

 VLLM

 v0.2.0

 [image: Logo]

 Table of contents

 	LICENSE

 	Guides

 	README

 	Quickstart Guide

 	Features

 	Offline Inference

 	Online Serving

 	Sampling Parameters

 	Configuration Guide

 	Multimodal Models

 	LoRA Adapters

 	Structured Outputs

 	Reference

 	Supported Models

 	Quantization

 	Examples

 	VLLM Examples

 	Release Notes

 	Changelog

 	
 Modules

 	GracefulSerialization.Helpers

 	VLLM.ConfigHelper

 	Vllm

 	Vllm.Assets

 	Vllm.AsyncLLMEngine

 	Vllm.Attention

 	Vllm.BeamSearch

 	Vllm.BeamSearch.BeamSearchInstance

 	Vllm.BeamSearch.BeamSearchOutput

 	Vllm.BeamSearch.BeamSearchSequence

 	Vllm.BeamSearch.LoRARequest

 	Vllm.BeamSearch.Logprob

 	Vllm.Benchmarks

 	Vllm.CollectEnv

 	Vllm.CollectEnv.SystemEnv

 	Vllm.Compilation

 	Vllm.Config

 	Vllm.Config.AttentionConfig

 	Vllm.Config.CUDAGraphMode

 	Vllm.Config.CacheConfig

 	Vllm.Config.CompilationConfig

 	Vllm.Config.CompilationMode

 	Vllm.Config.DeviceConfig

 	Vllm.Config.ECTransferConfig

 	Vllm.Config.EPLBConfig

 	Vllm.Config.KVEventsConfig

 	Vllm.Config.KVTransferConfig

 	Vllm.Config.LoRAConfig

 	Vllm.Config.LoadConfig

 	Vllm.Config.ModelConfig

 	Vllm.Config.MultiModalConfig

 	Vllm.Config.ObservabilityConfig

 	Vllm.Config.ParallelConfig

 	Vllm.Config.PassConfig

 	Vllm.Config.PoolerConfig

 	Vllm.Config.ProfilerConfig

 	Vllm.Config.SchedulerConfig

 	Vllm.Config.SpeculativeConfig

 	Vllm.Config.SpeechToTextConfig

 	Vllm.Config.StructuredOutputsConfig

 	Vllm.Config.SupportsMetricsInfo

 	Vllm.Config.VllmConfig

 	Vllm.Connections

 	Vllm.Connections.HTTPConnection

 	Vllm.DeviceAllocator

 	Vllm.Distributed

 	Vllm.Distributed.DeviceCommunicatorBase

 	Vllm.Distributed.GraphCaptureContext

 	Vllm.Distributed.GroupCoordinator

 	Vllm.Distributed.StatelessProcessGroup

 	Vllm.Distributed.TensorMetadata

 	Vllm.Engine

 	Vllm.Entrypoints

 	Vllm.EnvOverride

 	Vllm.Envs

 	Vllm.Exceptions

 	Vllm.Exceptions.VLLMValidationError

 	Vllm.ForwardContext

 	Vllm.ForwardContext.AttentionMetadata

 	Vllm.ForwardContext.BatchDescriptor

 	Vllm.ForwardContext.DPMetadata

 	Vllm.ForwardContext.Module

 	Vllm.Grpc

 	Vllm.Inputs

 	Vllm.Inputs.DataPrompt

 	Vllm.Inputs.EmbedsInputs

 	Vllm.Inputs.EmbedsPrompt

 	Vllm.Inputs.EncoderDecoderInputs

 	Vllm.Inputs.ExplicitEncoderDecoderPrompt

 	Vllm.Inputs.TextPrompt

 	Vllm.Inputs.TokenInputs

 	Vllm.Inputs.TokensPrompt

 	Vllm.LLM

 	Vllm.LLMEngine

 	Vllm.Logger

 	Vllm.Logger.ColoredFormatter

 	Vllm.Logger.NewLineFormatter

 	Vllm.Logger.VllmLogger

 	Vllm.LoggingUtils

 	Vllm.LoggingUtils.ColoredFormatter

 	Vllm.LoggingUtils.NewLineFormatter

 	Vllm.LogitsProcess

 	Vllm.LogitsProcess.NoBadWordsLogitsProcessor

