

 vintage_net_bridge

 v0.10.3

 Table of contents

 	README

 	Changelog

 	Modules

 	VintageNetBridge

README

[image: VintageNet logo]
[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: Coverage Status]
VintageNetBridge adds support for creating Ethernet bridges with VintageNet.
Bridging two networks joins them together so that they form one LAN. One use
case would be to join a WiFi mesh network with a wired Ethernet LAN. Devices on
the mesh network would look like they're on the Ethernet LAN when in reality all
traffic was being transferred through the bridge. For example, a DHCP server
running on the Ethernet LAN would provide IP addresses for the WiFi mesh
devices. While bridging is not always an appropriate way of joining networks, in
this case, it enables one to provision multiple Mesh WiFi to Ethernet LAN
devices for redundancy in the mesh while still looking like a normal IPv4 LAN.
To use, add :vintage_net_bridge to your mix dependencies like this:
def deps do
 [
 {:vintage_net_bridge, "~> 0.10.0"}
]
end

 Using

Bridges typically have names like "br0", "br1", etc. Here is an example
configuration:
config :vintage_net,
 regulatory_domain: "US",
 config: [
 {"eth0",
 %{
 type: VintageNetEthernet,
 ipv4: %{method: :disabled}
 }},
 {"br0",
 %{
 type: VintageNetBridge,
 ipv4: %{method: :dhcp},
 vintage_net_bridge: %{
 interfaces: ["eth0", "mesh0"]
 }
 }},
 {"mesh0",
 %{
 type: VintageNetWiFi,
 ipv4: %{method: :disabled},
 vintage_net_wifi: %{
 user_mpm: 1,
 root_interface: "wlan0",
 networks: [
 %{
 key_mgmt: :none,
 ssid: "my-mesh",
 frequency: 2432,
 mode: :mesh
 }
]
 }
 }}
]

Changelog

 v0.10.3

	Changes	Fix retry failure in up_cmds due to not cleaning up the existing bridge.

 v0.10.2

	Changes	Normalize configurations to avoid errors when using static IP addresses.
Thank to @pojiro for this fix.
	Fix non-determinism is configuration file order when using OTP 26 due to map
sort order change.

 v0.10.1

	Changes	Support vintage_net v0.11.x as well.

 v0.10.0

This release is backwards compatible with v0.9.2. No changes are needed to
existing code.

 v0.9.0

	New features	Synchronize with vintage_net v0.9.0's networking program path API update

 v0.8.0

Initial release

VintageNetBridge

Configure network bridges with VintageNet
Configurations for this technology are maps with a :type field set to
VintageNetBridge. The following additional fields are supported:
	:vintage_net_bridge - Bridge options	:interfaces - Set to a list of interface names to add to the bridge.
This option is required for the bridge to be useful.
	:forward_delay
	:priority
	:hello_time
	:max_age
	:path_cost
	:path_priority
	:hairpin
	:stp

Here's an example configuration for setting up a bridge:
%{
 type: VintageNetBridge,
 vintage_net_bridge: %{
 vintage_net_bridge: %{
 interfaces: ["eth0", "wlan0"],
 }
}
See brctl(8) for
more information on individual options.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

