

 vintage_net_wifi

 v0.12.5

 Table of contents

 	README

 	Changelog

 	

 	Modules

 	VintageNet.Technology.WiFi

 	VintageNetWiFi

 	VintageNetWiFi.AccessPoint

 	VintageNetWiFi.BSSIDRequester

 	VintageNetWiFi.Cookbook

 	VintageNetWiFi.Event

 	VintageNetWiFi.MeshPeer

 	VintageNetWiFi.MeshPeer.Capabilities

 	VintageNetWiFi.MeshPeer.FormationInformation

 	VintageNetWiFi.SignalInfo

 	VintageNetWiFi.Utils

 	VintageNetWiFi.WPA2

 	VintageNetWiFi.WPASupplicant

 	VintageNetWiFi.WPASupplicantLL

 	VintageNetWiFi.WPSData

README

[image: vintage net logo]
[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: Coverage Status]
VintageNetWiFi makes it easy to add WiFi support for your device. This can be
as simple as connecting to a WiFi access point or starting a WiFi access point
so that other computers can connect directly.
You will need a WiFi module to use this library. If you're using Nerves, the
official Raspberry Pi and Beaglebone systems contain WiFi drivers for built-in
modules. If you are using a USB WiFi module, make sure that the Linux device
driver for that module is loaded and any required firmware is available.
Once that's done, all that you need to do is add :vintage_net_wifi to your
mix dependencies like this:
def deps do
 [
 {:vintage_net_wifi, "~> 0.12.0", targets: @all_targets}
]
end
VintageNetWiFi also requires that the wpa_supplicant package and necessary
WiFi kernel modules are included in the system. All officially supported
Nerves systems that run on hardware with WiFI should work.
In Buildroot, check that BR2_PACKAGE_WPA_SUPPLICANT is enabled. Even if you
don't plan to use WPA3, enable BR2_PACKAGE_WPA_SUPPLICANT_WPA3 as well so
that the generic WiFi configurations don't fail due to parse errors.
If you are using access point mode, check that CONFIG_UDHCPD is enabled
in Busybox and BR2_PACKAGE_WPA_SUPPLICANT_HOTSPOT is enabled in Buildroot.

 Usage

The easiest way to configure WiFi is to using
VintageNetWiFi.quick_configure/2. For example:
iex> VintageNetWiFi.quick_configure("my_access_point", "secret_passphrase")
:ok
Using VintageNet.info to check whether you're connected. If there's no
connection and you think there should be one, try watching the logs. On Nerves,
the normal ways are to run RingLogger.next, RingLogger.viewer or
log_attach/log_detach from an IEx prompt. (Hopefully the console or a wired
network interface works)
The second easiest way to create WiFi configurations is to use the helper
functions in VintageNetWiFi.Cookbook. Check out the module documentation for
the various configurations.
See the VintageNetWiFi.quick_configure/2 documentation for details on WPA3
support.

 Advanced usage

WiFi network interfaces typically have names like "wlan0" or "wlan1" when
using Nerves. Most of the time, there's only one WiFi interface and its
"wlan0". Some WiFi adapters expose separate interfaces for 2.4 GHz and 5 GHz
and they can be configured independently.
An example WiFi configuration looks like this:
config :vintage_net,
 config: [
 {"wlan0",
 %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk",
 }
]
 },
 ipv4: %{method: :dhcp},
 }
 }
]
The :ipv4 key is handled by vintage_net to set the IP address on the
connection. Most of the time, you'll want to use DHCP to dynamically get an IP
address.
The :vintage_net_wifi key has the following common fields:
	:ap_scan - See wpa_supplicant documentation. The default for this, 1,
should work for nearly all users.
	:bgscan - Periodic background scanning to support roaming within an ESS.	:simple
	{:simple, args} - args is a string to be passed to the simple wpa module
	:learn
	{:learn, args} args is a string to be passed to the learn wpa module

	:passive_scan	0: Do normal scans (allow active scans) (default)
	1: Do passive scans.

	:regulatory_domain: Two character country code. Technology configuration
will take priority over Application configuration
	:networks - A list of Wi-Fi networks to configure. In client mode,
VintageNet connects to the first available network in the list. In host mode,
the list should have one entry with SSID and password information.	:mode -	:infrastructure (default) - Normal operation. Associate with an AP
	:ap - access point mode
	:ibss - peer to peer mode (not supported)
	:p2p_go - P2P Go mode (not supported)
	:p2p_group_formation - P2P Group Formation mode (not supported)
	:mesh - mesh mode

	:ssid - The SSID for the network
	:key_mgmt - WiFi security mode (:wpa_psk for WPA2, :none for no
password or WEP, :sae for pure WPA3, or :wpa_psk_sha256 for WPA2 with
SHA256). Not used if :allowed_key_mgmt is set.
	:allowed_key_mgmt - A list of allowed WiFi security modes. See :key_mgmt
for options. Supported in v0.12.1+. VintageNetWiFi's configuration
normalizer automatically sets :key_mgmt to the first option in the list
for backwards compatibility with v0.12.0 and earlier.
	:psk - A WPA2 passphrase or the raw PSK. If a passphrase is passed in, it
will be converted to a PSK and discarded.
	:sae_password - A password for use with SAE authentication. This is
similar to a passphrase that you could supply to :psk, but it has less
length restrictions.
	:priority - The priority to set for a network if you are using multiple
network configurations
	:scan_ssid - Scan with SSID-specific Probe Request frames (this can be
used to find APs that do not accept broadcast SSID or use multiple SSIDs;
this will add latency to scanning, so enable this only when needed)
	:frequency - When in :ibss mode, use this channel frequency (in MHz).
For example, specify 2412 for channel 1.
	:ieee80211w - Whether management frame protection is enabled. Set to 0,
1, 2 or :disabled, :optional, :required.

