidden text in the specified container character.
A nil value will be returned if no text has been hidden.

 encode!(text, container \\ "🦆")

 @spec encode!(text :: binary(), container :: binary()) :: binary()

Hides the text passed as the first parameter in the container character passed as the second parameter.
If no container character is specified then a duck will be returned.

 ensure_single!(text)

 @spec ensure_single!(text :: binary()) :: atom()

 scan(text)

 @spec scan(text :: binary()) :: [binary()]

Scans a string for hidden text and returns any found fragments in a list.
If no hidden text is found an empty list will be returned.

 smuggling?(text)

 @spec smuggling?(text :: binary()) :: boolean()

Returns true if hidden text is found in the passed string, otherwise false.

 trim(text)

 @spec trim(text :: binary()) :: binary()

Accepts a single character and returns it without hidden text. Hopefully.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

