Vecto (vecto v0.1.3)
Hybrid Search with Postgres and Ecto
Summary
Functions
Link to this function
hybrid_search(schema, query_embedding, query_string, opts \\ [])
Postgres Hybrid Search
Uses Reciprocal Rank Fusion (RRF) approach to combine full-text search and vector search.
Assumes your primary key is "id", vector column is "embedding" and tsvector column is "content", but is flexible enough to work with any table or column name
Options:
- rrf_k: The number of top results to consider for RRF (default: 50)
- vector_column: The column name of the vector field (default: :embedding)
- vector_weight: The weight of the vector search (default: 1.0)
- tsvector_column: The column name of the tsvector field (default: :content)
- tsvector_weight: The weight of the tsvector search (default: 1.0)
- select_columns: The columns to select from the schema (default: all columns)
- limit: The number of results to return (default: 100)
Link to this function
keyword_search(schema, query_field, query_string, limit_by \\ 100, select_columns \\ [])
Keyword Search
Uses Postgres full-text search (tsvector) to find documents that match the query string, ranked by relevance.
Link to this function
semantic_search(schema, query_field, query_embedding, limit_by \\ 100, select_columns \\ [])
Semantic Search
Uses Postgres vector search (pg_vector) to find documents that are semantically similar to the query embedding, ranked by similarity.