These keys fairly directly map to the keys in the official
docs.
VintageNetWiFi performs some checks on the keys to avoid typos and other easy
mistakes from breaking the wpa_supplicant.conf file. To inspect the generated
configuration, run File.read("/tmp/vintage_net/wpa_supplicant.conf.wlan0").
If you do not want VintageNetWiFi to generate a wpa_supplicant.conf file for
you, you can specify the contents for yourself by using the
:wpa_supplicant_conf key. For example,
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 wpa_supplicant_conf: """
 network={
 ssid="home"
 key_mgmt=WPA-PSK
 psk="very secret passphrase"
 }
 """
 },
 ipv4: %{method: :dhcp}
 })
Please note that the syntax of the :wpa_supplicant_conf key is NOT
validated by VintageNet and we do not recommend them method unless you are
troubleshooting the wpa_supplicant or are working on a new feature.
WPA PSK example:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 psk: "a_passphrase_or_psk",
 ssid: "my_network_ssid"
 }
]
 },
 ipv4: %{method: :dhcp}
 })
WEP example:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 ssid: "my_network_ssid",
 wep_key0: "42FEEDDEAFBABEDEAFBEEFAA55",
 key_mgmt: :none,
 wep_tx_keyidx: 0
 }
]
 },
 ipv4: %{method: :dhcp}
 })
WPA3-only example:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 ipv4: %{method: :dhcp},
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :sae,
 ssid: "my_network_ssid",
 sae_password: "a_password",
 ieee80211w: 2
 }
]
 }
 })
WPA2 w/ SHA256 example:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 ipv4: %{method: :dhcp},
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk_sha256,
 ssid: "my_network_ssid",
 psk: "a_password",
 ieee80211w: 2
 }
]
 }
 })
Enterprise Wi-Fi (WPA-EAP) support mostly passes through to the
wpa_supplicant. Instructions for enterprise network for Linux should map. For
example:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 ssid: "testing",
 key_mgmt: :wpa_eap,
 pairwise: "CCMP TKIP",
 group: "CCMP TKIP",
 eap: "PEAP",
 identity: "user1",
 password: "supersecret",
 phase1: "peapver=auto",
 phase2: "MSCHAPV2"
 }
]
 },
 ipv4: %{method: :dhcp}
})
Network adapters that can run as an Access Point can be configured as follows:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 ssid: "test ssid",
 key_mgmt: :none
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.24.1",
 netmask: "255.255.255.0"
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10",
 options: %{
 dns: ["1.1.1.1", "1.0.0.1"],
 subnet: "255.255.255.0",
 router: ["192.168.24.1"]
 }
 }
})
If your device may be installed in different countries, you should override the
default regulatory domain to the desired country at runtime. VintageNet uses
the global domain by default and that will restrict the set of available WiFi
frequencies in some countries. For example:
iex> VintageNet.configure("wlan0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 regulatory_domain: "US",
 networks: [
 %{
 ssid: "testing",
 key_mgmt: :wpa_psk,
 psk: "super secret"
 }
]
 },
 ipv4: %{method: :dhcp}
})
Network adapters that can be configured to support 80211s mesh networking can be
configured as follows:
(Raspberry Pi internal WiFi modules do not support 80211s meshing)
VintageNet.configure("mesh0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 user_mpm: 1,
 networks: [
 %{
 ssid: "my-mesh",
 key_mgmt: :none,
 mode: :mesh
 }
]
 }
})
Mesh nodes connected to external networks can set so called "meshgate" params.
See this document for
more information
VintageNet.configure("mesh0", %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 user_mpm: 1,
 networks: [
 %{
 ssid: mesh_id,
 key_mgmt: :none,
 mode: :mesh,
 mesh_hwmp_rootmode: 4,
 mesh_gate_announcements: 1
 }
]
 }
})
Note that the example mesh configuration does not contain IP address settings.
All standard IP schemes are acceptable, but which one to use depends on the
network configuration. The simplest way to test the mesh network is to have
every node configure a static predictable IP address. DHCP will also work, but
this forces a "client/server" configuration meaning that nodes joining the
network will need to decide if they should be a DHCP server or client.

 Properties

In addition to the common vintage_net properties for all interface types, this
technology reports the following:
	Property	Values	Description
	access_points	[%AccessPoint{}]	A list of access points as found by the most recent scan
	clients	["11:22:33:44:55:66"]	A list of clients connected to the access point when using mode: :ap
	current_ap	%AccessPoint{}	The currently associated access point
	peers	[%MeshPeer{}]	a list of mesh peers that the current node knows about when using mode: :mesh
	event	%Event{}	WiFi control events not otherwise handled

Access points are identified by their BSSID. Information about an access point
has the following form:
%VintageNetWiFi.AccessPoint{
 band: :wifi_5_ghz,
 bssid: "8a:8a:20:88:7a:50",
 channel: 149,
 flags: [:wpa2_psk_ccmp, :ess],
 frequency: 5745,
 signal_dbm: -76,
 signal_percent: 57,
 ssid: "MyNetwork"
}
Mesh peers are identified by their BSSID. Information about a peer has the following form:
%VintageNetWiFi.MeshPeer{
 active_path_selection_metric_id: 1,
 active_path_selection_protocol_id: 1,
 age: 2339,
 authentication_protocol_id: 0,
 band: :wifi_2_4_ghz,
 beacon_int: 1000,
 bss_basic_rate_set: "10 20 55 110 60 120 240",
 bssid: "f8:a2:d6:b5:d4:07",
 capabilities: 0,
 channel: 5,
 congestion_control_mode_id: 0,
 est_throughput: 65000,
 flags: [:mesh],
 frequency: 2432,
 id: 7,
 mesh_capability: 9,
 mesh_formation_info: 2,
 mesh_id: "my-mesh",
 noise_dbm: -89,
 quality: 0,
 signal_dbm: -27,
 signal_percent: 97,
 snr: 62,
 ssid: "my-mesh",
 synchronization_method_id: 1
}
Applications can scan for access points in a couple ways. The first is to call
VintageNet.scan("wlan0"), wait for a second, and then call
VintageNet.get(["interface", "wlan0", "wifi", "access_points"]). This works
for scanning networks once or twice. A better way is to subscribe to the
"access_points" property and then call VintageNet.scan("wlan0") on a timer.
The "access_points" property updates as soon as the WiFi module notifies that
it is complete so applications don't need to guess how long to wait.
If you're using RingLogger (which is the default for Nerves) then you probably
also want to call RingLogger.attach to receive any logs in your terminal which
may include information about the wifi connection.

 Events

Some wpa_supplicant events like CTRL-EVENT-ASSOC-REJECT are passed on
through the "event" property to be handled outside VintageNetWifi. These
events might be useful, but optional.

 Signal quality info in STA (client) mode

You can send ioctl command to get information about signal level, quality and
other info when connected to network in STA mode. Run:
VintageNet.ioctl("wlan0", :signal_poll)
Example output:
{:ok, %VintageNetWiFi.SignalInfo{
 center_frequency1: 2462,
 center_frequency2: 0,
 frequency: 2472,
 linkspeed: 300,
 signal_dbm: -32,
 signal_percent: 94,
 width: "40 MHz"
}}

 Debugging

Unfortunately, when you're getting started for the very first time, WiFi can be
quite frustrating. Error messages and logs are not all that helpful. The first
debugging step is to connect to your device (over a UART or USB Gadget or maybe
a wired Ethernet connection). Run:
iex> VintageNet.info
Double check that all of your parameters are set correctly. The :psk cannot be
checked here, so if you suspect that's wrong, double check your config.exs.
The next step is to look at log messages for connection errors. On Nerves
devices, run RingLogger.next at the IEx prompt.

