

 vintage_heart

 v0.1.2

 Table of contents

 	Vintage Heart

 	Change log

 	Modules

 	VintageHeart.Configuration

 	VintageHeart.Pulse

 	VintageHeart.StubVintagenet

 	VintageHeart.Vintagenet

Vintage Heart

For Nerves Project apps only, specifically those using VintageNet over WiFi. Really only used with Raspberry Pi Zero W's connecting over WiFi on "wlan0".
Crudely solves a problem that I have intermittenly encountered with connectivity being lost, while the IP address remains assigned. Being intermittent it is a devil to debug so this is what I use instead.
It does this by doing the following:
	Registering a the :heart status callback.
	Checking the ["interface", "wlan0", "connection"] VintageNet property every 10 seconds (by default). If :internet is returned then we assume everything is good (and counters are reset). Otherwise counters are incremented.
	On being offline for about 4 minutes (by default), VintageNet is given a bit of a kick. A kick being killing the VintageNet.RouteManager GenServer. This is a bit brutal, but usually does the job of going out and reconnecting with the network.
	If we're offline for 14 minutes (by default, which will by default involve 3 kicks) we'll report to :heart that we are no longer ok, and it will reboot the device.

Note that
	If the "wlan0" IP address is 192.168.0.1 (or as otherwise configured) then it's assumed that the VintageNetWizard is being used to set up the WiFi connection, and checks will not happen
	If you compile with the default MIX_TARGET being host, then checking is also essentially disabled. That is it will not get in the way of you running iex -S mix to try out your "nerves" code on your development machine.
	Connectivity is determined by having an "Internet connection", rather than a network connection. You can configure what having an "Internet connection" means via VintageNet

This is a straight extraction, more or less, from an existing project.
Has anything happened?
You might be interested to know if anything has happened. You can check with

iex(1)> VintageHeart.Pulse.full_status()
%VintageHeart.Pulse{
 offline_this_period_count: 0,
 offline_count: 0,
 status: :ok,
 highest_offline: 25,
 last_kick: ~U[2023-01-19 15:35:55.603980Z]
}
Reboots aren't logged though you can check uptime for that.
Configuration
If you do not like the defaults then you can add some configuration to your project. The following example does nothing, in that it pointlessly confirms the default values, but you might want to change them.
config :vintage_heart, VintageHeart.Pulse
 heart_callback?: true, # Whether to use the status as `:heart` callback
 poll_interval_millis: :timer.seconds(10), # how often to poll
 offline_kick_count: 24, # how many polls without an internet connection before giving VintageNet a kick
 offline_status_down_count: 84, # how many polls without an internet connection before setting the status to down
 wizard_hotspot_ip: {192, 168, 0, 1} # IP used if VintageNetWizard is active as a hotspot
Using
Now an hexicle

defp deps do
 [
 # etc...
 {:vintage_heart, "~> 0.1"},
 # etc ...
]
end

Change log

v0.1.1
	Introducded changelog
	Fixed GenServer call matching bug with VintageHeart.Pulse.last_kick/0
	Added VintageHeart.Pulse.full_status/0

v0.1.2
	Fixed a doc error

VintageHeart.Configuration

Reads optional configuration for Pulse. Except for in during testing
this library use the configuration app :vintage_heart with key, VintageHeart.Pulse.
The following defaults will be used if not otherwise configured:any()
	heart_callback? - true. Controls whether the application is registed as the :heart callback
	poll_interval_millis - 10_000 - polls every 10 seconds
	offline_kick_count - 24 - After 24, or whatever this is configured to, polls without an internet connection then
VintageNet is kicked causing an attempted reconnection to the wlan0.
	offline_status_down_count - 84 - After 84 internet-disconnected polls the status is set to be :down. Unless
heart_callback? was false then :heart will detect the status and reboot the device.
	wizard_hotspot_ip - {192, 168, 0, 1}. When this is the IP address assume that WiFi is being setup via VintageNetWizard, so connectivity checks are suspended.

Note that the wizard hotspot id is not validated.

 Anchor for this section

 Summary

 Functions

 heart_callback?(key \\ VintageHeart.Pulse)

 offline_kick_count(key \\ VintageHeart.Pulse)

 offline_status_down_count(key \\ VintageHeart.Pulse)

 poll_interval_millis(key \\ VintageHeart.Pulse)

 wizard_hotspot_ip(key \\ VintageHeart.Pulse)

 Anchor for this section

Functions

 Link to this function

 heart_callback?(key \\ VintageHeart.Pulse)

 Link to this function

 offline_kick_count(key \\ VintageHeart.Pulse)

 Link to this function

 offline_status_down_count(key \\ VintageHeart.Pulse)

 Link to this function

 poll_interval_millis(key \\ VintageHeart.Pulse)

 Link to this function

 wizard_hotspot_ip(key \\ VintageHeart.Pulse)

VintageHeart.Pulse

VintageHeart.
	Without an internet connection for about 14 minutes with a 30 second check interval) reboots
	After about 4 mins with only a 'lan' connection (no internet) kicks VintageNet by killing
VintageNet.RouteManager

All check counts are reset to zero on every heartbeat if the local ip address is 192.168.0.1, ie
we are running the hotspot for setting up the internet connection.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 full_status()

 All the status

 init(_)

 Callback implementation for GenServer.init/1.

 last_kick()

 When was the last time the newtwork kicked?

 start_link(opts)

 status()

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %VintageHeart.Pulse{
 highest_offline: pos_integer(),
 last_kick: nil | DateTime.t(),
 offline_count: pos_integer(),
 offline_this_period_count: pos_integer(),
 status: :ok | :down
}

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 full_status()

 @spec full_status() :: t()

All the status

 Link to this function

 init(_)

Callback implementation for GenServer.init/1.

 Link to this function

 last_kick()

 @spec last_kick() :: nil | DateTime.t()

When was the last time the newtwork kicked?

 Link to this function

 start_link(opts)

 Link to this function

 status()

VintageHeart.StubVintagenet

Pretends to be VintageNet while running on the host machine. Pretends to have a connection
and kicking does nothing.

 Anchor for this section

 Summary

 Functions

 get_properties(properties)

 kick()

 Does nothing

 Anchor for this section

Functions

 Link to this function

 get_properties(properties)

 Link to this function

 kick()

Does nothing

VintageHeart.Vintagenet behaviour

Indirection layer for VintageNet used within this project so we can test etc... off
the hardware. Usage
use VintageHeart.Vintagenet
The appropriate module will be aliased as Vintagenet

 Anchor for this section

 Summary

 Callbacks

 get_properties(list)

 Indirection for VintageNet.get/1 (no default)

 kick()

 Give VintageNet a kick to induce reacquiring a (WiFi) connection, by killing
VintageNet.RouteManager

 Functions

 implementation(arg1, arg2)

 Anchor for this section

Callbacks

 Link to this callback

 get_properties(list)

 @callback get_properties([String.t()]) :: any()

Indirection for VintageNet.get/1 (no default)

 Link to this callback

 kick()

 @callback kick() :: :ok

Give VintageNet a kick to induce reacquiring a (WiFi) connection, by killing
VintageNet.RouteManager

 Anchor for this section

Functions

 Link to this function

 implementation(arg1, arg2)

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