 	Vllm.LogitsProcess.TokenizerLike

 	Vllm.Logprobs

 	Vllm.Logprobs.FlatLogprobs

 	Vllm.Logprobs.Logprob

 	Vllm.Lora

 	Vllm.ModelExecutor

 	Vllm.ModelExecutor.BasevLLMParameter

 	Vllm.ModelExecutor.Models.Adapters

 	Vllm.ModelExecutor.Models.Interfaces

 	Vllm.ModelExecutor.Models.InterfacesBase

 	Vllm.ModelExecutor.PackedvLLMParameter

 	Vllm.ModelInspection

 	Vllm.Multimodal

 	Vllm.Multimodal.Inputs

 	Vllm.Multimodal.Inputs.MultiModalFieldConfig

 	Vllm.Multimodal.Inputs.MultiModalFieldElem

 	Vllm.Multimodal.Inputs.MultiModalInputs

 	Vllm.Multimodal.Inputs.MultiModalKwargsItem

 	Vllm.Multimodal.Inputs.MultiModalKwargsItems

 	Vllm.Multimodal.Inputs.PlaceholderRange

 	Vllm.Multimodal.MultiModalDataBuiltins

 	Vllm.Multimodal.MultiModalHasher

 	Vllm.Multimodal.MultiModalKwargsItems

 	Vllm.Multimodal.MultiModalRegistry

 	Vllm.Multimodal.Parse

 	Vllm.Multimodal.Processing

 	Vllm.Multimodal.Registry

 	Vllm.Outputs

 	Vllm.Outputs.ClassificationOutput

 	Vllm.Outputs.ClassificationRequestOutput

 	Vllm.Outputs.CompletionOutput

 	Vllm.Outputs.EmbeddingOutput

 	Vllm.Outputs.EmbeddingRequestOutput

 	Vllm.Outputs.PoolingOutput

 	Vllm.Outputs.PoolingRequestOutput

 	Vllm.Outputs.RequestOutput

 	Vllm.Outputs.RequestStateStats

 	Vllm.Outputs.ScoringOutput

 	Vllm.Outputs.ScoringRequestOutput

 	Vllm.Platforms

 	Vllm.Platforms.CpuArchEnum

 	Vllm.Platforms.Platform

 	Vllm.Platforms.PlatformEnum

 	Vllm.Plugins

 	Vllm.PoolingParams

 	Vllm.PoolingParams.Module

 	Vllm.PoolingParams.RequestOutputKind

 	Vllm.PoolingParamsClass

 	Vllm.Profiler

 	Vllm.Ray

 	Vllm.Reasoning

 	Vllm.Reasoning.ReasoningParser

 	Vllm.Reasoning.ReasoningParserManager

 	Vllm.SamplingParams

 	Vllm.SamplingParams.BeamSearchParams

 	Vllm.SamplingParams.Module

 	Vllm.SamplingParams.PydanticMsgspecMixin

 	Vllm.SamplingParams.RequestOutputKind

 	Vllm.SamplingParams.SamplingType

 	Vllm.SamplingParams.StructuredOutputsParams

 	Vllm.SamplingParams.TokenizerLike

 	Vllm.SamplingParamsClass

 	Vllm.ScalarType

 	Vllm.ScalarType.Module

 	Vllm.ScalarType.NanRepr

 	Vllm.ScalarType.ScalarTypes

 	Vllm.Scripts

 	Vllm.Sequence

 	Vllm.Sequence.IntermediateTensors

 	Vllm.Sequence.KVConnectorOutput

 	Vllm.Tasks

 	Vllm.Tokenizers

 	Vllm.Tokenizers.TokenizerLike

 	Vllm.ToolParsers

 	Vllm.ToolParsers.ToolParser

 	Vllm.ToolParsers.ToolParserManager

 	Vllm.Tracing

 	Vllm.Tracing.BaseSpanAttributes

 	Vllm.Tracing.SpanAttributes

 	Vllm.TransformersUtils

 	Vllm.TritonUtils

 	Vllm.TritonUtils.TritonLanguagePlaceholder

 	Vllm.TritonUtils.TritonPlaceholder

 	Vllm.Usage

 	Vllm.Utils

 	Vllm.V1

 	Vllm.Version

 	Core API

 	VLLM

GracefulSerialization.Helpers

Helper wrappers for graceful_serialization.