Changelog

 v0.12.5 - 2024-04-07

	Changes	Revert support for WPA3 with VintageNetWiFi.quick_configure/2. It caused
way to many issues on some Nerves devices. The default is WPA2 like old
times. Raspberry Pis, BBBs, and GRiSP2 don't support WPA3 with their
built-in WiFi modules so this may not impact you.
	Support use of WPA3 via an application environment option. See
VintageNetWiFi.quick_configure/2 for details.

 v0.12.4 - 2024-03-31

	Changes	Added VintageNetWiFi.network_configured?/1 helper function for checking
whether a WiFi connection to another computer is possible or just scanning
for access points.
	Added VintageNetWiFi.qr_string/3 to create QR Code-encodable strings for
easily sharing network credentials.
	Added experimental VintageNetWiFi.capabilities/1 to query WiFi driver and
wpa_supplicant capabilities. This can be used to check WPA3 compatibility,
support for 5 GHz channels and more. It's experimental since the information
is currently very raw.

 v0.12.3 - 2024-02-13

	Fixed	Relaxed frame protection requirement in generic WiFi configuration to work
with more access points. This fixes an issue with connecting to hotspot mode
a Samsung phone and probably other devices. The generic configuration works
all WPA2 PSK and WPA3 SAE access points tested so far.

 v0.12.2 - 2024-02-02

	Changes	Handle update_current_access_point crashes to handle attempts to associate
with mesh endpoints.

 v0.12.1 - 2024-01-16

This release adds support for creating generic WiFi configurations that work
with both WPA2 and WPA3 access points. It's implemented to be backwards
compatible if you role out firmware with this version and revert to a firmware
with the previous version.
	Changes
	Added VintageNetWiFi.Cookbook.generic/2 for easily creating WiFi
configurations that will connect to WPA2-only, WPA2/WPA3-transitional, and
WPA3-only access points. This works with WPA2-only WiFi modules like what's
currently on Raspberry Pis and modules that support WPA3 like on the
BeagleBone Green WiFi and custom hardware.
	Updated VintageNetWiFi.quick_connect/2 to create generic WiFi
configurations. It previously generated WPA2-only ones.
	Updated :key_mgmt to support lists so that multiple key management types
could be allowed. To make configs work with earlier versions of
VintageNetWiFi, these are normalized to store the list in the
:allowed_key_mgmt field with the first option in :key_mgmt. This means
that if you revert firmware to an earlier VintageNetWiFi version, you'll get
a WPA2-only config if you're using the new generic/2 helper.

	Fixed
	Fixed specification of WPA2-PSK configurations that use SHA256 hashing. This
not a common configuration to my knowledge and it would have failed due to a
typo previously.

 v0.12.0 - 2023-12-11

	Changes	Added VintageNetWiFi.summarize_access_points/1 to centralize filtering and
sorting access point lists for presentation to users. (Thanks
@grace-in-wonderland)
	Change VintageNetWiFi.quick_scan/1 to call summarize_access_points/1.
This should make it much easier to find SSIDs at the IEx prompt. It's
technically an API change. See the function's hexdocs for details.

 v0.11.7 - 2023-10-04

	Fixed
	Workaround issue passing SSIDs that contain a lot of escaped characters.
These were probably invalid anyway, but this prevents needless retries.

	Changes
	Lowered log priority (warning -> debug) of several messages that occur a lot
and aren't really problems.

 v0.11.6 - 2023-03-08

	Fixed	Support passing SSIDs with all NULL characters to wpa_supplicant. This
also fixes other SSIDs with nonprintable characters.

 v0.11.5 - 2023-03-08

	Fixed	Support SAE H2E and PK flags in AP advertisements

 v0.11.4 - 2023-02-12

	Fixed	Fix Elixir 1.15 deprecation warnings

 v0.11.3 - 2023-01-23

	Changed	Allow VintageNet v0.13.0 to be used

 v0.11.2 - 2023-01-16

	Fixed	Fix cipher flag parsing from some access points. For example, if an access
point advertised [WPA2-PSK+PSK-SHA256-CCMP][ESS], it would fail to parse
due to "PSK" being greedily selected as the cipher instead of "PSDK-SHA256".

 v0.11.1 - 2022-07-27

	Changed
	Added support for handling WiFi events. Currently events associated with
WiFi AP associations are reported since they can be helpful when creating
WiFi configuration user interfaces. More could be supported in the future.
Thanks to @dognotdog, @THE9rtyt, and @ConnorRigby for this feature.

	Fixed
	Remove mesh peers from reported access point lists. Mesh peers are reported
separately and mixing them with access points was unexpected. Thanks to
@mattludwigs for identifying and fixing the issue.

 v0.11.0 - 2022-04-30

This release requires VintageNet v0.12.0 and Elixir 1.11 or later. No external
API changes or fixes were made. Other than the new version requirements,
everything should work the same as v0.10.9.

 v0.10.9

	Changed	Increase wpa_supplicant timeout from 1 second to 4 seconds. Normally
responses come in quickly. On GRiSP 2, initialization takes >1 second.
This prevents an unnecessary wpa_supplicant restart and improves boot
time.

 v0.10.8

	Added	Fall back to the wext WiFi driver interface if nl80211 doesn't work. This
makes it possible to support the WiFi module on GRiSPv2 boards.

 v0.10.7

	Bug fixes	Fix crash when scanning for WiFi networks and near an Eero mesh WiFi system.

 v0.10.6

	Bug fixes	Fully decode WiFi flags based on inspecting the wpa_supplicant source
code. This should, hopefully, fix the recurring issue with new flags being
discovered. The flags are now decomposed into their constituent parts. The
original flags are still present, but the new ones should be easier to
reason about. E.g., [:wpa2_psk_ccmp] is now [:wpa2_psk_ccmp, :wpa2, :psk, :ccmp].

 v0.10.5

	Added	Decode network flags that advertise WEP. Thanks to Ryota Kinukawa for this
change.

 v0.10.4

This release only contains a build system update. It doesn't change any code and
is a safe update.

 v0.10.3

	New features
	Support WPS PBS for connecting to access points. This is the feature where
you press a button on the AP and "press a button" on the device to connect.
See VintageNetWiFi.quick_wps/1. Thanks to @labno for this feature.

