

 vintage_net

 v0.13.6

 [image: Logo]

 Table of contents

 	README

 	VintageNet Cookbook

 	Changelog

 	

 	Modules

 	VintageNet

 	VintageNet.Connectivity.CheckLogic

 	VintageNet.Connectivity.Inspector

 	VintageNet.Connectivity.InternetChecker

 	VintageNet.Connectivity.LANChecker

 	VintageNet.Connectivity.TCPPing

 	VintageNet.DHCP.Options

 	VintageNet.IP

 	VintageNet.IP.DhcpdConfig

 	VintageNet.IP.DnsdConfig

 	VintageNet.IP.IPv4Config

 	VintageNet.Interface

 	VintageNet.Interface.CommandRunner

 	VintageNet.Interface.EAPStatus

 	VintageNet.Interface.IfupDaemon

 	VintageNet.Interface.NameUtilities

 	VintageNet.Interface.RawConfig

 	VintageNet.InterfaceRenamer

 	VintageNet.InterfacesMonitor

 	VintageNet.NameResolver

 	VintageNet.Persistence

 	VintageNet.Persistence.FlatFile

 	VintageNet.Persistence.Null

 	VintageNet.PowerManager

 	VintageNet.PowerManager.PMControl

 	VintageNet.PowerManager.Supervisor

 	VintageNet.PredictableInterfaceName

 	VintageNet.Resolver.ResolvConf

 	VintageNet.Route

 	VintageNet.Route.Calculator

 	VintageNet.Route.DefaultMetric

 	VintageNet.Route.IPRoute

 	VintageNet.Route.InterfaceInfo

 	VintageNet.Route.Properties

 	VintageNet.RouteManager

 	VintageNet.Technology

 	VintageNet.Technology.Null

README

[image: VintageNet Logo]
[image: Hex version]
[image: API docs]
[image: CircleCI]
VintageNet is network configuration library built specifically for Nerves
Project devices. It replaced nerves_networking. It offers:
	Default configurations specified in your Application config
	Runtime updates to configurations are persisted and applied on next boot
(configurations are obfuscated by default to hide WiFi passphrases)
	Simple subscription to network status change events
	Connect to multiple networks at a time and prioritize which interfaces are
used (Ethernet over WiFi over cellular)
	Internet connection monitoring and failure detection
	Predictable network interface names
	Supports:	Ethernet
	WiFi
	QMI
	Mobile networking
	Wireguard
	Bridge networking
	Direct network connection
	Extendible to other technologies

 Getting started

The package can be installed by adding it to your list of dependencies in mix.exs, along with any relevant technologies:
def deps do
 #..
 {:vintage_net, "~> 0.13"},
 {:vintage_net_ethernet, "~> 0.11"},
 {:vintage_net_wifi, "~> 0.12"},
 #..
end
In your config.exs or appropriate target config:
config :vintage_net,
 regulatory_domain: "US", # Change to match your area
 config: [
 {"eth0", %{
 type: VintageNetEthernet,
 ipv4: %{
 method: :dhcp
 }
 }}
 {"wlan0",
 %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "Your WiFi SSID",
 psk: "passphrase or psk",
 }
]
 },
 ipv4: %{method: :dhcp},
 }
 }
]
For more variants, see the VintageNet Cookbook. It covers:
	Compile-time vs. run-time
	Static IPs
	Enterprise WiFi (802.1X/EAP/PEAP/MSCHAP)
	Hidden WiFi
	Access Point mode
	Custom WPA Supplicant configuration
	Bridged Mesh WiFi via 802.11s
	WAN sharing
	Power management
	and more

If using nerves_network or nerves_init_gadget, read the Migration section.

 About

The following network configurations are supported:
	[x] Wired Ethernet, IPv4 DHCP
	[x] Wired Ethernet, IPv4 static IP
	[x] WiFi password-less and WEP
	[x] WPA2 PSK and EAP
	[x] USB gadget mode Ethernet, IPv4 DHCP server to supply host IP address
	[x] Cellular networks (see
vintage_net_qmi and
vintage_net_mobile for details)
	[x] WiFi AP mode
	[] IPv6 - Partially supported. SLAAC configuration works.

vintage_net takes a different approach to networking from nerves_network.
Its focus is on building and applying network configurations. Where
nerves_network provided configurable state machines, vintage_net turns
human-readable configurations into everything from configuration files and calls
to ip to starting up networking GenServers
and routing table updates. This makes it easier to add support for new network
technologies and features. While Elixir and Erlang were great to implement
network protocols in, it was frequently more practical to reuse embedded Linux
implementations. Importantly, though, vintage_net monitors Linux daemons under
its OTP supervision tree so failures on both the "C" and Elixir sides propagate
in the expected ways.
Another important difference is that VintageNet doesn't attempt to make
incremental modifications to configurations. It completely tears down an
interface's connection and then brings up new configurations in a fresh state.
Network reconfiguration is assumed to be an infrequent event so while this can
cause a hiccup in the network connectivity, it removes state machine code that
made nerves_network hard to maintain.

 Configuration

VintageNet has many application configuration keys. Most defaults are fine. At
a minimum, you'll want to specify a default configuration and default regulatory
domain if using WiFi. In your main config.exs, add the following:
config :vintage_net,
 regulatory_domain: "US",
 config: [
 {"eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}},
 {"wlan0", %{type: VintageNetWiFi}}
]
This sets the regulatory domain to the US (set to your ISO 3166-1 alpha-2
country code. This code is
passed on to the drivers for WiFi and other wireless networking technologies so
that they comply with local regulations. If you need a global default, set to
"00" or don't set at all. Unfortunately, this may mean that an access point
isn't visible if it is running on a frequency that's allowed in your country,
but not globally.
The config section is a list of network configurations. The one shown above
configures DHCP on wired Ethernet and minimally starts up a WiFi LAN so that
it's possible to scan for networks. The typical setup is to provide generic
defaults here. Static IP addresses, WiFi SSIDs and credentials are more
appropriately configured at run-time. VintageNet persists configurations too.
Details on network configuration are described later.
The following table describes the other application config keys.
	Key	Description
	config	A list of default network configurations
	tmpdir	Path to a temporary directory for VintageNet
	udhcpc_handler	Module for handling notifications from udhcpc
	resolvconf	Path to /etc/resolv.conf
	persistence	Module for persisting network configurations
	persistence_dir	Path to a directory for storing persisted configurations
	persistence_secret	A 16-byte secret or a function or MFArgs (module, function, arguments tuple) for getting a secret
	internet_host_list	IP address or hostnames and ports to try to connect to for checking Internet connectivity. Defaults to a list of large public DNS providers. E.g., [{{1, 1, 1, 1}, 53}].
	regulatory_domain	ISO 3166-1 alpha-2 country (00 for global, US, etc.)
	additional_name_servers	List of DNS servers to be used in addition to any supplied by an interface. E.g., [{1, 1, 1, 1}, {8, 8, 8, 8}]
	route_metric_fun	Customize how network interfaces are prioritized. See VintageNet.Route.DefaultMetric.compute_metric/2

 Network interface configuration

VintageNet supports several network technologies out of the box and
third-party libraries can provide more via the VintageNet.Technology
behaviour.
Configurations are Elixir maps. These are specified in three places:
	The vintage_net application config (e.g., your config.exs)
	Locally saved configuration (see the VintageNet.Persistence behaviour for
replacing the default)
	Calling VintageNet.configure/2 to change the configuration at run-time

When vintage_net starts, it applies saved configurations first and if any
thing is wrong with those configs, it reverts to the application config. A good
practice is to have safe defaults for all network interfaces in the application
config.
The only required key in the configuration maps is :type. All other keys
follow from the type. :type should be set to a module that implements the
VintageNet.Technology behaviour. The following are common technologies:
	VintageNetEthernet - Standard wired Ethernet
	VintageNetWiFi - Client configurations for 802.11 WiFi
	VintageNetDirect - Direct connections like those used for USB gadget
connections
	VintageNet.Technology.Null - An empty configuration useful for turning off a
configuration

See the links above for specific documentation.

