

 usage_rules

 v0.1.7

 Table of contents

 	Home

 	
 Modules

 	UsageRules

 	
 Mix Tasks

 	mix usage_rules.install

 	mix usage_rules.sync

 UsageRules

UsageRules is a development tool for Elixir projects that helps gather and consolidate usage rules from dependencies. The package provides Mix tasks to collect documentation from dependencies that have usage-rules.md files and combine them into a single rules file for your project.
You'll note this package itself doesn't have a usage-rules.md. Its a simple tool that likely would not benefit from having a usage-rules.md file.
usage-rules.md is not an existing standard, rather it is a community initiative that may evolve over time as adoption grows and feedback is gathered. We encourage experimentation and welcome input on how to make this approach more useful for the broader Elixir ecosystem.
For Package Authors
Even if you don't want to use LLMs, its very possible that your users will, and they will often come to you with hallucinations from their LLMs and try to get your help with it. Writing a usage-rules.md file is a great way to stop this sort of thing 😁
We don't really know what makes great usage-rules.md files yet. Ash Framework is experimenting with quite fleshed out usage rules which seems to be working quite well. See Ash Framework's usage-rules.md for one such large example. Perhaps for your package or framework only a few lines are necessary. We will all have to adjust over time.
One quick tip is to have an agent begin the work of writing rules for you, by pointing it at your docs and asking it to write a usage-rules.md file in a condensed format that would be useful for agents to work with your tool. Then, aggressively prune and edit it to your taste.
Make sure that your usage-rules.md file is included in your hex package's files option, so that it is distributed with your package.
Key Features
	Dependency Rules Collection: Automatically discovers and collects usage rules from dependencies that provide usage-rules.md files in their package directory
	Rules Consolidation: Combines multiple package rules into a single file with proper sectioning and markers
	Status Tracking: Can list dependencies with usage rules and check if your consolidated file is up-to-date
	Selective Management: Allows adding/removing specific packages from your rules file

How It Works
	The tool scans your project's dependencies (in deps/ directory)
	Looks for usage-rules.md files in each dependency
	Consolidates these rules into a target file with special markers like <-- package-name-start --> and <-- package-name-end -->
	Maintains sections that can be updated independently as dependencies change

This is particularly useful for projects using frameworks like Ash, Phoenix, or other packages that provide specific usage guidelines, coding patterns, or best practices that should be followed consistently across your project.
Usage
The main task mix usage_rules.sync provides several modes of operation:
Standard usage (recommended)
There are two standard ways to use usage_rules. The first, is to copy usage rules into your project. This allows customization and visibility into the rules. The second is to use the rules files directly from the deps in your deps/ folder. In both cases, your rules file is modified to link to the usage rules files, as a breadcrumb to the agent.
Copying into your project
This will create a folder called rules, with a file per package that has a usage-rules.md file. Then it will link
to those from you rules file.
mix usage_rules.sync CLAUDE.md --all --link-to-folder docs

Using deps folder
This will add a section in your rules file for each of your top level dependencies that have a usage-rules.md. It is
simply a breadcrumb to tell the agent that it should look
in deps/<package-name>/usage-rules.md when working with
that package. This will not overwrite your existing rules, but will append to it, and future calls will synchronize those contents.
mix usage_rules.sync CLAUDE.md --all --link-to-folder deps

Combine specific packages
mix usage_rules.sync rules.md ash phoenix

Gather all dependencies with usage rules
mix usage_rules.sync CLAUDE.md --all

List available packages with usage rules
mix usage_rules.sync --list

Check status against a file
mix usage_rules.sync CLAUDE.md --list

Remove packages from a file
mix usage_rules.sync CLAUDE.md ash --remove

Use folder links for better organization
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder rules

Use @-style folder links
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder rules --link-style at

Link directly to deps files
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder deps

Gather all dependencies with folder links
mix usage_rules.sync CLAUDE.md --all --link-to-folder docs

Advanced Features
Folder Links (--link-to-folder)
Organizes usage rules into separate files for better management of large rule sets.
Options:
	--link-style markdown (default): [ash usage rules](docs/ash.md)
	--link-style at: @docs/ash.md (optimized for Claude AI)
	--link-to-folder deps: Links directly to deps/package/usage-rules.md (no file copying)

Examples:
Create individual files with markdown links
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder docs

Use @-style links for Claude AI
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder docs --link-style at

Link directly to deps without copying
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder deps

Installation
With Igniter
mix igniter.install usage_rules.
Add the dependency manually
def deps do
 [
 # should only ever be used as a dev dependency
 # requires igniter as a dev dependency
 {:usage_rules, "~> 0.1", only: [:dev]},
 {:igniter, "~> 0.6", only: [:dev]}
]
end

UsageRules

Tools for gathering usage rules from dependencies for projects.

mix usage_rules.install

Installs usage_rules
Example
mix igniter.install usage_rules

mix usage_rules.sync

Combine the package rules for the provided packages into the provided file, or list/gather all dependencies.
Options
	--all - Gather usage rules from all dependencies that have them
	--list - List all dependencies with usage rules. If a file is provided, shows status (present, missing, stale)
	--remove - Remove specified packages from the target file instead of adding them
	--link-to-folder <folder> - Save usage rules for each package in separate files within the specified folder and create links to them
	--link-style <style> - Style of links to create when using --link-to-folder (markdown|at). Defaults to 'markdown'

Examples
Combine specific packages:
mix usage_rules.sync CLAUDE.md --all --link-to-folder deps

Gather all dependencies with usage rules:
mix usage_rules.sync CLAUDE.md --all

List all dependencies with usage rules:
mix usage_rules.sync --list

Check status of dependencies against a specific file:
mix usage_rules.sync CLAUDE.md --list

Remove specific packages from a file:
mix usage_rules.sync CLAUDE.md ash phoenix --remove

Save usage rules to individual files in a folder with markdown links:
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder rules

Save usage rules with @-style links:
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder rules --link-style at

Link directly to deps files without copying:
mix usage_rules.sync CLAUDE.md ash phoenix --link-to-folder deps

Combine all dependencies with folder links:
mix usage_rules.sync CLAUDE.md --all --link-to-folder docs

Check status of packages using folder links:
mix usage_rules.sync CLAUDE.md --list --link-to-folder rules

Remove packages and their folder files:
mix usage_rules.sync CLAUDE.md ash phoenix --remove --link-to-folder rules

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