	Bug fixes
	Added missing PSK WiFi type. Thanks again to Dömötör Gulyás for these fixes.
	Improved handling of AP information gathering from the wpa_supplicant.
This works around a rare issue seen when the wpa_supplicant doesn't
respond to a BSS information request, by 1. not sending the request when the
information is known and 2. moving info requests out of the main process to
avoid stalling more important requests when lots of APs are around.

 v0.10.2

	Bug fixes	Added missing EAP WiFi types. Thanks to Dömötör Gulyás for this fix.

 v0.10.1

	New features	It's now possible to specify arbitrary wpa_supplicant.conf text.
VintageNetWiFi normally tries to validate everything going into the config
file, but this gets in the way of advanced users especially when a feature
is not available in VintageNetWiFi yet. This is the escape hatch. Specify
the :wpa_supplicant_conf key in the config and you have total control.
	Initial support for WPA3 has been added. See the README.md for
configuration details. Note that many WiFi modules and their drivers don't
support WPA3 yet, and WPA3 support isn't enabled at the time of this release
in all official Nerves systems.

 v0.10.0

This release is backwards compatible with v0.9.2. No changes are needed to
existing code.
	Bug fixes	OTP 24 is supported now. This release updates to the old crypto API that has
been removed in OTP 24.
	Fix a GenServer crash when requesting BSSID information. This issue seemed
to occur more frequently in high density WiFi environments. OTP supervision
recovered it, but it had a side effect of making VintageNet send out
notifications that would make it look like the interface bounced.
	Fix a crash due to invalid AP flags being reported. Thanks to Rick Carlino
for reporting that this happens.

 v0.9.2

This release introduces helper functions for configuring the most common types
of networks:
	VintageNetWiFi.quick_configure("ssid", "password") - connect to a WPA PSK
network on "wlan0"
	VintageNetWiFi.quick_scan() - scan and return access points in one call

Additionally, there's now a VintageNetWiFi.Cookbook module with functions for
creating the configs for various kinds of networks.

 v0.9.1

	Bug fixes	Fix warnings when building with Elixir 1.11.

 v0.9.0

	New features	Initial support for 802.11s mesh networking. Please see the docs and the
cookbook for using this since it requires compatible WiFi modules and more
configuration than normal WiFi options.
	Synchronize with vintage_net v0.9.0's networking program path API update

 v0.8.0

	New features	Add a WiFi signal strength polling feature. This works when connected to a
WiFi access point.
	Support vintage_net v0.8.0's required_ifnames API update

 v0.7.0

Initial vintage_net_wifi release. See the vintage_net v0.7.0 release
notes
for upgrade instructions if you are a vintage_net v0.6.x user.

VintageNet.Technology.WiFi

Deprecated - Use VintageNetWiFi now
This module will automatically redirect your configurations to VintageNetWiFi so
no changes are needed to your code. New code should use the new module.

VintageNetWiFi

WiFi support for VintageNet
Configurations for this technology are maps with a :type field set to
VintageNetWiFi. The following additional fields are supported:
	:vintage_net_wifi - WiFi options
	:ipv4 - IPv4 options. See VintageNet.IP.IPv4Config.

To scan for WiFi networks it's sufficient to use an empty configuration and call
the VintageNet.scan("wlan0"):
%{type: VintageNetWiFi}
Here's a typical configuration for connecting to a WPA2-protected Wi-Fi network:
%{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 mode: :infrastructure,
 networks: [%{ssid: "my_network_ssid", key_mgmt: :wpa_psk, psk: "a_passphrase_or_psk"}]
 },
 ipv4: %{method: :dhcp}
}
If your Wi-Fi adapter or module has support for running as an Access Point,
then the following configuration puts it in AP mode, assigns a static IP
address of 192.168.0.1 and gives clients IP addresses from 192.168.0.30
to 192.168.0.254.
%{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 mode: :ap,
 networks: [
 %{
 ssid: "test ssid",
 key_mgmt: :none
 }
]
 },
 ipv4: %{
 method: :static,
 address: {192, 168, 0, 1},
 prefix_length: 24
 },
 dhcpd: %{
 start: {192, 168, 0, 30},
 end: {192, 168, 0, 254}
 }
}
To enable verbose log messages from the wpa_supplicant, add verbose: true to the
configuration.

 Summary

 Types

 qr_options()

 Functions

 capabilities(ifname)

 Experimental API for getting WiFi driver capabilities

 network_configured?(wlan_config)

 Helper for checking whether a WiFi configuration has a network configured

 qr_string(ssid, password, opts \\ [])

 Create a WiFi network config string for use in a QR Code

 quick_configure(ssid, passphrase \\ nil)

 Configure WiFi using the most common settings

 quick_scan(wait_time_ms \\ 2000)

 Convenience function to scan for access points

 quick_wps(timeout \\ 60000)

 Quick way to receive WiFi credentials via WPS PBC

 summarize_access_points(access_points)

 Summarize access point lists

 Types

 Link to this type

 qr_options()

 View Source

 @type qr_options() :: [hidden: boolean(), type: :WPA | :WEP | :nopass]

 Functions

 Link to this function

 capabilities(ifname)

 View Source

 @spec capabilities(VintageNet.ifname()) :: map()

Experimental API for getting WiFi driver capabilities
This queries the wpa_supplicant and driver to see what it supports. It's
useful for seeing whether WPA3, 5 GHz, and other things are supported. The
results aren't currently processed.

 Link to this function

 network_configured?(wlan_config)

 View Source

 @spec network_configured?(map()) :: boolean()

Helper for checking whether a WiFi configuration has a network configured
This is useful for checking whether a WiFi configuration is just good for
scanning for WiFi networks or whether it actually could connect to another
computer.
Returns false if the configuration isn't a VintageNetWiFi one or if no
networks were specified.
To test an ifname has a network configured, run:
VintageNet.get_configuration() |> network_configured?()

 Link to this function

 qr_string(ssid, password, opts \\ [])

 View Source

 @spec qr_string(String.t(), String.t(), qr_options()) :: String.t()

Create a WiFi network config string for use in a QR Code
A QR Code created from the string returned by this function is scannable by
almost any smartphone to allow easy access to a Wi-Fi network. The user only
needs to agree to a prompt rather than enter credentials manually.
See https://github.com/zxing/zxing/wiki/Barcode-Contents#wi-fi-network-config-android-ios-11
for more format details.

