

 vintage_net_qmi

 v0.3.5

 Table of contents

 	VintageNetQMI

 	Changelog

 	Modules

 	VintageNetQMI

 	VintageNetQMI.ASUCalculator

 	VintageNetQMI.Connection

 	VintageNetQMI.Cookbook

VintageNetQMI

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: Coverage Status]
This library provides a VintageNet technology for cellular modems that
support the Qualcomm MSM Interface. This includes most USB cellular modems.
See VintageNetMobile
if you have a modem that only supports an AT command interface.
To use this library, first add it to your project's dependency list:
def deps do
 [
 {:vintage_net_qmi, "~> 0.3.2"}
]
end
You will then need to configure VintageNet. The easiest way to configure
a modem at runtime is by calling VintageNetQMI.quick_configure("the_apn").
For example:
iex> VintageNetQMI.quick_configure("the_apn")
:ok
wait...
iex> VintageNet.info
Interface wwan0
 Type: VintageNetQMI
 Power: On (watchdog timeout in 51628 ms)
 Present: true
 State: :configured (0:41:09)
 Connection: :internet (0:40:28)
 Addresses: 100.79.205.206/30, fe80::723c:bdc9:10e4:d092/64
 Configuration:
 %{
 type: VintageNetQMI,
 vintage_net_qmi: %{service_providers: [%{apn: "the_apn"}]}
 }
You can't always call quick_configure/1 convenience function so here's the
regular configuration. If you are moving code from vintage_net_mobile, you'll
notice that this format is very similar except that Mobile is now QMI.
VintageNet.configure("wwan0", %{
 type: VintageNetQMI,
 vintage_net_qmi: %{
 service_providers: [%{apn: "the_apn"}]
 }
 })
The :service_providers key should be set to information provided by each of
your service providers. It is common that this is a list of one item.
Currently only one service provider is supported, so replace "fill_in" with
the APN that they gave you.
Service provider APN selection via ICCID
If you're deploying SIMs from multiple service providers, you'll need to set
the APN based on what SIM was installed in the device. One way is to set
a configuration manually when you install the SIM. An easier way is to have
VintageNetQMI pick the APN based on the SIM's ICCID.
This featured is enabled by using the :only_iccid_prefixes option and listing
multiple service providers. VintageNetQMI looks at the :service_providers
list in order until one matches. Leave off the:only_iccid_prefixes option on
the final service provider to provide a catch-all APN.
Here's an example:
VintageNet.configure("wwan0", %{
 type: VintageNetQMI,
 vintage_net_qmi: %{
 service_providers: [
 %{apn: "special_service_provider", only_iccid_prefixes: ["8973611", "8973612"]},
 %{apn: "default_apn"}
]
 }
 })
Configure radio technologies
In some cases you might want to set to the radio access technology (RAT) to only
use a subset of what the modem is capable of using. To specify which RATs to use
you can set the optional configuration field :only_radio_technologies.
VintageNet.configure("wwan0", %{
 type: VintageNetQMI,
 vintage_net_qmi: %{
 only_radio_technologies: [:lte, :umts],
 service_providers: [
 %{apn: "apn_name"}
]
 }
 })
The example above will limit the possible RATs used to :lte (4G) and :umts
(3G). For more information which radio technologies are available please see
the :qmi documentation.
If this configuration is provided, the modem will use the default configuration
that provided by the manufacturer.
Configure roaming
Support for allowing roaming is set on a per-service provider basis using
the :roaming_allowed? key. In QMI, this field is optional and if unset here,
VintageNetQMI will not send any preference to the modem. The following
example shows a configuration where roaming is allowed:
VintageNet.configure("wwan0", %{
 type: VintageNetQMI,
 vintage_net_qmi: %{
 only_radio_technologies: [:lte, :umts],
 service_providers: [
 %{apn: "apn_name", roaming_allowed?: true}
]
 }
 })
VintageNet Properties
In addition to the common vintage_net properties for all interface types, this
technology the following:
	Property	Values	Description
	signal_asu	0-31,99	Reported Arbitrary Strength Unit (ASU)
	signal_4bars	0-4	The signal level in "bars"
	signal_dbm	-144 - -44	The signal level in dBm. Interpretation depends on the connection technology.
	mcc	0-999	Mobile Country Code for the network
	mnc	0-999	Mobile Network Code for the network
	iccid	string	The Integrated Circuit Card Identifier (ICCID)
	esn	string	The Electronic Serial Number (ESN)
	imei	string	International Mobile Equipment Identity (IMEI)
	meid	string	The Mobile Equipment Identifier (MEID)
	imeisv_svn	string	IMEI software version number
	provider	string	The name of the service provider
	lac	0-65533	The Location Area Code (lac) for the current cell
	cid	0-268435455	The Cell ID (cid) for the current cell
	network_datetime	NaiveDateTime.t()	The reported datetime from the network
	utc_offset	Calendar.utc_offset()	The UTC offset in seconds
	roaming	boolean()	If the network is roaming or not
	std_offset	Calendar.std_offset()	The standard offset in seconds
	statistics	map	Transmit and receive statistics (see below for details)
	access_technology	atom	The technology currently in use to connect to the network
	band	string	The frequency band in use
	channel	integer	An integer that indicates the channel that's in use
	manufacturer	string	The name of the manufacturer of the modem
	model	string	The name of the model of the modem
	apn	string	The APN that VintageNetQMI configured the modem to use