 Summary

 Functions

 dict_with_generator(opts \\ [])

 Return a dict containing a generator and a regular value.

 dict_with_pattern(opts \\ [])

 Return a dict containing a compiled regex pattern.

 list_with_pattern(opts \\ [])

 Return a list containing a compiled regex pattern.

 multiple_patterns(opts \\ [])

 Return a list with multiple compiled patterns at different positions.

 nested_structure(opts \\ [])

 Return a deeply nested structure with a compiled pattern.

 pattern_with_flags(opts \\ [])

 Return a pattern compiled with flags to show flag preservation.

 tuple_with_pattern(opts \\ [])

 Return a tuple containing a compiled pattern.

 validation_configs(opts \\ [])

 Return a list of validation configurations with compiled regex patterns.

 Functions

 dict_with_generator(opts \\ [])

 @spec dict_with_generator(keyword()) :: {:ok, term()} | {:error, term()}

Return a dict containing a generator and a regular value.

 dict_with_pattern(opts \\ [])

 @spec dict_with_pattern(keyword()) :: {:ok, term()} | {:error, term()}

Return a dict containing a compiled regex pattern.

 list_with_pattern(opts \\ [])

 @spec list_with_pattern(keyword()) :: {:ok, term()} | {:error, term()}

Return a list containing a compiled regex pattern.

 multiple_patterns(opts \\ [])

 @spec multiple_patterns(keyword()) :: {:ok, term()} | {:error, term()}

Return a list with multiple compiled patterns at different positions.

 nested_structure(opts \\ [])

 @spec nested_structure(keyword()) :: {:ok, term()} | {:error, term()}

Return a deeply nested structure with a compiled pattern.

 pattern_with_flags(opts \\ [])

 @spec pattern_with_flags(keyword()) :: {:ok, term()} | {:error, term()}

Return a pattern compiled with flags to show flag preservation.

 tuple_with_pattern(opts \\ [])

 @spec tuple_with_pattern(keyword()) :: {:ok, term()} | {:error, term()}

Return a tuple containing a compiled pattern.

 validation_configs(opts \\ [])

 @spec validation_configs(keyword()) :: {:ok, term()} | {:error, term()}

Return a list of validation configurations with compiled regex patterns.
This is a real-world pattern: storing compiled patterns alongside metadata
for form validation, input parsing, API request validation, etc.
Expected behavior: The outer list and inner dicts should be preserved,
with only the 'pattern' field becoming a ref (re.Pattern is non-serializable).

VLLM.ConfigHelper

Runtime configuration helper for using vLLM safely via SnakeBridge/Snakepit.
This module composes SnakeBridge.ConfigHelper and adds a vLLM-specific
safeguard around vLLM v1 multiprocessing (which can spawn child processes).
v1 multiprocessing (vLLM 0.14+)
vLLM can spawn subprocesses for the engine core. Under Snakepit, those
subprocesses must be cleaned up deterministically on shutdown to avoid
orphaned GPU processes holding memory.
Configure with:
config :vllm, v1_multiprocessing: :auto | :on | :off
	:off - always forces VLLM_ENABLE_V1_MULTIPROCESSING=0
	:on - forces VLLM_ENABLE_V1_MULTIPROCESSING=1 and fails fast unless
Snakepit process-group cleanup is available
	:auto - enables only when safe; otherwise forces off with a warning

When v1 multiprocessing is enabled, this helper also sets
VLLM_WORKER_MULTIPROC_METHOD=spawn (unless already provided) to avoid
forking a multi-threaded Python gRPC server.