 Link to this function

 quick_configure(ssid, passphrase \\ nil)

 View Source

 @spec quick_configure(String.t(), String.t() | nil) :: :ok | {:error, term()}

Configure WiFi using the most common settings
If your network requires a password (WPA2 PSK and WPA3 SAE networks):
iex> VintageNetWiFi.quick_configure("ssid", "password")
:ok
If you're connecting to an open network, don't pass the password. Keep in
mind that if you're at a cafe or other location that has a captive portal,
VintageNetWiFi isn't smart enough to bypass it.
iex> VintageNetWiFi.quick_configure("open_wifi_ssid")
:ok
Then run VintageNet.info to see when the network connects. If you're
writing a program, run VintageNet.get(["interface", "wlan0", "connection"])
to get the connection status or subscribe to that property for change
notifications.
If you're on an enterprise network or use static IP addresses or need any
other special configuration handling, you'll need to call
VintageNet.configure/3 instead. See VintageNetWiFi.Cookbook for help with
creating configurations or manually construct the configuration map.
WiFi Authentication
VintageNetWiFi doesn't know whether the WiFi hardware you're using fully
supports WPA3 authentication. To avoid hard to understand errors,
quick_configure/2 defaults to WPA2. If you have hardware that supports
WPA3 and would like to use WPA2/WPA3 generic configurations, update your
config.exs to:
config :vintage_net_wifi, :quick_configure, &VintageNetWiFi.Cookbook.generic/2

 Link to this function

 quick_scan(wait_time_ms \\ 2000)

 View Source

 @spec quick_scan(non_neg_integer()) :: [VintageNetWiFi.AccessPoint.t()]

Convenience function to scan for access points
This function initiates a scan, waits, and then returns all of the discovered
access points. It's intended for quickly seeing what's around.
If you'd like to use this in a program, but want to display access point options
as they're found, here's how to do it:
VintageNet.subscribe(["interface", "wlan0", "wifi", "access_points"])
VintageNet.scan("wlan0")
Then wait for messages. They'll be of the form:
{VintageNet, ["interface", "wlan0", "wifi", "access_points"], old_value, new_value, meta}
Both old_value and new_value will be lists of access points. You'll need
call VintageNet.scan/1 every 30 seconds or so to repeat the scan across all
WiFi channels. See also VintageNetWiFi.summarize_access_points/1 to get an
easier to manage list of access points for presentation to users.

 Link to this function

 quick_wps(timeout \\ 60000)

 View Source

 @spec quick_wps(non_neg_integer()) :: {:ok, map()} | {:error, String.t()}

Quick way to receive WiFi credentials via WPS PBC
Call this function with a long enough timeout for you to press the WPS button
on your access point. The WiFi gets configured as soon as the WPS
credentials are received.
VintageNetWiFi.quick_wps(60_000)
Press WPS button on AP
:ok

 Link to this function

 summarize_access_points(access_points)

 View Source

 @spec summarize_access_points([VintageNetWiFi.AccessPoint.t()]) :: [
 VintageNetWiFi.AccessPoint.t()
]

Summarize access point lists
This function summarizes a list of access points, such as those returned from
quick_scan/1 or via calls to VintageNet.scan/1 checking the
["interface", "wlan0", "wifi", "access_points"] property. The summary
provides a list that most people are used to seeing when looking for access
points. It does the following:
	When the same SSID is found on multiple channels, it picks the one with the
best signal and removes the others.
	Filter out SSIDs used by mesh routers and other devices that wouldn't work
	Sort SSIDs by signal strength

VintageNetWiFi.AccessPoint

Information about a WiFi access point
	:bssid - a unique address for the access point
	:flags - a list of flags describing properties on the access point
	:frequency - the access point's frequency in MHz
	:signal_dbm - the signal strength in dBm
	:ssid - the access point's name

 Summary

 Types

 band()

 flag()

 Access point flags

 old_flag()

 Old-style access point flags

 t()

 Functions

 new(bssid)

 Create an AccessPoint when only the BSSID is known

 new(bssid, ssid, frequency, signal_dbm, flags)

 Create a new AccessPoint with all of the information

 Types

 Link to this type

 band()

 View Source

 @type band() :: :wifi_2_4_ghz | :wifi_5_ghz | :unknown

 Link to this type

 flag()

 View Source

 @type flag() ::
 :ccmp
 | :eap
 | :ess
 | :ibss
 | :mesh
 | :p2p
 | :psk
 | :rsn_ccmp
 | :sae
 | :tkip
 | :wep
 | :wpa
 | :wpa2
 | :wps
 | old_flag()

Access point flags
These flags generally describe the security supported by an access point, but do contain some other details. They're
directly passed on from wpa_supplicant reports.

 Link to this type

 old_flag()

 View Source

 @type old_flag() ::
 :wpa2_psk_ccmp
 | :wpa2_eap_ccmp
 | :wpa2_eap_ccmp_tkip
 | :wpa2_psk_ccmp_tkip
 | :wpa2_psk_sae_ccmp
 | :wpa2_sae_ccmp
 | :wpa2_ccmp
 | :wpa_psk_ccmp
 | :wpa_psk_ccmp_tkip
 | :wpa_eap_ccmp
 | :wpa_eap_ccmp_tkip

Old-style access point flags
Early on with vintage_net_wifi, flags were not broken up and returned in a list. The WPA3 support made this approach unmaintainable, but these are
kept to avoid breaking code. New code should avoid using these.

 Link to this type

 t()

 View Source

 @type t() :: %VintageNetWiFi.AccessPoint{
 band: band(),
 bssid: String.t(),
 channel: non_neg_integer(),
 flags: [flag()],
 frequency: non_neg_integer(),
 signal_dbm: integer(),
 signal_percent: 0..100,
 ssid: String.t()
}

 Functions

 Link to this function

 new(bssid)

 View Source

 @spec new(any()) :: t()

Create an AccessPoint when only the BSSID is known

 Link to this function

 new(bssid, ssid, frequency, signal_dbm, flags)

 View Source

 @spec new(String.t(), String.t(), non_neg_integer(), integer(), [flag()]) :: t()

Create a new AccessPoint with all of the information

VintageNetWiFi.BSSIDRequester

Request access point information asynchronously
Getting access point information is important, but it's easy to fall
behind and start blocking more important requests. This GenServer
handles this separate from the main WPASupplicant GenServer.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 forget_access_point_info(server, index_or_bssid, cookie)

 Don't bother looking up AP info

 get_access_point_info(server, index_or_bssid, cookie)

 Request information on a BSSID or an access point index

 get_all_access_points(server, cookie)

 Get info on all known access points

 start_link(init_args)

 Start a GenServer

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 forget_access_point_info(server, index_or_bssid, cookie)

 View Source

 @spec forget_access_point_info(
 GenServer.server(),
 String.t() | non_neg_integer(),
 any()
) :: :ok

Don't bother looking up AP info
This request doesn't do anything but send back a message to remove an access point.
It's needed for flushing out data returned asynchronously from get_access_point_info/2
calls

 Link to this function

 get_access_point_info(server, index_or_bssid, cookie)

 View Source

 @spec get_access_point_info(GenServer.server(), String.t() | non_neg_integer(), any()) ::
 :ok

Request information on a BSSID or an access point index
The response comes back to the process that started this GenServer with the
details.

 Link to this function

 get_all_access_points(server, cookie)

 View Source

 @spec get_all_access_points(GenServer.server(), any()) :: :ok

Get info on all known access points
This is the get everything all at once call. Everything is sent back.
If it's not known, then it's not known.