 Persistence

By default, VintageNet stores network configuration to disk. If you are
migrating from nerves_network you may already have a persistence
implementation. To disable the default persistence, configure vintage_net as
follows:
config :vintage_net,
 persistence: VintageNet.Persistence.Null

 Debugging

Debugging networking issues is not fun. When you're starting out with
vintage_net, it is highly recommended to connect to your target using a method
that doesn't require networking to work. This could be a UART connection to an
IEx console on a Nerves device or maybe just hooking up a keyboard and monitor.
If having trouble, first check VintageNet.info() to verify the configuration
and connection status:
iex> VintageNet.info
VintageNet 0.3.0

All interfaces: ["eth0", "lo", "tap0", "wlan0"]
Available interfaces: ["eth0", "wlan0"]

Interface eth0
 Type: VintageNetEthernet
 Present: true
 State: :configured
 Connection: :internet
 Configuration:
 %{ipv4: %{method: :dhcp}, type: VintageNetEthernet}

Interface wlan0
 Type: VintageNetWiFi
 Present: true
 State: :configured
 Connection: :internet
 Configuration:
 %{
 ipv4: %{method: :dhcp},
 type: VintageNetWiFi,
 wifi: %{
 key_mgmt: :wpa_psk,
 mode: :infrastructure,
 psk: "******",
 ssid: "MyLAN"
 }
 }
If you're using Toolshed, try running
the following:
iex> ifconfig
lo: flags=[:up, :loopback, :running]
 inet 127.0.0.1 netmask 255.0.0.0
 inet ::1 netmask ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
 hwaddr 00:00:00:00:00:00

eth0: flags=[:up, :broadcast, :running, :multicast]
 inet 192.168.9.131 netmask 255.255.255.0 broadcast 192.168.9.255
 inet fe80::6264:5ff:fee1:4045 netmask ffff:ffff:ffff:ffff::
 hwaddr 60:64:05:e1:40:45

wlan0: flags=[:up, :broadcast, :running, :multicast]
 inet 192.168.9.175 netmask 255.255.255.0 broadcast 192.168.9.255
 inet fe80::20c:e7ff:fe11:3d46 netmask ffff:ffff:ffff:ffff::
 hwaddr 00:0c:e7:11:3d:46
Or ping:
iex> ping "nerves-project.com"
Press enter to stop
Response from nerves-project.com (96.126.123.244): time=48.87ms
Response from nerves-project.com (96.126.123.244): time=42.856ms
Response from nerves-project.com (96.126.123.244): time=43.097ms
You can also specify an interface to use with ping:
iex> ping "nerves-project.com", ifname: "wlan0"
Press enter to stop
Response from nerves-project.com (96.126.123.244): time=57.817ms
Response from nerves-project.com (96.126.123.244): time=46.796ms

iex> ping "nerves-project.com", ifname: "eth0"
Press enter to stop
Response from nerves-project.com (96.126.123.244): time=47.923ms
Response from nerves-project.com (96.126.123.244): time=48.688ms
If it looks like nothing is working, check the logs. On Nerves devices, this
is frequently done by calling RingLogger.next or RingLogger.attach.
At a last resort, please open a GitHub issue. We would be glad to help. We only
have one ask and that is that you get us started with an improvement to our
documentation or code so that the next person to run into the issue will have an
easier time. Thanks!

 Properties

VintageNet maintains a key/value store for retrieving information on
networking information:
iex> VintageNet.get(["interface", "eth0", "connection"])
:internet

iex> VintageNet.get_by_prefix([])
[
 {["interface", "eth0", "connection"], :internet},
 {["interface", "eth0", "state"], :configured},
 {["interface", "eth0", "type"], VintageNetEthernet},
 {["interface", "wlan0", "connection"], :internet},
 {["interface", "wlan0", "state"], :configured},
 {["interface", "wlan0", "type"], VintageNetWiFi}
]
You can also subscribe to keys and receive a message every time it or one its
child keys changes:
iex> VintageNet.subscribe(["interface", "eth0"])
:ok

iex> flush
{VintageNet, ["interface", "eth0", "state"], :configuring, :configured, %{old_timestamp: 123456, new_timestamp: 124456}}
The message format is {VintageNet, name, old_value, new_value, metadata}
Metadata fields include at least the following:
	:old_timestamp - the timestamp for when the property first had the old_value
	:new_timestamp - the timestamp when the property changed from the old_value to the new_value

Timestamps are all captured by calling System.monotonic_time/0 so they're in :native time units.
Use System.convert_time_unit/3 to convert to the usual time units.

 Global properties

	Property	Values	Description
	available_interfaces	[eth0, ...]	Currently available network interfaces in priority order. E.g., the first one is used by default
	connection	:disconnected, :lan, :internet	The overall network connection status. This is the best status of all interfaces.
	name_servers	[%{address: ..., from: []}]	Name server addresses and where VintageNet learned about them

 Common network interface properties

All network interface properties can be found under ["interface", ifname] in
the PropertyTable. The following table lists out properties common to all
interfaces:
	Property	Values	Description
	type	VintageNetEthernet, etc.	The type of the interface
	config	%{...}	The configuration for this interface
	state	:configured, :configuring, etc.	The state of the interface from VintageNet's point of view.
	hw_path	"/devices/platform/ocp/4a100000.ethernet"	This is how Linux internally views the connections going to the interface.
	connection	:disconnected, :lan, :internet	This provides a determination of the Internet connection status
	lower_up	true or false	This indicates whether the physical layer is "up". E.g., a cable is connected or WiFi associated
	mac_address	"11:22:33:44:55:66"	The interface's MAC address as a string
	addresses	[address_info]	This is a list of all of the addresses assigned to this interface
	dhcp_options	%{...}	When DHCP is in use, the processed response information and options is stored here. See VintageNet.DHCP.Options.t/0

Specific types of interfaces provide more parameters.

 Predictable network interface names

When using more than one of the same type of interface, it's possible for Linux
to reorder their naming. For example, if you have two USB WiFi adapters, one
will be named wlan0 and the other wlan1. Which one is first depends on
things like when the adapter is found and when kernel modules are loaded. This
can vary between boots and cause a lot of confusion.
The solution is to rename network interfaces based on characteristics of the
interface - such as how it's connected. Then application software refers to the
new name rather than names like wlan0. This is a common problem, and
VintageNet provides support for automatically renaming network interfaces.
If you're used to systemd's approach to naming interfaces, be aware that
VintageNet's approach is different: systemd has an
algorithm
for generating names (e.g., enp4s0) automatically. VintageNet requires you to
provide the names to use (e.q., internet0, lan0, etc.) and how they map to
hardware. If VintageNet is confronted with a network interface that is connected
in a way that it doesn't know about, it will do nothing.
IMPORTANT: Do not mix and match predictable interface names and
non-predictable interface names (wlan*, eth*, usb*, wwan*). It is
confusing and VintageNet will fight you.

Before switching to predictable names, find out how your network interfaces are
connected. For example, this device has an Ethernet interface and two USB WiFi
dongles:
iex> VintageNet.match(["interface", :_, "hw_path"])
[
 {["interface", "eth0", "hw_path"], "/devices/platform/ocp/4a100000.ethernet"},
 {["interface", "lo", "hw_path"], "/devices/virtual"},
 {["interface", "wlan0", "hw_path"], "/devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1/usb2/2-1/2-1:1.0"},
 {["interface", "wlan1", "hw_path"], "/devices/platform/ocp/47400000.usb/47401400.usb/musb-hdrc.0/usb1/1-1/1-1:1.4"}
]
Now update your config.exs with the mappings with the :ifnames key. Be sure
to also update the default configuration with the new interface names.
Continuing the example, imagine that one WiFi adapter supports 802.11 meshing
and it's guaranteed to be in one USB port on the device. The other USB port can
have any of a few types of USB WiFi modules. We need to use predictable naming
in this case so that meshing is only setup on the adapter that supports it.
config :vintage_net,
 ifnames: [
 %{
 hw_path: "/devices/platform/ocp/4a100000.ethernet",
 ifname: "ethernet0"
 },
 %{
 hw_path: "/devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1/usb2/2-1/2-1:1.0",
 ifname: "primary_wifi"
 },
 %{
 hw_path: "/devices/platform/ocp/47400000.usb/47401400.usb/musb-hdrc.0/usb1/1-1/1-1:1.4",
 ifname: "mesh_wifi"
 }
],
 config: [
 {"ethernet0", %{type: VintageNetEthernet}},
 {"primary_wifi", %{type: VintageNetWiFi}},
 {"mesh_wifi", %{type: VintageNetWiFi}}
]
IMPORTANT: VintageNet has rules about renaming interfaces to prevent confusing
errors. Below is a list of reasons it will not rename an interface

	hw_path matches /devices/virtual (such as lo0, ppp0 etc.)
	A second interface's hw_path matches an interface that has already been
renamed. This should never happen.

 Internet connectivity checks

VintageNet can check whether a network interface can reach the Internet. This
has a few uses:
	Selecting which network interface is used when a device has more than one. A
common example is a device with a backup cellular connection.
	Automatically recovering a network interface that has lost connectivity. Some
times bouncing the network interface actually works, so doing this
automatically can sometimes revive a remote device.
	Letting the application know the status of the network connection to provide
more helpful information about what's happening.

The logic for declaring that the Internet is available is:
	Is there a TCP socket in use on the network interface that has sent and
received data from a host that's not on the same subnet? If yes, then the
device is Internet-connected.
	Get the list of Internet servers to check. See below for the list.
	Resolve any domain names in the list. If DNS isn't working, remove them from
the list.
	Pick a random IP address from the remaining list and "ping" it. Technically,
VintageNet tries to connect over TCP to a specified port, and if it either
connects successfully or gets a port closed response, then the device is
Internet-connected.
	Wait a bit and then go back to step 1.