The following properties are TBD:
	Property	Values	Description
	imsi	string	The International Mobile Subscriber Identity (IMSI)

Transmit and receive statistics
The statistics value is a map with the fields:
	:timestamp - the monotonic time for when these stats where last updated
	:tx_bytes - total bytes transmitted
	:rx_bytes - total bytes received
	:tx_packets - total packets transmitted without error
	:rx_packets - total packets received without error
	:tx_errors - total outgoing packets with framing errors
	:rx_errors - total incoming packets with framing errors
	:tx_overflows - total outing packets dropped due to buffer overflows
	:rx_overflows - total incoming packets dropped due to buffer overflows
	:tx_drops - total outgoing packets dropped
	:rx_drops - total incoming packets dropped

Types of radio access technologies
	:amps - Advanced Mobile Phone System (legacy)
	:gsm - Global System for Mobile Communication (3G & 2G)
	:umts - Universal Mobile Telecommunications System (3G)
	:lte - Long-Term Evolution (4G)
	:cdma_1x - CDMA2000 1X (3G & 2G)
	:cdma_1x_evdo - CDMA2000 1xEV-DO (3G & 2G)

If you migrating from VintageNetMobile you will need to update any code that
uses this property to handle the above list of atoms.
System requirements
These requirements are believed to be the minimum needed to be added to the
official Nerves systems.
Linux kernel
Enable QMI and drivers for your modem:
CONFIG_USB_NET_CDC_NCM=m
CONFIG_USB_NET_HUAWEI_CDC_NCM=m
CONFIG_USB_NET_QMI_WWAN=m
CONFIG_USB_SERIAL_OPTION=m

Changelog

[v0.3.5] - 2023-04-25
Changed
	Restrict reported ASU values to 0-31 | 99 to match expected values. In one
case, 32 was reported for a strong signal, but prior to the change there
wasn't a limit.

v0.3.4 - 2023-03-23
Changed
	Add grace period on serving system disconnects since they're often followed
very quickly by a reconnect when moving between cell towers. This
fixes an issue where TCP connections would unnecessarily be terminated and
only to reconnect a second later.

v0.3.3 - 2023-01-23
Changed
	Allow :vintage_net v0.13.0 to be used
	Add some more information when QMI reports no internet

v0.3.2 - 2022-05-02
Changed
	:vintage_net v0.12.0 and up is now required

v0.3.1 - 2022-04-27
Added
	Add support for :roaming_allowed? field in a service provider configuration
to allow or disallow roaming when using the configured service provider.

v0.3.0 - 2022-02-10
There was a fix that changed the property reported in the property table from
"manufacture" to "manufacturer". To upgrade you will want to change any
code that this is subscribe to this property to have the correct spelling.
Added
	Add support to configure which radio technologies you want the modem to use

Fixes
	References to manufacturer
	Infinite retrying to establish connection after the connection has been
established
	Report selected APN before connection attempt

v0.2.14 - 2022-1-13
Added
	Show the configured APN in the property table

v0.2.13 - 2022-1-4
Added
	Allow APN selection based off ICCID when deploying SIMs from multiple service
providers

v0.2.12 - 2021-12-20
Added
	Property named "manufacturer" for the manufacturer name of the modem
	Property named "model" for the product name of the modem

v0.2.11 - 2021-11-18
Fixes
	When there is no signal VintageNetQMI would report 1 bar of signal rather than
0 bars

v0.2.10 - 2021-11-17
Changes
	Power manager timer was petting the watch dog every 60 miliseconds, now it
will pet the watch dog every 30 seconds.
	Ignore sync indications from QMI so they are not logged.