 Summary

 Types

 v1_multiprocessing_mode()

 Functions

 configure_snakepit!(opts \\ [])

 Auto-configure Snakepit for SnakeBridge and enforce safe vLLM multiprocessing.

 Types

 v1_multiprocessing_mode()

 @type v1_multiprocessing_mode() :: :auto | :on | :off

 Functions

 configure_snakepit!(opts \\ [])

 @spec configure_snakepit!(keyword()) :: :ok

Auto-configure Snakepit for SnakeBridge and enforce safe vLLM multiprocessing.
Intended for config/runtime.exs:
import Config
VLLM.ConfigHelper.configure_snakepit!()
Options:
	all options supported by SnakeBridge.ConfigHelper.configure_snakepit!/1
	:v1_multiprocessing - overrides config :vllm, :v1_multiprocessing

Vllm

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Assets

Submodule bindings for vllm.assets.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Assets.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Assets.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Assets.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Assets.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.AsyncLLMEngine

Protocol class for Clients to Engine

 Summary

 Types

 t()

 Functions

 _add_request(ref, request, prompt, parent_req, index, queue, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _run_output_handler(ref, opts \\ [])

 Background loop: pulls from EngineCore and pushes to AsyncStreams.

 abort(ref, request_id, args, opts \\ [])

 Abort RequestId in OutputProcessor and EngineCore.

 add_lora(ref, lora_request, opts \\ [])

 Load a new LoRA adapter into the engine for future requests.

 add_request(ref, request_id, prompt, params, args, opts \\ [])

 Add new request to the AsyncLLM.

 check_health(ref, opts \\ [])

 Raise if unhealthy

 collective_rpc(ref, method, args, opts \\ [])

 Perform a collective RPC call to the given path.

 dead_error(ref)

 do_log_stats(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 encode(ref, prompt, pooling_params, request_id, args, opts \\ [])

 Main function called by the API server to kick off a request

 errored(ref)

 from_engine_args(ref, engine_args, args, opts \\ [])

 Create an AsyncLLM from the EngineArgs.

 from_vllm_config(ref, vllm_config, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 generate(ref, prompt, sampling_params, request_id, opts \\ [])

 Main function called by the API server to kick off a request

 get_supported_tasks(ref, opts \\ [])

 Get supported tasks

 get_tokenizer(ref, opts \\ [])

 Get the tokenizer

 is_paused(ref, opts \\ [])

 Return whether the engine is currently paused.

 is_running(ref)

 is_sleeping(ref, opts \\ [])

 Check whether the engine is sleeping

 is_stopped(ref)

 is_tracing_enabled(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 list_loras(ref, opts \\ [])

 List all registered adapters.

 new(vllm_config, executor_class, log_stats, args, opts \\ [])

 Create an AsyncLLM.

 pause_generation(ref, opts \\ [])

 Pause generation to allow model weight updates.

 pin_lora(ref, lora_id, opts \\ [])

 Prevent an adapter from being evicted.

 remove_lora(ref, lora_id, opts \\ [])

 Remove an already loaded LoRA adapter.

 reset_mm_cache(ref, opts \\ [])

 Reset the multi-modal cache

 reset_prefix_cache(ref, args, opts \\ [])

 Reset the prefix cache and optionally any configured connector cache

 resume_generation(ref, opts \\ [])

 Resume generation after :meth:pause_generation.

 scale_elastic_ep(ref, new_data_parallel_size, args, opts \\ [])

 Scale up or down the data parallel size by adding or removing

 shutdown(ref, opts \\ [])

 Shutdown, cleaning up the background proc and IPC.

 sleep(ref, args, opts \\ [])

 Sleep the engine

 start_profile(ref, opts \\ [])

 Start profiling the engine

 stop_profile(ref, opts \\ [])

 Stop profiling the engine

 tokenizer(ref)

 wait_for_requests_to_drain(ref, args, opts \\ [])

 Wait for all requests to be drained.