The list of Internet servers to check is critically important. VintageNet uses
the :internet_host_list key in the application environment for this. The
default setting has many popular name servers in it. The idea being that if you
can't reach a name server, the Internet probably isn't going to work well.
If you are deploying to locations with locked down networks, you'll find that
the default setting to test name servers won't work. It is not uncommon to find
a network that blocks popular name servers like 8.8.8.8.
The recommendation is to set the :internet_host_list to include your backend
server. If VintageNet can reach it, then presumably your application works and
having VintageNet declare the internet reachable via that network interface is
correct.
For example,
config :vintage_net,
 internet_host_list: [{"abcdefghijk-ats.iot.us-east-1.amazonaws.com", 443}]
The use of the connectivity checker is specified by the technology. Both the
VintageNetEthernet and VintageNetWiFi use the internet connectivity checker.
This is selected by adding the VintageNet.Connectivity.InternetChecker
GenServer to the :child_specs configuration returned by the technology. E.g.,
child_specs: [{VintageNet.Connectivity.InternetChecker, "eth0"}]. Most users
do not need to be concerned about this.

 Power Management

Some devices require additional work to be done for them to become available.
Examples of this are:
	Setting a GPIO to enable power to the module
	Loading a Linux kernel module that is not automatically loaded via the
default mechanisms
	Running usb_modeswitch to change the USB interface to the appropriate state
	Performing an initialization step such as loading firmware

Similarly, when the network interface is no longer being used, it can be nice to
undo any steps above.
This process is referred to as power management in VintageNet even though the
implementation may not actually affect power use. To use it, implement the
VintageNet.PowerManager behaviour and register the implementation in your
config.exs.
Additionally, VintageNet runs a watchdog-like service for network devices that
supply VintageNet.PowerManager implementations. If the watchdog is not pet
within the timeout period (user-specified and defaults to 60 seconds),
VintageNet powers the device off and and on. The VintageNet power management
code supports mandatory minimum on and off times to prevent damage to hardware
and also minimize pointless power cycling of hardware.
While many network devices are fairly reliable and powering off and on seems
unnecessary, it can save a trip to the field or a full device reboot.
VintageNet.info/1 shows the power management state for network interfaces that
are using this feature.

 Petting the power manager watchdog

If using VintageNet.PowerManager, you'll need to make sure that
VintageNet.PowerManager.PMControl.pet_watchdog/1 is regularly called. There
are a few ways:
	Use VintageNet.Connectivity.InternetChecker to monitor the network
interface's status. This almost is the default since it's included
automatically when using most IPv4 configurations. Static IP with no gateway
is the exception.
	Create your own GenServer that regularly polls the network interface and
calls VintageNet.PowerManager.PMControl.pet_watchdog/1 if successful.
	Do both. The InternetChecker only pets the watchdog when the network
interface is either on the LAN or connected to the Internet. You may want to
pet the watchdog when the network interface is disconnected too rather than
let it power cycle when it's working.

The VintageNet.Connectivity.InternetChecker pets the watchdog roughly every 30
seconds when the network interface is obviously working (not disconnected). When
setting a watchdog period, set it to 60 seconds or longer to be safe. A watchdog
timeout between 30 minutes to 1 hour is recommended unless you have a
particularly flaky network interface or need a fast response.

 Migration

VintageNet is a more maintainable and full-featured replacement for the previous
Nerves networking tools. You can read more about how it works above. If you need
to migrate from an older Nerves networking setup, this is the section for you.
First, if you're modifying an existing project, you will need to remove
nerves_network and nerves_init_gadget. vintage_net doesn't work with
either of them. You'll get an error if any project references those packages.
There are two routes to integrating vintage_net:
	Use nerves_pack. nerves_pack is like
nerves_init_gadget, but for vintage_net.
	Copy and paste from the
Nerves hello WiFi example

The next step is to make sure that your Nerves system is compatible. The
official Nerves systems released after 12/11/2019 work without modification. If
rolling your own Nerves port, you will need the following Linux kernel options
enabled:
	CONFIG_IP_ADVANCED_ROUTER=y
	CONFIG_IP_MULTIPLE_TABLES=y

Then make sure that you have the following Busybox options enabled:
	CONFIG_IFCONFIG=y - ifconfig ifconfig
	CONFIG_UDHCPC=y - udhcpc DHCP Client
	CONFIG_UDHCPD=y - udhcpd DHCP Server (optional)

Finally, you'll need to choose what network connection technologies that you
want available in your firmware. If using nerves_pack, you'll get support for
wired Ethernet, WiFi, and USB gadget networking automatically. Otherwise, add
one or more of the following to your dependency list:
	vintage_net_ethernet - Standard wired Ethernet
	vintage_net_wifi - Client configurations for 802.11 WiFi
	vintage_net_direct - Direct connections like those used for USB gadget
	vintage_net_qmi - Support USB-connected cellular modems
	vintage_net_mobile - Support UART-connected cellular modems

VintageNet Cookbook

Not sure what to pass to vintage_net? Take a look below for example
configurations.
To see the current configuration at an IEx prompt, type:
VintageNet.info

 Compile-time vs. run-time

The examples below all show the options to pass. Where you copy those depends on
whether you want the configuration to be a built-in default (i.e., compile-time)
or whether you want to change it at run-time.

 Compile-time (config)

Add something like the following to your config.exs:
config :vintage_net,
 config: [
 {"eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}},
]
But replace "eth0" with the interface and the map with the desired
configuration from below.

 Run-time (IEx)

Call
VintageNet.configure
like this:
VintageNet.configure("eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}})

 Network interface names

In order to configure a network interface, you will need to know its name.
vintage_net passes names through from Nerves or embedded Linux depending on
where it's being run. The following names are common:
	"eth0" - The first wired Ethernet interface
	"wlan0" - The first WiFi interface
	"usb0" - The first virtual Ethernet interface over a USB cable

The operating system assigns network interface names as it discovers them. If
you're running on a device with multiple of the same type of interface, the
device names may be renamed to make them deterministic. An example is "enp6s0"
where the p6 and s0 indicate where the adapter and Ethernet connector
location. Running ifconfig on Linux and Nerves can help find these if you are
unsure.

 Wired Ethernet

To use, make sure that you're either using
nerves_pack or have
:vintage_net_ethernet in your deps:
 {:vintage_net_ethernet, "~> 0.8"},

 Wired Ethernet with DHCP

 Compile-time (config)

config :vintage_net,
 config: [
 {"eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}}
]

 Run-time (IEx)

VintageNet.configure("eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}})

 Wired Ethernet with a static IP

Update the parameters below as appropriate.

 Compile-time (config)

config :vintage_net,
 config: [
 {"eth0", %{
 type: VintageNetEthernet,
 ipv4: %{
 method: :static,
 address: "192.168.9.232",
 prefix_length: 24,
 gateway: "192.168.9.1",
 name_servers: ["1.1.1.1"]
 }
 }}
]

 Run-time (IEx)

VintageNet.configure("eth0", %{
 type: VintageNetEthernet,
 ipv4: %{
 method: :static,
 address: "192.168.9.232",
 prefix_length: 24,
 gateway: "192.168.9.1",
 name_servers: ["1.1.1.1"]
 }
 })
See
VintageNet.IP.IPv4Config
for other options. If you're interfacing with other Erlang and Elixir libraries,
you may find passing IP tuples more convenient than passing strings. That works
too.

 WiFi

To use, make sure that you're either using
nerves_pack or have
:vintage_net_wifi in your deps:
{:vintage_net_wifi, "~> 0.8"},

 Normal password-protected WiFi (WPA2 PSK)

Most password-protected home networks use WPA2 authentication and pre-shared
keys.

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 }
]
 },
 ipv4: %{method: :dhcp},
 }}
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 }
]
 },
 ipv4: %{method: :dhcp},
})

 Normal password-protected WiFi with static IP

Here are example parameters for a static IP address.

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.9.232",
 prefix_length: 24,
 gateway: "192.168.9.1",
 name_servers: ["1.1.1.1"]
 }
 }}
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.9.232",
 prefix_length: 24,
 gateway: "192.168.9.1",
 name_servers: ["1.1.1.1"]
 }
})

 Multiple WiFi networks

If you're regularly switching between multiple networks, you can list them all
under the :networks key. Note that it's currently not possible to mix networks
that require static IP addresses with those that use DHCP.