Fixes
	A crash that happened when the interface would stop but there was no IP
address on the interface.
	Internet connectivity checker being enabled when it should not have been

v0.2.9 - 2021-09-21
Added
	Property named "statistics" that contains a map of transmit and receive
stats. The fields are:	:timestamp - monotonic time for when the stats were last updated
	:tx_bytes - total bytes transmitted
	:rx_bytes - total bytes received
	:tx_packets - total packets transmitted without error
	:rx_packets - total packets received without error
	:tx_errors - total outgoing packets with framing errors
	:rx_errors - total incoming packets with framing errors
	:tx_overflows - total outing packets dropped due to buffer overflows
	:rx_overflows - total incoming packets dropped due to buffer overflows
	:tx_drops - total outgoing packets dropped
	:rx_drops - total incoming packets dropped

	Property "band" for the frequency band being used by the radio interface
	Property "channel" for the channel being used by the radio interface
	Property "access_technology" for the radio interface that is active

v0.2.8
	Added	Location and time properties:	lac - The Location Area Code (lac) for the current cell
	cid - The Cell ID (cid) for the current cell
	network_datetime - The reported datetime from the network
	utc_offset - The UTC offset in seconds
	roaming - If the network is roaming or not
	std_offset - The standard offset in seconds

v0.2.7
	Added
	Support VintageNet v0.11.x
	Serial number properties:	esn - Electronic Serial Number (ESN)
	imei - International Mobile Equipment Identity (IMEI)
	meid - Mobile Equipment Identifier (MEID)
	imeisv_svn - IMEI software version number

	The provider property to get the service provider name

	Fixes
	When packet data connection is disconnected set the connection status to
:disconnected
	Check connectivity status to know if the modem should power cycle

v0.2.6
	Fixes	Fix lease renewal ending in stuck lan connectivity

v0.2.5
	Updates	Support qmi v0.6.0

v0.2.4
	Improvements
	Support iccid property

	Updates
	Support qmi v0.5.1

v0.2.3
	Fixes	VintageNetQMI.quick_configure/1 updated to use the passed in argument
for the APN instead of always using hardcoded "apn" value

v0.2.2
	Improvements
	Add VintageNetQMI.quick_configure/1 to easily configure VintageNet at
runtime.

	Updates
	Support vintage_net v0.10.2
	Better handling of connection status

v0.2.1
	Updates	Set connection based on QMI notifications

v0.2.0
	Updates	Change configuration to match VintageNetMobile (backwards incompatible)
	Don't require IPv4 configuration

v0.1.3
	Updates
	Support qmi v0.3.1

	Fixes
	Connection code blocking supervision initialization

v0.1.2
	Updates	Support qmi v0.2.0

v0.1.1
	Updates	Support vintage_net v0.10.0

v0.1.0
Initial Release

VintageNetQMI

Use a QMI-enabled cellular modem with VintageNet
This module is not intended to be called directly but via calls to VintageNet. Here's an
example:
VintageNet.configure(
 "wwan0",
 %{
 type: VintageNetQMI,
 vintage_net_qmi: %{
 service_providers: [
 %{apn: "favorite_apn", only_iccid_prefixes: ["1234"]},
 %{apn: "second_favorite_apn", only_iccid_prefixes: ["56789"]},
 %{apn: "last_resort_apn"}
],
 only_radio_technologies: [:lte]
 }
 }
)
The following keys are supported
	:service_providers - This is a list of service provider information

The :service_providers key should be set to information provided by each of
your service providers.
Information for each service provider is a map with some or all of the following
fields:
	:apn (required) - e.g., "access_point_name"
	:only_iccid_prefixes (optional) - only use this APN if the one of the strings
in the list is a prefix of the ICCID. E.g, ["1234"]

When multiple entries are specified, the first allowed service provider is used.
Your service provider should provide you with the information that you need to
connect. Often it is just an APN. The Gnome project provides a database of
service provider
information
that may also be useful.