 Link to this function

 start_link(init_args)

 View Source

 @spec start_link(keyword()) :: GenServer.on_start()

Start a GenServer
Arguments:
	:ll - the WPASupplicantLL GenServer pid
	:notification_pid - where to send response messages

VintageNetWiFi.Cookbook

Recipes for common WiFi network configurations
For example, if you want the standard configuration for the most common type of WiFi
network (WPA2 Preshared Key networks), pass the SSID and password to wpa_psk/2

 Summary

 Functions

 generic(ssid, passphrase)

 Return a generic configuration for connecting to preshared-key networks

 open_access_point(ssid, ipv4_subnet \\ "192.168.24.0")

 Return a configuration for creating an open access point

 open_wifi(ssid)

 Return a configuration for connecting to open WiFi network

 wpa3_sae(ssid, passphrase)

 Return a configuration for connecting to a WPA3 network

 wpa_eap_peap(ssid, username, passphrase)

 Return a configuration for connecting to a WPA-EAP PEAP network

 wpa_psk(ssid, passphrase)

 Return a configuration for connecting to a WPA-PSK network

 Functions

 Link to this function

 generic(ssid, passphrase)

 View Source

 @spec generic(String.t(), String.t()) ::
 {:ok, map()}
 | {:error,
 VintageNetWiFi.WPA2.invalid_ssid_error()
 | VintageNetWiFi.WPA2.invalid_passphrase_error()}

Return a generic configuration for connecting to preshared-key networks
The returned configuration should be able to connect to an access point
configured to use WPA3-only, WPA2/3 transitional or WPA2. The WiFi module
must also support WPA3 for this to work.
Pass an SSID and passphrase. If the SSID and passphrase are ok, you'll get an
:ok tuple with the configuration. If there's a problem, you'll get an error
tuple with a reason.

 Link to this function

 open_access_point(ssid, ipv4_subnet \\ "192.168.24.0")

 View Source

 @spec open_access_point(String.t(), VintageNet.any_ip_address()) ::
 {:ok, map()} | {:error, term()}

Return a configuration for creating an open access point
Pass an SSID and an optional IPv4 class C network.

 Link to this function

 open_wifi(ssid)

 View Source

 @spec open_wifi(String.t()) ::
 {:ok, map()} | {:error, VintageNetWiFi.WPA2.invalid_ssid_error()}

Return a configuration for connecting to open WiFi network
Pass an SSID and passphrase. If the SSID and passphrase are ok, you'll get an
:ok tuple with the configuration. If there's a problem, you'll get an error
tuple with a reason.

 Link to this function

 wpa3_sae(ssid, passphrase)

 View Source

 @spec wpa3_sae(String.t(), String.t()) ::
 {:ok, map()}
 | {:error,
 VintageNetWiFi.WPA2.invalid_ssid_error()
 | VintageNetWiFi.WPA2.invalid_passphrase_error()}

Return a configuration for connecting to a WPA3 network
Pass an SSID and passphrase. If the SSID and passphrase are ok, you'll get an
:ok tuple with the configuration. If there's a problem, you'll get an error
tuple with a reason.

 Link to this function

 wpa_eap_peap(ssid, username, passphrase)

 View Source

 @spec wpa_eap_peap(String.t(), String.t(), String.t()) ::
 {:ok, map()} | {:error, VintageNetWiFi.WPA2.invalid_ssid_error()}

Return a configuration for connecting to a WPA-EAP PEAP network
Pass an SSID and login credentials. If valid, you'll get an
:ok tuple with the configuration. If there's a problem, you'll get an error
tuple with a reason.

 Link to this function

 wpa_psk(ssid, passphrase)

 View Source

 @spec wpa_psk(String.t(), String.t()) ::
 {:ok, map()}
 | {:error,
 VintageNetWiFi.WPA2.invalid_ssid_error()
 | VintageNetWiFi.WPA2.invalid_passphrase_error()}

Return a configuration for connecting to a WPA-PSK network
Pass an SSID and passphrase. If the SSID and passphrase are ok, you'll get an
:ok tuple with the configuration. If there's a problem, you'll get an error
tuple with a reason.

VintageNetWiFi.Event

WiFi events.
Currently supported:
	CTRL-EVENT-ASSOC-REJECT - occurs when authentication fails
	CTRL-EVENT-SSID-TEMP-DISABLED - association with SSID is temporarily blocked by wpa_supplicant in some cases.
	CTRL-EVENT-SSID-REENABLED - matching event when SSID is re-enabled.

All events have a :name, and the other fields are optional.
	CTRL-EVENT-ASSOC-REJECT	:bssid - a unique address for the access point
	:status_code - status code of the event

	CTRL-EVENT-SSID-TEMP-DISABLED	:id - event identifier?
	:ssid - the access point's name
	:auth_failures - how many failures occured to lead to disabling
	:duration - time of block in seconds
	:reason - why the SSID is disabled

	CTRL-EVENT-SSID-REENABLED	:id - event identifier?
	:ssid - the access point's name

 Examples:

iex> VintageNetWiFi.Event.new("CTRL-EVENT-ASSOC-REJECT", %{"bssid" => "ab:cd:ef:01:02:03", "status_code" => "1"})
%VintageNetWiFi.Event{
 name: "CTRL-EVENT-ASSOC-REJECT",
 bssid: "ab:cd:ef:01:02:03",
 status_code: 1
}

 Summary

 Types

 t()

 WiFi event structure.

 Functions

 new(name, params)

 Create an event with the appropriate fields

 Types

 Link to this type

 t()

 View Source

 @type t() :: %VintageNetWiFi.Event{
 auth_failures: nil | non_neg_integer(),
 bssid: nil | String.t(),
 duration: nil | non_neg_integer(),
 id: nil | non_neg_integer(),
 name: nil | String.t(),
 reason: nil | String.t(),
 ssid: String.t(),
 status_code: nil | non_neg_integer()
}

WiFi event structure.

 Functions

 Link to this function

 new(name, params)

 View Source

 @spec new(String.t(), %{optional(String.t()) => String.t() | non_neg_integer()}) ::
 t()

Create an event with the appropriate fields

VintageNetWiFi.MeshPeer

Information about a WiFi mesh peer
This is a superset of the fields available on VintageNetWiFi.AccessPoint.