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 },
 %{
 key_mgmt: :wpa_psk,
 ssid: "another_ssid",
 psk: "a_passphrase_or_psk"
 },
]
 },
 ipv4: %{method: :dhcp},
 }}
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 },
 %{
 key_mgmt: :wpa_psk,
 ssid: "another_ssid",
 psk: "a_passphrase_or_psk"
 },
]
 },
 ipv4: %{method: :dhcp},
})

 Enterprise WiFi (PEAPv0/EAP-MSCHAPV2)

Protected EAP (PEAP) is a common authentication protocol for enterprise WiFi networks.

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_eap,
 ssid: "my_network_ssid",
 identity: "username",
 password: "password",
 eap: "PEAP",
 phase2: "auth=MSCHAPV2"
 }
]
 },
 ipv4: %{method: :dhcp},
 }}
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_eap,
 ssid: "my_network_ssid",
 identity: "username",
 password: "password",
 eap: "PEAP",
 phase2: "auth=MSCHAPV2"
 }
]
 },
 ipv4: %{method: :dhcp},
})

 Enterprise WiFi with device certificate (EAP-TLS)

TBD
If you have a good example, do contribute it to this documentation.
It should be fully possible to do EAP-TLS and even use a NervesKey secure element for the device certificate.

 Hidden WiFi networks

If the access point has been configured to not advertise a network, VintageNetWiFi won't find it. It has to explicitly be told to search for
it. Add scan_ssid: 1 to the configuration to do this. For example,

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk",
 scan_ssid: 1
 }
]
 },
 ipv4: %{method: :dhcp},
 }}
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk",
 scan_ssid: 1
 }
]
 },
 ipv4: %{method: :dhcp},
})

 Access point WiFi

Some WiFi modules can be run in access point mode. This makes it possible to
create configuration wizards and captive portals. Configuration of this is more
involved. Here is a basic configuration:

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0",
 %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 ssid: "test ssid",
 key_mgmt: :none
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.24.1",
 netmask: "255.255.255.0"
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10",
 options: %{
 dns: ["1.1.1.1", "1.0.0.1"],
 subnet: "255.255.255.0",
 router: ["192.168.24.1"]
 }
 }
 }
 }
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 ssid: "test ssid",
 key_mgmt: :none
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.24.1",
 netmask: "255.255.255.0"
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10",
 options: %{
 dns: ["1.1.1.1", "1.0.0.1"],
 subnet: "255.255.255.0",
 router: ["192.168.24.1"]
 }
 }
})
If you want to use WPA2 on your access point, make the networks map look like
this:

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0",
 %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 key_mgmt: :wpa_psk,
 proto: "RSN",
 pairwise: "CCMP",
 group: "CCMP",
 ssid: "test ssid",
 psk: "secret123"
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.24.1",
 netmask: "255.255.255.0"
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10",
 options: %{
 dns: ["1.1.1.1", "1.0.0.1"],
 subnet: "255.255.255.0",
 router: ["192.168.24.1"]
 }
 }
 }
 }
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 key_mgmt: :wpa_psk,
 proto: "RSN",
 pairwise: "CCMP",
 group: "CCMP",
 ssid: "test ssid",
 psk: "secret123"
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.24.1",
 netmask: "255.255.255.0"
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10",
 options: %{
 dns: ["1.1.1.1", "1.0.0.1"],
 subnet: "255.255.255.0",
 router: ["192.168.24.1"]
 }
 }
})
The proto: "RSN" entry is important since the wpa_supplicant default is
WPA and not WPA2.
See the
vintage_net_wizard
for an example of a project that uses AP mode and a web server for WiFi
configuration.

 Advanced Use of WPA Supplicant

VintageNetWifi supports an "escape hatch" of sorts if you need precise control over the contents of the supplicant configuration.
The contents of the wpa_supplicant_conf will be coppied without validation to the wpa_supplicant.conf file that
VintageNet manages. Example:

 Compile-time (config)

config :vintage_net,
 config: [
 {"wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 wpa_supplicant_conf: """
 network={
 ssid="home"
 key_mgmt=WPA-PSK
 psk="very secret passphrase"
 }
 """
 },
 ipv4: %{method: :dhcp}
 }}
]

 Run-time (IEx)

VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 wpa_supplicant_conf: """
 network={
 ssid="home"
 key_mgmt=WPA-PSK
 psk="very secret passphrase"
 }
 """
 },
 ipv4: %{method: :dhcp}
})

 Bridged Mesh WiFi

In addition to infrastructure and AP modes, some WiFi modules can form a mesh.
VintageNet supports the configuration of 802.11s meshes.
While this is the standardize way of forming WiFi meshes, it is not the same as that implemented
by many access points that advertise WiFi meshing. It also uses the 802.11s routing protocol HWMP. (This is
not B.A.T.M.A.N.).
This section describes two configuration: the first is for the mesh gate and the second is for the mesh
devices. The mesh gate bridges the mesh network to the network that connects to the Internet. Mesh
nodes behave similar to normal clients: after connecting to the network, they request an IP address using
DHCP. The DHCP request gets routed through the mesh gate and to the DHCP server on the non-mesh
LAN. It's possible to have multiple mesh gates. Routing through the mesh and the mesh gate is
transparent.
The following configuration is for a mesh gate with one WiFi interface used for the mesh network and a wired network interface, eth0, that connects it to the LAN:
mesh0_config = %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 user_mpm: 1,
 # mesh creates a "virtual" interface based on
 # this interface name
 root_interface: "wlan0",
 networks: [
 %{
 key_mgmt: :none,
 ssid: "my-mesh",
 frequency: 2432,
 mode: :mesh
 }
]
 },
 # we don't need an ip address on the mesh interface
 ipv4: %{method: :disabled},
}

Bridge configured to bridge eth0 and mesh0 together
br0_config = %{
 type: VintageNetBridge,
 ipv4: %{method: :dhcp},
 vintage_net_bridge: %{
 interfaces: ["eth0", "mesh0"]
 }
}

eth0_config = %{
 type: VintageNetEthernet,
 # the bridge handles ip addressing
 ipv4: %{method: :disabled},
}

VintageNet.configure("mesh0", mesh0_config)
VintageNet.configure("br0", br0_config)
VintageNet.configure("eth0", eth0_config)
This configuration is for devices on the mesh:
mesh0_config = %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 user_mpm: 1,
 # mesh creates a "virtual" interface based on
 # this interface name
 root_interface: "wlan0",
 networks: [
 %{
 key_mgmt: :none,
 ssid: "my-mesh",
 frequency: 2432,
 mode: :mesh
 }
]
 },
 # the mesh is bridged on the other
 # device, so we can use dhcp now
 ipv4: %{method: :dhcp},
}
VintageNet.configure("mesh0", mesh0_config)

 Network interaction

 Share WAN with other networks

For sharing your WAN connection (e.g. internet access) with other networks
iptables must be installed. Currently this means building a custom nerves
system. Once this is done
the following commands need to be called on each boot:
wan = "eth0"
cmd "sysctl -w net.ipv4.ip_forward=1"
cmd "iptables -t nat -A POSTROUTING -o #{wan} -j MASQUERADE"
cmd "iptables --append FORWARD --in-interface wlan0 -j ACCEPT"
Only needed if the connection is blocked otherwise (like a default policy of DROP)
cmd "iptables -A INPUT -i #{wan} -m state --state RELATED,ESTABLISHED -j ACCEPT"

 Common tasks

 Temporarily disable WiFi

VintageNet persists configurations by default. Sometimes you just want to
disable a network temporarily and then if the device reboots, it reboots to the
old configuration. The :persist option let's you do this:
VintageNet.deconfigure("wlan0", persist: false)
To get the old configuration back, you have to call VintageNet.configure/3
with it again (or restart VintageNet or reboot).

 Perform some initialization to turn on a network interface

VintageNet waits for network interfaces to appear before doing any work. If
you need to perform some work to make the network interface show up, that has to
be done elsewhere. If you let VintageNet know about this work and allow it to
turn the network interface off too, it can "cycle power" to the interface to get
it back to a clean state when needed. Here's how:
defmodule MyPowerManager do
 @behaviour VintageNet.PowerManager

 @reset_n_gpio 4
 @power_on_hold_time 5 * 60000
 @min_powered_off_time 5000

 defstruct reset_n: nil

 @impl VintageNet.PowerManager
 def init(_args) do
 {:ok, reset_n} = Circuits.GPIO.open(@reset_n_gpio, :output)
 {:ok, %__MODULE__{reset_n: reset_n}}
 end

 @impl VintageNet.PowerManager
 def power_on(state) do
 # Do whatever is necessary to turn the network interface on
 Circuits.GPIO.write(state.reset_n, 1)
 {:ok, state, @power_on_hold_time}
 end

 @impl VintageNet.PowerManager
 def start_powering_off(state) do
 # If there's a graceful power off, start it here and return
 # the max time it takes.
 {:ok, state, 0}
 end

 @impl VintageNet.PowerManager
 def power_off(state) do
 # Disable the network interface
 Circuits.GPIO.write(state.reset_n, 0)
 {:ok, state, @min_powered_off_time}
 end
Then add the following to your config.exs:
config :vintage_net, power_managers: [{MyPowerManager, ifname: "wlan0"}]
VintageNet determines whether devices are ok by use of a watchdog. VintageNet
and its technology implementations pet the watchdog by calling
VintageNet.PowerManager.PMControl.pet_watchdog/1. This may be insufficient for
your application. Options include calling that function in your code regularly
or modifying the :watchdog_timeout in the power manager spec in your
config.exs.
See VintageNet.PowerManager for details.