 wake_up(ref, args, opts \\ [])

 Wake up the engine

 Types

 t()

 @opaque t()

 Functions

 _add_request(ref, request, prompt, parent_req, index, queue, opts \\ [])

 @spec _add_request(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 integer(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	request (term())
	prompt (term())
	parent_req (term())
	index (integer())
	queue (term())

Returns
	term()

 _run_output_handler(ref, opts \\ [])

 @spec _run_output_handler(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Background loop: pulls from EngineCore and pushes to AsyncStreams.
Returns
	term()

 abort(ref, request_id, args, opts \\ [])

 @spec abort(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Abort RequestId in OutputProcessor and EngineCore.
Parameters
	request_id (term())
	internal (boolean() default: False)

Returns
	nil

 add_lora(ref, lora_request, opts \\ [])

 @spec add_lora(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Load a new LoRA adapter into the engine for future requests.
Parameters
	lora_request (term())

Returns
	boolean()

 add_request(ref, request_id, prompt, params, args, opts \\ [])

 @spec add_request(
 SnakeBridge.Ref.t(),
 String.t(),
 term(),
 term(),
 [term()],
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Add new request to the AsyncLLM.
Parameters
	request_id (String.t())
	prompt (term())
	params (term())
	arrival_time (term() default: None)
	lora_request (term() default: None)
	tokenization_kwargs (term() default: None)
	trace_headers (term() default: None)
	priority (integer() default: 0)
	data_parallel_rank (term() default: None)
	prompt_text (term() default: None)

Returns
	term()

 check_health(ref, opts \\ [])

 @spec check_health(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Raise if unhealthy
Returns
	nil

 collective_rpc(ref, method, args, opts \\ [])

 @spec collective_rpc(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Perform a collective RPC call to the given path.
Parameters
	method (String.t())
	timeout (term() default: None)
	args (tuple() default: ())
	kwargs (term() default: None)

Returns
	term()

 dead_error(ref)

 @spec dead_error(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 do_log_stats(ref, opts \\ [])

 @spec do_log_stats(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	nil

 encode(ref, prompt, pooling_params, request_id, args, opts \\ [])

 @spec encode(
 SnakeBridge.Ref.t(),
 term(),
 Vllm.PoolingParamsClass.t(),
 String.t(),
 [term()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Main function called by the API server to kick off a request
		Making an AsyncStream corresponding to the Request.

		Processing the Input.

		Adding the Request to the EngineCore (separate process).

A separate output_handler loop runs in a background AsyncIO task,
pulling outputs from EngineCore and putting them into the
per-request AsyncStream.
The caller of generate() iterates the returned AsyncGenerator,
returning the RequestOutput back to the caller.
NOTE: truncate_prompt_tokens is deprecated in v0.14.
TODO: Remove truncate_prompt_tokens in v0.15.
Parameters
	prompt (term())
	pooling_params (Vllm.PoolingParamsClass.t())
	request_id (String.t())
	lora_request (term() default: None)
	trace_headers (term() default: None)
	priority (integer() default: 0)
	truncate_prompt_tokens (term() default: None)
	tokenization_kwargs (term() default: None)

Returns
	term()

 errored(ref)

 @spec errored(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 from_engine_args(ref, engine_args, args, opts \\ [])

 @spec from_engine_args(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create an AsyncLLM from the EngineArgs.
Parameters
	engine_args (term())
	start_engine_loop (boolean() default: True)
	usage_context (term() default: <UsageContext.ENGINE_CONTEXT: 'ENGINE_CONTEXT'>)
	stat_loggers (term() default: None)

Returns
	term()

 from_vllm_config(ref, vllm_config, args, opts \\ [])

 @spec from_vllm_config(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	vllm_config (term())
	start_engine_loop (boolean() default: True)
	usage_context (term() default: <UsageContext.ENGINE_CONTEXT: 'ENGINE_CONTEXT'>)
	stat_loggers (term() default: None)
	enable_log_requests (boolean() default: False)
	aggregate_engine_logging (boolean() default: False)
	disable_log_stats (boolean() default: False)
	client_addresses (term() default: None)
	client_count (integer() default: 1)
	client_index (integer() default: 0)

Returns
	term()

 generate(ref, prompt, sampling_params, request_id, opts \\ [])

 @spec generate(
 SnakeBridge.Ref.t(),
 term(),
 Vllm.SamplingParamsClass.t(),
 String.t(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Main function called by the API server to kick off a request
		Making an AsyncStream corresponding to the Request.