 Anchor for this section

 Summary

 Functions

 qmi_name(ifname)

 Name of the the QMI server that VintageNetQMI uses

 quick_configure(apn)

 Configure a cellular modem using an APN

 Anchor for this section

Functions

 Link to this function

 qmi_name(ifname)

 View Source

 @spec qmi_name(VintageNet.ifname()) :: atom()

Name of the the QMI server that VintageNetQMI uses

 Link to this function

 quick_configure(apn)

 View Source

 @spec quick_configure(String.t()) :: :ok | {:error, term()}

Configure a cellular modem using an APN
iex> VintageNetQMI.quick_configure("an_apn")
:ok

VintageNetQMI.ASUCalculator

Convert raw ASU values to friendlier units
See https://en.wikipedia.org/wiki/Mobile_phone_signal#ASU for
more information.
The following conversions are done:
	dBm
	Number of "bars" out of 4 bars

 Anchor for this section

 Summary

 Types

 bars()

 Number of bars out of 4 to show in a UI

 dbm()

 dBm

 gsm_asu()

 GSM ASU values

 lte_asu()

 LTE ASU values

 umts_asu()

 UMTS ASU values

 Functions

 from_gsm_asu(asu)

 Compute signal level numbers from a GSM ASU

 from_lte_rssi(rssi)

 Anchor for this section

Types

 Link to this type

 bars()

 View Source

 @type bars() :: 0..4

Number of bars out of 4 to show in a UI

 Link to this type

 dbm()

 View Source

 @type dbm() :: neg_integer()

dBm

 Link to this type

 gsm_asu()

 View Source

 @type gsm_asu() :: 0..31 | 99

GSM ASU values
ASU values map to RSSI. 99 means unknown

 Link to this type

 lte_asu()

 View Source

 @type lte_asu() :: 0..97

LTE ASU values
ASU values map to RSRP
https://arimas.com/78-rsrp-and-rsrq-measurement-in-lte/

 Link to this type

 umts_asu()

 View Source

 @type umts_asu() :: 0..90 | 255

UMTS ASU values
ASU values map to RSCP

 Anchor for this section

Functions

 Link to this function

 from_gsm_asu(asu)

 View Source

 @spec from_gsm_asu(gsm_asu()) :: %{asu: gsm_asu(), dbm: dbm(), bars: bars()}

Compute signal level numbers from a GSM ASU
The AT+CSQ command should report ASU values in this format.

 Link to this function

 from_lte_rssi(rssi)

 View Source

 @spec from_lte_rssi(dbm()) :: %{asu: non_neg_integer(), dbm: dbm(), bars: bars()}

VintageNetQMI.Connection

Establish an connection with the QMI device

 Anchor for this section

 Summary

 Types

 arg()

 Options for to establish the connection

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 process_stats(ifname, event_report_indication)

 Process connection stats

 start_link(args)

 Start the Connection server

 Anchor for this section

Types

 Link to this type

 arg()

 View Source

 @type arg() :: {:service_provider, String.t()}

Options for to establish the connection
:apn - The Access Point Name of the service provider

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 process_stats(ifname, event_report_indication)

 View Source

 @spec process_stats(VintageNet.ifname(), map()) :: :ok

Process connection stats
This will post the updated stats as properties.

 Link to this function

 start_link(args)

 View Source

 @spec start_link([arg()]) :: GenServer.on_start()

Start the Connection server

VintageNetQMI.Cookbook

Recipes for common QMI network configurations

 Anchor for this section

 Summary

 Functions

 simple(apn)

 Return a configuration for connecting to a cellular network by APN

 Anchor for this section

Functions

 Link to this function

 simple(apn)

 View Source

 @spec simple(String.t()) ::
 {:ok,
 %{
 type: VintageNetQMI,
 vintage_net_qmi: %{service_providers: [%{apn: String.t()}]}
 }}

Return a configuration for connecting to a cellular network by APN

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