Changelog

This project follows Semantic Versioning.

 [v0.13.6] - 2025-01-06

	Fixes
	The internet connectivity checker pets the network interface watchdog now
when the interface is known to be connected to the LAN or internet. If
you're using the watchdog to reset an interface (like a WiFi module) when it
hasn't had connectivity for a while, this may let you remove user code that
did the same thing. If you have a better check that the network interface is
working ok when disconnected, then stick with what you have. Thanks to
Connor Rigby for this change.

	Changed
	Relax the PropertyTables dependency to allow v0.3 since the backwards
incompatibilities don't affect VintageNet.
	Incorporate various documentation updates that accumulated
	Only support Elixir 1.13 and later

 [v0.13.5] - 2023-09-13

	Changed	Warn when setting default routes with IP addresses outside of the subnet
rather than crashing. Thanks to Ben Murphy for this fix.
	Bulletproof force clearing of IP addresses to avoid crashing unnecessarily
during cleanup. This was a very rare case.

 v0.13.4 - 2023-07-07

	Changed
	VintageNet configurations are normalized on load now rather than on use.
For various reasons, it's useful to support multiple ways of specifying
network configurations, but internally VintageNet always converts to one way
to simplify use. If you call VintageNet.get_configuration/1 or
VintageNet.get/2 to look at the config, you'd see the original form and not
the normalized one. Now you get the normalized one.
	Add :reason to the VintageNet.Technology.Null. VintageNet uses Null to
make network interfaces stay unconfigured when requested or when there's an
error. The :reason key helps you know why rather than forcing you to dig
through logs.

	Fixes
	When reseting a network configuration to defaults, a settings file was
written and immediately erased. That doesn't happen any more.

 v0.13.3 - 2023-06-10

	Changed	Sort dhcpd options so their order doesn't change in configuration files made
by OTP 26. This fixes regression test failures that expected the files to by
the same. It shouldn't matter for real use, but it's nice that the files are
deterministic just in case.
	Ignore unexpected messages to the InterfacesMonitor. This fixes an
unnecessary crash/restart that was seen. Errors are still logged.

 v0.13.2 - 2023-05-15

	Changed	Always set IPv4 broadcast address for static IPv4 configurations. This fixes
an issue where the default for subnet broadcast address was not the expected
host all-ones address per RFC 922.
	Prune out LAN addresses when trying to detect Internet connectivity. This
fixes one way that the Internet checker could be tricked by a captive portal
that resolves all DNS queries to its portal address.
	Fix confusion with :dhcpd :subnet option. This maps to the subnet mask
field when responding to DHCP requests. The word "subnet" was interpreted as
a subnet which was incorrect for this. :netmask is now an alias and
examples are fixed.

 v0.13.1 - 2023-03-15

This release fixes deprecation warnings when using Elixir 1.15.

 v0.13.0 - 2023-01-22

This release has a breaking change if you're using the UdhcpcHandler
behaviour. This should be a rare use case. Use the "dhcp_options" property
now.
	Changed	Add "dhcp_options" to interface properties. This lets applications use
information provided by DHCP servers in an easy way. It removes the need to
process events from udhcpc directly, and therefore, the UdhcpcHandler
behaviour is now a private API and may be removed in the future.
	Fix some references to iodata that should have been chardata.

 v0.12.2 - 2022-08-04

	Changed	Add VintageNet.info_as_ansidata/1. This lets you get the same results as
VintageNet.info, but in a way that's easy to put on a web page or send
to a server, etc.
	Support updating network configuration even when it can't be persisted.
Previously if there was an error saving the configuration and persist: true (the default), the configuration wouldn't be applied. This turned
out to be problematic when trying to get some devices fixed. Now the
device won't have the right config on reboot, but it can be reached over
the network to be fixed.

 v0.12.1 - 2022-06-01

	Changed	The list of name servers that VintageNet uses when configuring the name
resolve is now available by running VintageNet.get(["name_servers"]).

 v0.12.0 - 2022-04-27

This release has two potentially breaking changes:
	Elixir 1.11 is now the minimum supported Elixir version.
	VintageNet.PropertyTable has been extracted to its own library and is now
just PropertyTable. Most users did not use VintageNet.PropertyTable
directly, but if you did, you'll need to update the references.

	Changed	Extract VintageNet.PropertyTable to its own library. Note that many
improvements were made to PropertyTable including renaming functions for
consistency and changing the events. Code was added to VintageNet to hide
these changes for now. Longer term, we'll be making things more consistent,
but the hope is that the PropertyTable changes are transparent to VintageNet
users in this release.
	Support specifying absolute paths to network configuration commands. While
this is not preferred, it's useful in some scenarios.
	Redact more kinds of secrets in VintageNet.info

 v0.11.5 - 2022-02-18

	Changed	Fix a no function clause exception in the InternetChecker that could happen
if no IP addresses were assigned to an interface.

 v0.11.4 - 2021-12-20

	Changed	Internet connectivity checks can now take domain names. Previously only IP
addresses were supported. This change lets you add your own servers to the
list since those servers may be more reliable indicators of Internet access
in highly firewalled locations. A section on this was added to the README.md
with an example.

 v0.11.3 - 2021-11-18

	Changed	Don't downgrade the connection status on DHCP renewals. Previously, if there
was a DHCP renewal, the connection status could go from "Internet-connected"
"LAN-connected". The logic was that IP address and router changes may make
the Internet unreachible. The new logic is to assume that the device is
still Internet-connected and let the connectivity checker downgrade the
status should it be necessary. This not only removes a status hiccup, but
also fixes a race between the connectivity checker upgrading the connection
and the DHCP notification degrading it.
	Improve the VintageNet.info error when the :vintage_net application
stops.

 v0.11.2 - 2021-10-25

	Added	Added VintageNet.RouteManager.refresh_route_metrics/0 to recompute the
routing table metrics. This is useful if you're supplying your own
:route_metric_fun and something has changed to make it return a different
prioritization. Thanks to @LostKobrakai for this feature.

 v0.11.1 - 2021-10-01

	Changed	The DNS server ordering is more deterministic now. Global DNS servers are
guaranteed to be listed first and in the order specified. VintageNet will
also try to preserve the ordering of DNS servers learned through DHCP. This
isn't always possible, though. This fixes a hard-to-find error where an
a difference in DNS server orderings between to device locations led to
different behavior.
	Use VintageNet.ConnectivityChecker.* in VintageNet. The connectivity
checker module change was half made in v0.11.0, but the old module name
was kept in a couple places to avoid breaking unit tests in other VintageNet
libraries. Now it's completely converted. This doesn't affect runtime. Code
that references the previous names will still get deprecation warnings like
in v0.11.0.

 v0.11.0 - 2021-08-19

This release should be a safe update for most users. Many routing table and
internet connectivity check modules were updated, but the changes were primarily
in private APIs.
	Added
	Support for detecting Internet connectivity on an interface passively by
watching tx and rx stats on TCP sockets. For example, if you have a
long-lived TCP connection (like for MQTT), the keepalive messages will
bump tx and rx counters that will let VintageNet skip testing the connection
for connectivity. This reduces traffic on metered connections.
	Support for completely overriding route metric calculation. You can now
specify a :route_metric_fun instead of using the DefaultMetric
calculator for determining which network interface preferences.
	VintageNet property change events now come with timestamps. These are useful
for computing state durations and other time-based stats for events.

	Removed
	Support for setting route prioritization order. This feature was more
limiting that it originally looked. The new :route_metric_fun is more
straightforward since it lets you explicitly specify orderings and lets
decisions be made based on more input data.