		Processing the Input.

		Adding the Request to the Detokenizer.

		Adding the Request to the EngineCore (separate process).

A separate output_handler loop runs in a background AsyncIO task,
pulling outputs from EngineCore and putting them into the
per-request AsyncStream.
The caller of generate() iterates the returned AsyncGenerator,
returning the RequestOutput back to the caller.
Parameters
	prompt (term())
	sampling_params (Vllm.SamplingParamsClass.t())
	request_id (String.t())
	prompt_text (term() keyword-only default: None)
	lora_request (term() keyword-only default: None)
	tokenization_kwargs (term() keyword-only default: None)
	trace_headers (term() keyword-only default: None)
	priority (integer() keyword-only default: 0)
	data_parallel_rank (term() keyword-only default: None)

Returns
	term()

 get_supported_tasks(ref, opts \\ [])

 @spec get_supported_tasks(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, {term(), term()}} | {:error, Snakepit.Error.t()}

Get supported tasks
Returns
	{term(), term()}

 get_tokenizer(ref, opts \\ [])

 @spec get_tokenizer(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Get the tokenizer
Returns
	term()

 is_paused(ref, opts \\ [])

 @spec is_paused(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Return whether the engine is currently paused.
Returns
	boolean()

 is_running(ref)

 @spec is_running(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_sleeping(ref, opts \\ [])

 @spec is_sleeping(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check whether the engine is sleeping
Returns
	boolean()

 is_stopped(ref)

 @spec is_stopped(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_tracing_enabled(ref, opts \\ [])

 @spec is_tracing_enabled(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	boolean()

 list_loras(ref, opts \\ [])

 @spec list_loras(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, MapSet.t(integer())} | {:error, Snakepit.Error.t()}

List all registered adapters.
Returns
	MapSet.t(integer())

 new(vllm_config, executor_class, log_stats, args, opts \\ [])

 @spec new(term(), term(), boolean(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Create an AsyncLLM.
Parameters
	vllm_config - global configuration.
	executor_class - an Executor impl, e.g. MultiprocExecutor.
	log_stats - Whether to log stats.
	usage_context - Usage context of the LLM.
	mm_registry - Multi-modal registry.
	use_cached_outputs - Whether to use cached outputs.
	log_requests - Whether to log requests.
	start_engine_loop - Whether to start the engine loop.
	stat_loggers - customized stat loggers for the engine. If not provided, default stat loggers will be used. PLEASE BE AWARE THAT STAT LOGGER IS NOT STABLE IN V1, AND ITS BASE CLASS INTERFACE MIGHT CHANGE.

 pause_generation(ref, opts \\ [])

 @spec pause_generation(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Pause generation to allow model weight updates.
New generation/encoding requests are blocked until resume.
Parameters
	wait_for_inflight_requests - When True waits for in-flight requests to finish before pausing. When False (default), immediately aborts any in-flight requests.
	clear_cache - Whether to clear KV cache and prefix cache after draining. Set to False to preserve cache for faster resume. Default is True (clear caches).