 Summary

 Types

 t()

 Functions

 new(peer)

 Create a new MeshPeer struct

 Types

 Link to this type

 t()

 View Source

 @type t() :: %VintageNetWiFi.MeshPeer{
 active_path_selection_metric_id: non_neg_integer(),
 active_path_selection_protocol_id: non_neg_integer(),
 age: non_neg_integer(),
 authentication_protocol_id: non_neg_integer(),
 band: VintageNetWiFi.AccessPoint.band(),
 beacon_int: non_neg_integer(),
 bss_basic_rate_set: String.t(),
 bssid: String.t(),
 capabilities: integer(),
 channel: non_neg_integer(),
 congestion_control_mode_id: non_neg_integer(),
 est_throughput: non_neg_integer(),
 flags: [VintageNetWiFi.AccessPoint.flag()],
 frequency: non_neg_integer(),
 id: non_neg_integer(),
 mesh_capability: VintageNetWiFi.MeshPeer.Capabilities.t(),
 mesh_formation_info: VintageNetWiFi.MeshPeer.FormationInformation.t(),
 mesh_id: String.t(),
 noise_dbm: integer(),
 quality: integer(),
 signal_dbm: integer(),
 signal_percent: 0..100,
 snr: non_neg_integer(),
 ssid: String.t(),
 synchronization_method_id: non_neg_integer()
}

 Functions

 Link to this function

 new(peer)

 View Source

 @spec new(keyword() | map()) :: t()

Create a new MeshPeer struct

VintageNetWiFi.MeshPeer.Capabilities

Capabilities supported by a mesh node
	power_slave_level:
true if at least one of the peer-specific mesh
power management modes is deep sleep mode
	tbtt_adjusting:
true while the TBBT adjustment procedure is ongoing.
	mbca_enabled:
true if the station is using MBCA
	forwarding:
true if the station forwards MSDUs
	mcca_enabled:
true if the station uses MCCA
	mcca_supported:
true if the station implements MCCA

 Summary

 Types

 t()

 Functions

 decode_capabilities(arg)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %VintageNetWiFi.MeshPeer.Capabilities{
 accepting_peerings: boolean(),
 forwarding: boolean(),
 mbca_enabled: boolean(),
 mcca_enabled: boolean(),
 mcca_supported: boolean(),
 power_slave_level: boolean(),
 tbtt_adjusting: boolean()
}

 Functions

 Link to this function

 decode_capabilities(arg)

 View Source

 @spec decode_capabilities(<<_::8>>) :: t()

VintageNetWiFi.MeshPeer.FormationInformation

	connected_to_as:
true if the Authentication Protocol Identifier is set to 2.
(indicating IEEE 802.1X authentication) and the station has an
active connection to an AS
	number_of_peerings:
indicates the mnumber of mesh peerings currently maintained
but the station or 63, whichever is smaller
	connected_to_mesh_gate:
true if the station has a mesh path to the mesh gate that announces
it's presence using GANN, RANN or PREQ elements

 Summary

 Types

 t()

 Functions

 decode_formation_information(arg)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %VintageNetWiFi.MeshPeer.FormationInformation{
 connected_to_as: boolean(),
 connected_to_mesh_gate: boolean(),
 number_of_peerings: 0..63
}

 Functions

 Link to this function

 decode_formation_information(arg)

 View Source

 @spec decode_formation_information(<<_::8>>) :: t()

VintageNetWiFi.SignalInfo

Information about active connection signal levels
	:center_frequency1 - center frequency for the first segment
	:center_frequency2 - center frequency for the second segment (if relevant)
	:frequency - control frequency
	:linkspeed - current TX rate
	:signal_dbm - current signal in dBm (RSSI)
	:signal_percent - signal quality in percent
	:width - channel width

 Summary

 Types

 t()

 Functions

 new(center_frequency1, center_frequency2, frequency, linkspeed, signal_dbm, width)

 Create a new SignalInfo struct

 Types

 Link to this type

 t()

 View Source

 @type t() :: %VintageNetWiFi.SignalInfo{
 center_frequency1: non_neg_integer(),
 center_frequency2: non_neg_integer(),
 frequency: non_neg_integer(),
 linkspeed: non_neg_integer(),
 signal_dbm: integer(),
 signal_percent: 0..100,
 width: String.t()
}

 Functions

 Link to this function

 new(center_frequency1, center_frequency2, frequency, linkspeed, signal_dbm, width)

 View Source

 @spec new(
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer(),
 integer(),
 String.t()
) :: t()

Create a new SignalInfo struct

VintageNetWiFi.Utils

Various utility functions for handling WiFi information

 Summary

 Types

 frequency_info()

 Functions

 bit_to_boolean(int)

 Converts 1 to true, 0 to false

 dbm_to_percent(dbm, best_dbm, worst_dbm)

 Convert power in dBm to a percent

 frequency_info(arg1)

 Get information about a WiFi frequency

 Types

 Link to this type

 frequency_info()

 View Source

 @type frequency_info() :: %{
 band: VintageNetWiFi.AccessPoint.band(),
 channel: non_neg_integer(),
 dbm_to_percent: function()
}

 Functions

 Link to this function

 bit_to_boolean(int)

 View Source

 @spec bit_to_boolean(0 | 1) :: boolean()

Converts 1 to true, 0 to false

 Link to this function

 dbm_to_percent(dbm, best_dbm, worst_dbm)

 View Source

 @spec dbm_to_percent(number(), number(), number()) :: 1..100

Convert power in dBm to a percent
The returned percentage is intended to shown to users
like to show a number of bars or some kind of signal
strength.
See Displaying Associated and Scanned Signal
Levels.

 Link to this function

 frequency_info(arg1)

 View Source

 @spec frequency_info(non_neg_integer()) :: frequency_info()

Get information about a WiFi frequency
The frequency should be pass in MHz. The result is more
information about the frequency that may be helpful to
users.

VintageNetWiFi.WPA2

WPA2 preshared key calculations
WPA2 doesn't use passphrases directly, but instead hashes them with the
SSID and uses the result for the network key. The algorithm that runs
the hash takes some time so it's useful to compute the PSK from the
passphrase once rather than specifying it each time.

 Summary

 Types

 invalid_passphrase_error()

 invalid_ssid_error()

 psk()

 A WPA2 preshared key

 Functions

 to_psk(ssid, psk)

 Convert a WiFi WPA2 passphrase into a PSK

 validate_passphrase(password)

 Validate the length and characters of a passphrase

 validate_ssid(ssid)

 Validate the length of the SSID

 Types

 Link to this type

 invalid_passphrase_error()

 View Source

 @type invalid_passphrase_error() ::
 :password_too_short | :password_too_long | :invalid_characters

 Link to this type

 invalid_ssid_error()

 View Source

 @type invalid_ssid_error() :: :ssid_too_short | :ssid_too_long

 Link to this type

 psk()

 View Source

 @type psk() :: <<_::512>>

A WPA2 preshared key

 Functions

 Link to this function

 to_psk(ssid, psk)

 View Source

 @spec to_psk(String.t(), psk() | String.t()) ::
 {:ok, psk()} | {:error, invalid_ssid_error() | invalid_passphrase_error()}

Convert a WiFi WPA2 passphrase into a PSK
If a passphrase looks like a PSK, then it's assumed that it already is a PSK
and is passed through.
See IEEE Std 802.11i-2004 Appendix H.4 for the algorithm.