	Changed
	VintageNet.Interface.InternetConnectivityChecker is now
VintageNet.Connectivity.InternetChecker. Please update any references. Old
references will continue to work, but give a deprecation message at runtime.

 v0.10.5 - 2021-07-12

This release only contains build system and hex package update. It doesn't
change any code and is a safe update.

 v0.10.4 - 2021-07-06

	Fixed	DHCP renewals would bounce connection status from :internet to :lan and back
even when the IP address, subnet, and default gateway didn't change. This
could cause a network connectivity hiccup that would happen every 24 hours
(a common DHCP lease time). A fix was added to assume internet connectivity
was maintained if the DHCP renewal didn't change IP parameters.

 v0.10.3 - 2021-06-22

	Fixed	Fix regression with tracking udhcpd lease notifications. Leases
notifications were being ignored, so if you were monitoring leases to see
who was connected, then you wouldn't see any connections without this fix.
Thanks to Jon Thacker for reporting this issue.
	Fix crashes when the application config is invalid. While the configurations
were incorrect and needed to be fixed, it was harder to debug than it should
have been. This release logs messages on invalid configs and carries on
bringing up left that's valid. Thanks to Matt Ludwigs for this fix.

 v0.10.2 - 2021-05-20

This release officially removes support for Elixir 1.7 and Elixir 1.8. It turns
out that those versions wouldn't have worked in v0.10.0 due to a dependency that
was added.
	Added	Add VintageNet.reset_to_defaults/1 so that it's easy to reset a network
interface's configuration to what it would be if VintageNet.configure had
never been called. The previous "easy" way of doing this was to erase the
persisted configuration file and reboot.
	Clean up interface reachability handling (disconnected vs. lan-connected vs
internet-connected). There was an issue where the status was out of sync due
a bug in a technology implementation. This is harder to do now. IMPORTANT:
if you have a custom technology implementation, calling
VintageNet.RouteManager.set_connection_status is sufficient. You no
longer need to update the status property for your interface. This is not a
common need.

 v0.10.1 - 2021-05-06

	Added	There's now an :additional_name_servers global configuration key so that
it's possible to force name servers to always be in the list to use. For
example, if you don't trust that you'll always get good name servers from
DHCP, you can add a few public name servers to this list.
	/etc/resolv.conf now has nice comments on where configuration items come
from. Thanks to Connor Rigby for this idea and implementation.

 v0.10.0 - 2021-04-06

This release is mostly backwards compatible. If you have created your own
VintageNet technology, you may need to update your unit tests. If you are an end
user of VintageNet, your code should continue to work unmodified.
	Added
	The Internet connectivity check logic now supports a list of IP addresses
instead of just one. The default has been updated to include major public
DNS providers. The code checks them in succession until one responds. See
:internet_host_list config key in the README.md if you need to change it.
	Only start udhcpc/udhcpd when the network interface is up. This removes
pointless attempts to get an IP address and their associated logs. It
reduces connection time for wired Ethernet but doesn't affect WiFI.

	Fixed
	Replace Crypto API calls that are no longer included with OTP 24.
	Redact SAE passwords

 v0.9.3 - 2021-02-03

	Fixed	Be more robust to PowerManager.init/1 failures. While this function
shouldn't raise, the effect of it raising was particularly destructive to
VintageNet and took down networking.
	Update gen_state_machine dependency to let the 3.0.0 release be used.

 v0.9.2 - 2020-10-10

	Fixed	Handle missing commands as errors rather than raising. This makes it
a little easier test vintage_net and libraries that use it.
	Fixes @doc tag warnings during compile time

 v0.9.1 - 2020-07-29

	Fixed	This fixes an issue where system networking binaries were not being resolved
according to vintage_net's view of the PATH. vintage_net looks in the
standard directories by default, but it's possible to restrict or add
locations.

 v0.9.0 - 2021-07-24

This release contains improvements that will not affect you unless you are
using a custom VintageNet.Technology implementation.
	Added
	Add power management support. This adds support for powering on and off
network devices and also enables VintageNet to restart devices that are
not working (if allowed). See VintageNet.PowerManager for details.

	Changed
	Paths to networking programs like wpa_supplicant are no longer passed as
opts during configuration. I.e., :bin_wpa_supplicant, :bin_ip, etc. This
was not a generally useful feature since it wasn't possible to include all
possible programs. A future plan is to add support for verifying that
networking programs exist before trying to configure an interface. Programs
should be passed as strings now.
	Support for the :busybox hex package has been removed. This was useful
when networking programs were unavailable on a system, but all official
Nerves systems have included them for the past year and :busybox required
maintenance to keep working and up-to-date.

 v0.8.0 - 2020-05-29

	Added
	[Breaking change for technology implementors] Decouple the network interface
name from the one a network technology uses. For example, cellular modems
can now have vintage_net wait for wwan0 to appear before setting up a
PPP interface (like ppp0). All network technology implementations need to
be updated to provide RawConfigs that list the network interfaces they
need to start. This is hard to miss since you'll get a compile error if it
affects you.
	Deterministic interface naming support - If you have a device with multiple
network interfaces of the same type (e.g., multiple WiFi adapters) it is
possible for them to switch between being assigned wlan0 and wlan1
under some conditions. This feature allows you to map their hardware
location to a name of your choosing. See the README.md for details.
	Add the "hw_path" property - For example, {["interface", "eth0", "hw_path"], "/devices/platform/ocp/4a100000.ethernet"}

	Fixed
	Stop network interface management GenServers before running the "down"
commands. This is most noticeable in reduced log noise on network hiccups
and device removals.

 v0.7.9 - 2020-04-07

	Fixed	Fix IP address being reported for PPP connections. Previously, it was the
remote end of the PPP connection rather than the local end.
	Fix missing IPv6 address reports. Depending on when IPv6 addresses were set
on network interfaces, they might not have been reported. Note that IPv6
isn't officially supported by VintageNet yet.

 v0.7.8 - 2020-04-03

	Added
	Store an interface's configuration in the ["interface", ifname, "config"]
property. This makes it possible to subscribe to configuration changes (like
any other property).
	Print out IP addresses with VintageNet.info/0

	Fixed
	Fixed VintageNet.get_configuration/1 to return the configuration that will
be applied even if it's not the configuration that's currently applied.
The previous semantics would break code that made decisions based on the
current configurations.

 v0.7.7 - 2020-03-23

	Added	Added time-in-state to VintageNet.info. This lets you see if a connection
has bounced at a glance without digging through the logs.

 v0.7.6 - 2020-03-18

	Fixed	Ensure that Technology.normalize/1 is always called. Previously, this
wasn't guaranteed, and it could result in a surprise when an unnormalized
configuration got saved.
	Remove duplicate resolv.conf entries on multi-homed devices
	Fix warnings found by Elixir 1.10

 v0.7.5 - 2020-02-10

	Fixed	Fix routing table error when configuring multiple interfaces of the same
type.
	Fix VintageNet.info for when it's called before vintage_net is loaded.

 v0.7.4 - 2020-01-22

	Fixed	Fix VintageNet.info crash when displaying AP mode configurations
	Save configurations using the :sync flag to reduce the chance that they're
lost on ungraceful power offs. I.e., people pulling the power cable after
device configuration.

 v0.7.3 - 2020-01-21

	Added	Scrub VintageNet.info/0 output to avoid accidental disclosure of WiFi
credentials
	Support options to deconfigure/2 to mirror those on configure/2
	Prefix udhcpc logs with interface to more easily blame problematic
networks
	Support IPv4 /32 subnets
	Various documentation fixes and improvements

 v0.7.2 - 2019-12-20

	Bug fix	Remove noisy log message introduced in v0.7.1

 v0.7.1 - 2019-12-20

This release fixes an issue where the Internet-connectivity checking code could
crash. It was automatically restarted, but that had a side effect of delaying a
report that the device was connected AND breaking mdns_lite. Both the crash
and the restart issue were fixed. The mdns_lite side effect was due to its
multicast group membership being lost so this would affect other multicast-using
code.
	Fixed
	Fix :timeout_value crash in the InternetConnectivityChecker
	Force clear IPv4 addresses when the DHCP notifies a deconfig event. This
occurs on a restart and is quickly followed by a renew. However, if
applications don't see this, bounce and don't register their multicast
listeners on affected IPv4 address again, they'll lose the subscription.

	Added
	Added check for nerves_network and nerves_init_gadget. If your project
pulls these in, it will get a moderately friendly notice to remove them.

 v0.7.0 - 2019-12-09

This release moves network technology implementations (WiFi, wired Ethernet,
etc.) into their own projects. This means that they can evolve at their own
pace. It also means that we're finally ready to support the
VintageNet.Technology behaviour as part of the public API so that VintageNet
users can add support for network technologies that we haven't gotten to yet.
IMPORTANT: This change is not backwards compatible. You will need to update
existing projects to bring in a new dependency. The runtime is backwards
compatible. I.e., If you have a networking configuration saved in VintageNet, it
will be updated on load. It won't be re-saved, so if you need to revert an
update, it will still work. The next save, though, will use the new naming.
If you're using VintageNet.Technology.Gadget, do the following:
	Add {:vintage_net_direct, "~> 0.7.0"} to your mix.exs dependencies.
You'll notice that references to "gadget" have been replaced with the word
"direct". We think the new naming is more accurate.
	Replace all references to VintageNet.Technology.Gadget in your code to
VintageNetDirect. Be aware of aliases and configuration.
	If you passed options when configuring the network, the :gadget key is
now :vintage_net_direct. Most users don't pass options.