Returns
	nil

 pin_lora(ref, lora_id, opts \\ [])

 @spec pin_lora(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Prevent an adapter from being evicted.
Parameters
	lora_id (integer())

Returns
	boolean()

 remove_lora(ref, lora_id, opts \\ [])

 @spec remove_lora(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Remove an already loaded LoRA adapter.
Parameters
	lora_id (integer())

Returns
	boolean()

 reset_mm_cache(ref, opts \\ [])

 @spec reset_mm_cache(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Reset the multi-modal cache
Returns
	nil

 reset_prefix_cache(ref, args, opts \\ [])

 @spec reset_prefix_cache(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Reset the prefix cache and optionally any configured connector cache
Parameters
	reset_running_requests (boolean() default: False)
	reset_connector (boolean() default: False)

Returns
	boolean()

 resume_generation(ref, opts \\ [])

 @spec resume_generation(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Resume generation after :meth:pause_generation.
Returns
	nil

 scale_elastic_ep(ref, new_data_parallel_size, args, opts \\ [])

 @spec scale_elastic_ep(SnakeBridge.Ref.t(), integer(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Scale up or down the data parallel size by adding or removing
engine cores.
Parameters
	new_data_parallel_size - The new number of data parallel workers
	drain_timeout - Maximum time to wait for requests to drain (seconds)

Returns
	term()

 shutdown(ref, opts \\ [])

 @spec shutdown(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Shutdown, cleaning up the background proc and IPC.
Returns
	term()

 sleep(ref, args, opts \\ [])

 @spec sleep(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Sleep the engine
Parameters
	level (integer() default: 1)

Returns
	nil

 start_profile(ref, opts \\ [])

 @spec start_profile(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Start profiling the engine
Returns
	nil

 stop_profile(ref, opts \\ [])

 @spec stop_profile(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Stop profiling the engine
Returns
	nil

 tokenizer(ref)

 @spec tokenizer(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 wait_for_requests_to_drain(ref, args, opts \\ [])

 @spec wait_for_requests_to_drain(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Wait for all requests to be drained.
Parameters
	drain_timeout (integer() default: 300)

Returns
	term()

 wake_up(ref, args, opts \\ [])

 @spec wake_up(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Wake up the engine
Parameters
	tags (term() default: None)

Returns
	nil

Vllm.Attention

Submodule bindings for vllm.attention.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Attention.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Attention.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Attention.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Attention.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.BeamSearch

Submodule bindings for vllm.beam_search.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.BeamSearch.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.BeamSearch.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.BeamSearch.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.BeamSearch.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 create_sort_beams_key_function(eos_token_id, length_penalty, opts \\ [])

 Python binding for vllm.beam_search.create_sort_beams_key_function.

 get_beam_search_score(tokens, cumulative_logprob, eos_token_id)

 Calculate the beam search score with length penalty.

 get_beam_search_score(tokens, cumulative_logprob, eos_token_id, opts)

 get_beam_search_score(tokens, cumulative_logprob, eos_token_id, length_penalty, opts)

 multi_modal_data_dict()

 Python binding for vllm.beam_search.MultiModalDataDict.

 multi_modal_data_dict(opts)

 multi_modal_data_dict(arg1, opts)

 multi_modal_data_dict(arg1, arg2, opts)

 multi_modal_data_dict(arg1, arg2, arg3, opts)

 multi_modal_data_dict(arg1, arg2, arg3, arg4, opts)

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, opts)

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Functions

 create_sort_beams_key_function(eos_token_id, length_penalty, opts \\ [])

 @spec create_sort_beams_key_function(integer(), float(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.beam_search.create_sort_beams_key_function.
Parameters
	eos_token_id (integer())
	length_penalty (float())

Returns
	term()

 get_beam_search_score(tokens, cumulative_logprob, eos_token_id)

 @spec get_beam_search_score([integer()], float(), integer()) ::
 {:ok, float()} | {:error, Snakepit.Error.t()}

Calculate the beam search score with length penalty.
Adapted from
https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938
Parameters
	tokens (list(integer()))
	cumulative_logprob (float())
	eos_token_id (integer())
	length_penalty (float() default: 1.0)

Returns
	float()

 get_beam_search_score(tokens, cumulative_logprob, eos_token_id, opts)

 @spec get_beam_search_score([integer()], float(), integer(), keyword()) ::
 {:ok, float()} | {:error, Snakepit.Error.t()}

 @spec get_beam_search_score([integer()], float(), integer(), float()) ::
 {:ok, float()} | {:error, Snakepit.Error.t()}

 get_beam_search_score(tokens, cumulative_logprob, eos_token_id, length_penalty, opts)