 Link to this function

 validate_passphrase(password)

 View Source

 @spec validate_passphrase(String.t()) :: :ok | {:error, invalid_passphrase_error()}

Validate the length and characters of a passphrase
A valid passphrase is between 8 and 63 characters long, and
only contains ASCII characters (values between 32 and 126, inclusive).

 Link to this function

 validate_ssid(ssid)

 View Source

 @spec validate_ssid(String.t()) :: :ok | {:error, invalid_ssid_error()}

Validate the length of the SSID
A valid SSID is between 1 and 32 characters long.

VintageNetWiFi.WPASupplicant

Control a wpa_supplicant instance for an interface.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 raw_command(ifname, command)

 Send a raw command to the wpa_supplicant

 scan(ifname)

 Initiate a scan of WiFi networks

 signal_poll(ifname)

 Polls for signal level info

 start_link(args)

 Start a GenServer to manage communication with a wpa_supplicant

 wps_pbc(ifname)

 Enable reception of WiFi credentials via WPS

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 raw_command(ifname, command)

 View Source

 @spec raw_command(VintageNet.ifname(), String.t()) ::
 {:ok, String.t()} | {:error, any()}

Send a raw command to the wpa_supplicant
This doesn't do any kind of processing on the results and just returns whatever
wpa_supplicant says. See ctrl_iface
and ctrl_iface.c for options.
iex> VintageNetWiFi.WPASupplicant.raw_command("wlan0", "GET_CAPABILITY modes")
{:ok, "AP MESH"}

 Link to this function

 scan(ifname)

 View Source

 @spec scan(VintageNet.ifname()) :: :ok

Initiate a scan of WiFi networks

 Link to this function

 signal_poll(ifname)

 View Source

 @spec signal_poll(VintageNet.ifname()) :: {:ok, any()} | {:error, any()}

Polls for signal level info

 Link to this function

 start_link(args)

 View Source

 @spec start_link(keyword()) :: GenServer.on_start()

Start a GenServer to manage communication with a wpa_supplicant
Arguments:
	:wpa_supplicant - the path to the wpa_supplicant binary *:wpa_supplicant_conf_path - the path to the supplicant's conf file
	:ifname - the network interface
	:control_path - the path to the wpa_supplicant control file
	:keep_alive_interval - how often to ping the wpa_supplicant to
make sure it's still alive (defaults to 60,000 seconds)
	:ap_mode - true if the WiFi module and wpa_supplicant are
in access point mode

 Link to this function

 wps_pbc(ifname)

 View Source

 @spec wps_pbc(VintageNet.ifname()) :: {:ok, any()} | {:error, any()}

Enable reception of WiFi credentials via WPS

VintageNetWiFi.WPASupplicantLL

This modules provides a low-level interface for interacting with the wpa_supplicant
Example use:
iex> {:ok, ws} = VintageNetWiFi.WPASupplicantLL.start_link(path: "/tmp/vintage_net/wpa_supplicant/wlan0", notification_pid: self())
{:ok, #PID<0.1795.0>}
iex> VintageNetWiFi.WPASupplicantLL.control_request(ws, "ATTACH")
{:ok, "OK
"}
iex> VintageNetWiFi.WPASupplicantLL.control_request(ws, "SCAN")
{:ok, "OK
"}
iex> flush
{VintageNetWiFi.WPASupplicant, 51, "CTRL-EVENT-SCAN-STARTED "}
{VintageNetWiFi.WPASupplicant, 51, "CTRL-EVENT-BSS-ADDED 0 78:8a:20:87:7a:50"}
{VintageNetWiFi.WPASupplicant, 51, "CTRL-EVENT-SCAN-RESULTS "}
{VintageNetWiFi.WPASupplicant, 51, "CTRL-EVENT-NETWORK-NOT-FOUND "}
:ok
iex> VintageNetWiFi.WPASupplicantLL.control_request(ws, "BSS 0")
{:ok,
"id=0
bssid=78:8a:20:82:7a:50
freq=2437
beacon_int=100
capabilities=0x0431
qual=0
noise=-89
level=-71
tsf=0000333220048880
age=14
ie=0008426f7062654c414e010882848b968c1298240301062a01003204b048606c0b0504000a00002d1aac011bffffff00000000000000000001000000000000000000003d1606080c000000000000000000000000000000000000007f080000000000000040dd180050f2020101000003a4000027a4000042435e0062322f00dd0900037f01010000ff7fdd1300156d00010100010237e58106788a20867a5030140100000fac040100000fac040100000fac020000
flags=[WPA2-PSK-CCMP][ESS]
ssid=HelloWiFi
snr=18
est_throughput=48000
update_idx=1
beacon_ie=0008426f7062654c414e010882848b968c1298240301060504010300002a01003204b048606c0b0504000a00002d1aac011bffffff00000000000000000001000000000000000000003d1606080c000000000000000000000000000000000000007f080000000000000040dd180050f2020101000003a4000027a4000042435e0062322f00dd0900037f01010000ff7fdd1300156d00010100010237e58106788a20867a5030140100000fac040100000fac040100000fac020000
"}

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 control_request(server, request)

 start_link(init_args)

 Start the WPASupplicant low-level interface

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 control_request(server, request)

 View Source

 @spec control_request(GenServer.server(), binary()) ::
 {:ok, binary()} | {:error, any()}

 Link to this function

 start_link(init_args)

 View Source

 @spec start_link(path: Path.t(), notification_pid: pid()) :: GenServer.on_start()

Start the WPASupplicant low-level interface
Pass the path to the wpa_supplicant control file.
Notifications from the wpa_supplicant are sent to the process that
calls this.

VintageNetWiFi.WPSData

Utilities for handling WPS data

 Summary

 Types

 t()

 A map containing WPS data

 Functions

 decode(hex_string)

 Decode WPS data

 Types

 Link to this type

 t()

 View Source

 @type t() :: %{
 optional(:credential) => t(),
 optional(:mac_address) => binary(),
 optional(:network_key) => binary(),
 optional(:network_index) => non_neg_integer(),
 optional(0..65536) => binary()
}

A map containing WPS data
All keys are optional. Known keys use atoms. Unknown keys use their numeric
value and their value is left as a raw binary.
Known keys:
	:credential - a map of WiFi credentials (also WPS data)
	:mac_address - a MAC address in string form (i.e., "aa:bb:cc:dd:ee:ff")
	:network_key - a passphrase or PSK
	:network_index - the key index

 Functions

 Link to this function

 decode(hex_string)

 View Source

 @spec decode(binary()) :: {:ok, t()} | :error

Decode WPS data
The WPS data is expected to be in hex string form like what the
wpa_supplicant reports.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