If you're using VintageNet.Technology.Ethernet, do the following:
	Add {:vintage_net_ethernet, "~> 0.7.0"} to your mix.exs dependencies.
	Replace all references to VintageNet.Technology.Ethernet in your code to
VintageNetEthernet. Be aware of aliases and configuration.

If you're using VintageNet.Technology.WiFi, do the following:
	Add {:vintage_net_wifi, "~> 0.7.0"} to your mix.exs dependencies.
	Replace all references to VintageNet.Technology.WiFi in your code to
VintageNetWiFi. Be aware of aliases and configuration. Also, the "F" is
capital.
	The :wifi key in the network configuration is now :vintage_net_wifi.

 v0.6.6 - 2019-12-01

	Fixed
	Fix warning from Dialyzer when making wild card subscriptions. Code was also
added to more thoroughly validate properties paths to raise on subtle issues
that won't do what the programmer intends.

	Added
	Added VintageNet.match/1 to support "gets" on properties using wildcards.

 v0.6.5 - 2019-11-22

	Added	Support wild card subscriptions to properties. This makes it possible to
subscribe to things like ["interface", :_, "addresses"] where the :_
indicates that any value in the second position should match. That
particular subscription would send a message whenever an IP address anywhere
gets added, changed, or removed.

 v0.6.4 - 2019-10-31

	Added	Added the ["interface", ifname, "eap_status"] property for EAP
events. EAP is currently only supported on WiFi, but is anticipated for
wired Ethernet too.

 v0.6.3 - 2019-10-28

This release renames the WiFi mode names. The old names still work so it's a
backwards compatible update. The new names are :ap and :infrastructure
instead of :host and :client. These names match the mode names in the IEEE
specifications and usage elsewhere.
	Added	Support static IPv4 configurations for a default gateway and list of name
resolvers. See :gateway and :name_servers parameters.
	Support ad-hoc WiFi networking (IBSS mode)

 v0.6.2 - 2019-10-11

	Added	Support running a simple DNS server on an interface. This was added for WiFi
AP mode configuration and could be useful for other scenarios.
	Support DHCP server response options
	Support disabling configuration persistence on a per-call basis. This is for
temporary configurations where a reboot should not preserve the setting. For
example, VintageNet.configure("wlan0", config, persist: false)

 v0.6.1 - 2019-10-02

	Added	Add a current_ap property for WiFi interfaces so that programs can get
information about the currently associated access point
	Support running a DHCP server on wired Ethernet interfaces
	Expose VintageNet.WiFi.WPA2.validate_passphrase/1 so that applications can
reuse the WiFI passphrase validation logic. This logic follows IEEE Std
802.11i-2004 and validates things like proper length and character set

 v0.6.0 - 2019-09-25

IMPORTANT: This release contains a LOT of changes. VintageNet is still pre-1.0
and we're actively making API changes as we gain real world experience with it.
Please upgrade carefully.
	Changed
	All IP addresses are represented as tuples. You can still specify IP
addresses as strings, like "192.168.1.1", but it will be converted to tuple
form. When you get the configuration, you'll see IP addresses as tuples.
This means that if you save your configuration and revert to a previous
version of VintageNet, the settings won't work.
	WiFi network configuration is always under the :networks key. This was
inconsistent. Configuration normalization will update old saved
configurations.
	Support for the IPv4 broadcast IP address has been removed. Existing support
was incomplete and slightly confusing, so we decided to remove it for now.
	All IP address subnets are represented by their prefix length. For example,
255.255.255.0 is recorded as a subnet with prefix length 24. Configuration
normalization converts subnet masks to prefix length now.

	Added
	USB gadget support - See VintageNet.Technology.Gadget. It is highly likely
that we'll refactor USB gadget support to its own project in the future.
	Add :verbose key to configs for enabling debug messages from third party
applications. Currently :verbose controls debug output from
wpa_supplicant.
	Allow users to pass additional options to MuonTrap so that it's possible
to run network daemons in cgroups (among other things)

	Fixed
	Networking daemons should all be supervised now. For example, udhcpc
previously was started by ifup and under many conditions, it was possible
to get numerous instances started simultaneously. Plus failures weren't
detected.
	No more killall calls to cleanup state. This had prevented network
technologies from being used on multiple interfaces.
	No more ifupdown. This was very convenient for getting started, but has
numerous flaws. Search the Internet for rants. This was replaced with direct
calls to ip link and ip addr and adding network daemons to supervision
trees.

	Known issues
	Static IP addressing is still not implemented. It's only implemented enough
for WiFi AP mode and USB gadget mode to work. We hope to fix this soon.
	It's not possible to temporarily configure network settings. At the moment,
if persistence is enabled (the default), configuration updates are always
saved.

 v0.5.1 - 2019-09-03

	Fixed
	Add missing PSK conversion when configuring multiple WiFi networks. This
fixes a bug where backup networks wouldn't connect.

	Added
	Don't poll WiFi networks that are configured for AP mode for Internet. They
will never have it.
	Reduce the number of calls to update routing tables. Previously they were
unnecessarily updated on DHCP failures due to timeouts. This also removes
quite a bit of noise from the log.
	Filter out interfaces with "Null" technologies on them from the configured
list. They really aren't configured so it was confusing to see them.

 v0.5.0 - 2019-08-08

Backwards incompatible change: The WiFi access point property (e.g.,
["interfaces", "wlan0", "access_points"]) is now a simple list of access point
structs. It was formerly a map and code using this property will need to be
updated.

 v0.4.1 - 2019-07-29

	Added	Support run-time configuration of regulatory domain
	Error message improvement if build system is missing pkg-config

 v0.4.0 - 2019-07-22

Build note: The fix to support AP scanning when in AP-mode (see below) required
pulling in libnl-3. All official Nerves systems have it installed since it is
required by the wpa_supplicant. If you're doing host builds on Linux, you'll
need to run apt install libnl-genl-3-dev.
	Added
	Report IP addresses in the interface properties. It's now possible to listen
for IP address changes on interfaces. IPv4 and IPv6 addresses are reported.
	Support scanning for WiFi networks when an WiFi module is in AP mode. This
lets you make WiFi configuration wizards. See the vintage_net_wizard
project.
	Add interface MAC addresses to the interface properties

	Fixed
	Some WiFi adapters didn't work in AP mode since their drivers didn't support
the P2P interface. Raspberry Pis all support the P2P interface, but some USB
WiFi dongles do not. The wpa_supplicant interface code was updated to use
fallback to the non-P2P interface in AP mode if it wasn't available.

 v0.3.1 - 2019-06-28

	Added	Add null persistence implementation for devices migrating from Nerves
Network that already have a persistence strategy in place

 v0.3.0 - 2019-06-27

	Added
	Support the busybox hex.pm package to bring in networking support if not
present in the Nerves system image. This enables use with the minimal
official Nerves images.
	Add Unix domain socket interface to the wpa_supplicant. This enables
much faster scanning of WiFi networks and other things like collecting
attached clients when in AP-mode and pinging the supplicant to make sure
it's running.
	Log output of commandline-run applications so that error messages don't get
lost.
	Provide utilities for reporting WiFi signal strength as a percent to end
users.

	Fixed
	Support scanning WiFi access points with Unicode names (emoji, etc. in their
SSIDs)
	Allow internet connectivity pings to be missed 3 times in a row before
deciding that the internet isn't reachable. This avoids transients due to
the random dropped packet.
	Reduce externally visible transients due to internal GenServers crashing and
restarting - also addressed the crashes
	Support configure while configuring - let's you cancel a configuration that
takes a long time to apply and apply a new one

 v0.2.4 - 2019-06-03

	Added	Listen for interface additions and physical layer notifications so that
routing and status updates can be made much more quickly
	Add lower_up to the interface properties

 v0.2.3 - 2019-05-29

	Fixed	This release fixes supervision issues so that internal VintageNet crashes
can be recovered
	VintageNet.get_configuration/1 works now
	"available_interfaces" is updated again

 v0.2.2 - 2019-05-24

	Fixed	Fix local LAN routing

 v0.2.1 - 2019-05-16

	Added	Expose summary status of whether the whole device is
disconnected, LAN-connected, or Internet-connected

 v0.2.0 - 2019-05-15

	Added
	Support WiFi AP mode - see README.md for example

	Fixed
	Alway update local routes before default routes to avoid getting errors when
Linux detects a table entry that cannot be routed

 v0.1.0

Initial release to hex.

VintageNet

VintageNet is network configuration library built specifically for Nerves
Project devices. It has the following features:
	Ethernet and WiFi support included. Extendible to other technologies
	Default configurations specified in your Application config
	Runtime updates to configurations are persisted and applied on next boot (can
be disabled)
	Simple subscription to network status change events
	Connect to multiple networks at a time and prioritize which interfaces are
used (Ethernet over WiFi over cellular)
	Internet connection monitoring and failure detection (currently slow and
simplistic)

See
github.com/nerves-networking/vintage_net
for more information.

 Summary

 Types

 VintageNet.Connectivity.CheckLogic - vintage_net v0.13.6

VintageNet.Connectivity.CheckLogic

Core logic for determining internet connectivity based on check results
This module is meant to be used by InternetChecker and others for
determining when to run checks and how many failures should change the
network interface's state.
It implements a state machine that figures out what the connectivity status
is based on internet-connectivity check successes and fails. It also returns
how long to wait between checks.
stateDiagram-v2
 direction LR
 [*]-->internet : init

 state connected {
 internet-->lan : max failures
 lan-->internet : check succeeded
 }
 connected-->disconnected : ifdown
 disconnected-->lan : ifup

 Summary

 Types

 VintageNet.Connectivity.Inspector - vintage_net v0.13.6

VintageNet.Connectivity.Inspector

This module looks at the network activity of all TCP socket connections known
to Erlang/OTP to deduce whether the internet is working.
To use it, call check_internet/2, save the returned cache, and then call it
again a minute later (or so). If any socket has transferred data in both
directions to an off-LAN host on the interface of interest, then it will
return that the internet is available.
This has a couple advantages:
	No data is sent to perform the check which is good for metered connections
	Most long-lived TCP connections have a keepalive mechanism that generates
traffic, so this piggy-backs off that existing connectivity check.
	Devices can be behind very restrictive firewalls and internet connectivity
can still be verified without knowing which IP/port/protocol combinations
are allowed.

It is not perfect:
	It only works on long-lived TCP connections.
	The TCP connection must be sending and receiving data. If the keapalive is
longer than the check_internet/2
	It doesn't help if nobody is using the network interface.
	It may have scalability issues if there are a LOT of TCP sockets.

 Summary

 Types

 VintageNet.Connectivity.InternetChecker - vintage_net v0.13.6

VintageNet.Connectivity.InternetChecker

This GenServer monitors a network interface for Internet connectivity
Internet connectivity is determined by reachability to an IP address.
If that address is reachable then other this updates a property to
reflect that. Otherwise, the network interface is assumed to merely
have LAN connectivity if it's up.

 Summary

 Functions

 VintageNet.Connectivity.LANChecker - vintage_net v0.13.6

VintageNet.Connectivity.LANChecker

This GenServer monitors a network interface for LAN connectivity
Currently LAN connectivity simply looks to see if it's possible to
send a packet on the interface. It might or might not get to the
desired destination on the LAN, but it won't obviously fail.
This is an alternative to the InternetConnectivityChecker that
actively monitors reachability to a host.

 Summary

 Functions

 VintageNet.Connectivity.TCPPing - vintage_net v0.13.6

VintageNet.Connectivity.TCPPing

Test connectivity by making a connection using TCP
Connectivity with a remote host can be checked by making a TCP connection to
it. The connection either works, the connection is refused, or it times out.
The first two cases indicate connectivity.
Normally ICMP is used for testing connectivity, but that requires the new
socket API and a Linux kernel with net.ipv4.ping_group_range enabled. This
way usually works unless a device is behind a strict firewall, but there's
usually at least one IP address/port on the Internet that they allow.

 Summary

 Types

 VintageNet.DHCP.Options - vintage_net v0.13.6

VintageNet.DHCP.Options

DHCP Options

 Summary

 Types

 VintageNet.IP - vintage_net v0.13.6

VintageNet.IP

This module contains utilities for handling IP addresses.
By far the most important part of handling IP addresses is to
pay attention to whether your addresses are names, IP addresses
as strings or IP addresses at tuples. This module doesn't resolve
names. While IP addresses in string form are convenient to type,
nearly all Erlang and Elixir code uses IP addresses in tuple
form.

 Summary

 Functions

 VintageNet.IP.DhcpdConfig - vintage_net v0.13.6

VintageNet.IP.DhcpdConfig

This is a helper module for VintageNet.Technology implementations that use
a DHCP server.
DHCP server parameters are:
	:start - Start of the lease block
	:end - End of the lease block
	:max_leases - The maximum number of leases
	:decline_time - The amount of time that an IP will be reserved (leased to nobody)
	:conflict_time -The amount of time that an IP will be reserved
	:offer_time - How long an offered address is reserved (seconds)
	:min_lease - If client asks for lease below this value, it will be rounded up to this value (seconds)
	:auto_time - The time period at which udhcpd will write out leases file.
	:static_leases - list of {mac_address, ip_address}
	:options - a map DHCP response options to set. Such as:	:dns - IP_LIST
	:domain - STRING - [0x0f] client's domain suffix
	:hostname - STRING
	:mtu - NUM
	:router - IP_LIST
	:search - STRING_LIST - [0x77] search domains
	:serverid - IP (defaults to the interface's IP address)
	:subnet or :netmask - IP as a subnet mask (:netmask is an alias for :subnet)

:options
Options may also be passed in as integers. These are passed directly to the DHCP server
and their values are strings that are not interpreted by VintageNet. Use this to support
custom DHCP header options. For more details on DHCP response options see RFC 2132

 Example

 VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 ssid: "test ssid",
 key_mgmt: :none
 }
]
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10",
 options: %{
 dns: ["1.1.1.1", "1.0.0.1"],
 netmask: "255.255.255.0",
 router: ["192.168.24.1"]
 }
 }
 })

 Summary

 Functions

 VintageNet.IP.DnsdConfig - vintage_net v0.13.6

VintageNet.IP.DnsdConfig

This is a helper module for VintageNet.Technology implementations that use
the Busybox DNS server.
DNS functionality is only supported for IPv4 configurations using static IP
addresses.
DNS server parameters are:
	:port - The port to use (defaults to 53)
	:ttl - DNS record TTL in seconds (defaults to 120)
	:records - DNS A records (required)

The :records option is a list of name/IP address tuples. For example:
[{"example.com", {1, 2, 3, 4}}]
Only IPv4 addresses are supported. Addresses may be specified as strings or
tuples, but will be normalized to tuple form before being applied.

 Summary

 Functions

 VintageNet.IP.IPv4Config - vintage_net v0.13.6

VintageNet.IP.IPv4Config

This is a helper module for VintageNet.Technology implementations that use
IPv4.
IPv4 configuration is specified under the :ipv4 key in the configuration map.
Fields include:
	:method - :dhcp, :static, or :disabled

The :dhcp method currently has no additional fields.
The :static method uses the following fields:
	:address - the IP address
	:prefix_length - the number of bits in the IP address to use for the subnet (e.g., 24)
	:netmask - either this or prefix_length is used to determine the subnet. If you
have a choice, use prefix_length
	:gateway - the default gateway for this interface (optional)
	:name_servers - a list of DNS servers (optional)
	:domain - DNS search domain (optional)

Configuration normalization converts :netmask to :prefix_length.

 Summary

 Functions

 VintageNet.Interface - vintage_net v0.13.6

VintageNet.Interface

Manage a network interface at a very high level
This module handles configuring network interfaces, making sure that configuration failures
get retried, and then cleaning up after it's not needed.
The actual code that supplies the configuration implements the VintageNet.Technology
behaviour.

 Summary

 Functions

 VintageNet.Interface.CommandRunner - vintage_net v0.13.6

VintageNet.Interface.CommandRunner

The CommandRunner module runs commands specified in RawConfigs
See the RawConfig documentation for where lists of commands
are specified. The following commands are supported:
	{:run, command, args} - Run a system command
	{:run_ignore_exit, command, args} - Same as :run, but without the exit status check
	{:fun, module, function_name, args} - Run a function by MFArgs
	{:fun, fun} - Run a function. Using the MFArgs form is preferred since it's easier to verify in unit tests.

CommandRunner also implements RawConfig's file creation and
cleanup logic.

 Summary

 Functions

 VintageNet.Interface.EAPStatus - vintage_net v0.13.6

VintageNet.Interface.EAPStatus

Status of an EAP connection.

 Keys

	status Status of the connection.	:started - the AP was assosiated and EAP is started.
	:success - the EAP connection was successful
	:failure - the EAP connection failed.

	method - EAP method used to authenticate. See the typespec for available values.
	timestamp - DateTime of the most recent EAP event.
	remote_certificate_verified? - if the cert was verified by the EAP server.

 Summary

 Types

 VintageNet.Interface.IfupDaemon - vintage_net v0.13.6

VintageNet.Interface.IfupDaemon

Wrap MuonTrap.Daemon to start and stop a program based on whether the network is up
Unlike MuonTrap.Daemon, the arguments are called out in the child_spec so it looks like
this:
{VintageNet.Interface.IfupDaemon, ifname: ifname, command: program, args: arguments, opts: options]}

 Summary

 Functions

 VintageNet.Interface.N