 @spec get_beam_search_score([integer()], float(), integer(), float(), keyword()) ::
 {:ok, float()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict()

 @spec multi_modal_data_dict() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.beam_search.MultiModalDataDict.
Returns
	term()

 multi_modal_data_dict(opts)

 @spec multi_modal_data_dict(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, opts)

 @spec multi_modal_data_dict(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, opts)

 @spec multi_modal_data_dict(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, arg3, opts)

 @spec multi_modal_data_dict(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, arg3, arg4, opts)

 @spec multi_modal_data_dict(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, opts)

 @spec multi_modal_data_dict(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec multi_modal_data_dict(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec multi_modal_data_dict(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec multi_modal_data_dict(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data_dict(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec multi_modal_data_dict(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.BeamSearch.BeamSearchInstance

Wrapper for Python class BeamSearchInstance.

 Summary

 Types

 t()

 Functions

 new(prompt_tokens, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(prompt_tokens, args, opts \\ [])

 @spec new([integer()], [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	prompt_tokens (list(integer()))
	lora_request (term() default: None)
	logprobs (term() default: None)
	kwargs (term())

Vllm.BeamSearch.BeamSearchOutput

The output of beam search.
It contains the list of the best beam search sequences.
The length of the list is equal to the beam width.

 Summary

 Types

 t()

 Functions

 new(sequences, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(sequences, opts \\ [])

 @spec new(
 [Vllm.BeamSearch.BeamSearchSequence.t()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	sequences (list(Vllm.BeamSearch.BeamSearchSequence.t()))

Vllm.BeamSearch.BeamSearchSequence

A sequence for beam search.
It keeps track of the tokens and the log probability of the sequence.
The text field is optional and will only be filled when the sequence is
about to be returned to the user.

 Summary

 Types

 t()

 Functions

 cum_logprob(ref)

 finish_reason(ref)

 lora_request(ref)

 mm_processor_kwargs(ref)

 multi_modal_data(ref)

 new(tokens, logprobs, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 stop_reason(ref)

 text(ref)

 Types

 t()

 @opaque t()

 Functions

 cum_logprob(ref)

 @spec cum_logprob(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 finish_reason(ref)

 @spec finish_reason(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 lora_request(ref)

 @spec lora_request(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_kwargs(ref)

 @spec mm_processor_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multi_modal_data(ref)

 @spec multi_modal_data(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(tokens, logprobs, args, opts \\ [])

 @spec new(
 [integer()],
 [%{optional(integer()) => Vllm.Logprobs.Logprob.t()}],
 [term()],
 keyword()
) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	tokens (list(integer()))
	logprobs (list(%{optional(integer()) => Vllm.Logprobs.Logprob.t()}))
	lora_request (term() default: None)
	cum_logprob (float() default: 0.0)
	text (term() default: None)
	finish_reason (term() default: None)
	stop_reason (term() default: None)
	multi_modal_data (term() | nil default: None)

	mm_processor_kwargs (term() default: None)

 stop_reason(ref)

 @spec stop_reason(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 text(ref)

 @spec text(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.BeamSearch.LoRARequest

Request for a LoRA adapter.
lora_int_id must be globally unique for a given adapter.
This is currently not enforced in vLLM.

 Summary

 Types

 t()

 Functions

 adapter_id(ref)

 base_model_name(ref)

 lora_int_id(ref)

 lora_name(ref)

 lora_path(ref)

 name(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 path(ref)

 tensorizer_config_dict(ref)

 Types

 t()

 @opaque t()

 Functions

 adapter_id(ref)

 @spec adapter_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 base_model_name(ref)

 @spec base_model_name(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 lora_int_id(ref)

 @spec lora_int_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 lora_name(ref)

 @spec lora_name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 lora_path(ref)

 @spec lora_path(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 path(ref)

 @spec path(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 tensorizer_config_dict(ref)

 @spec tensorizer_config_dict(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.BeamSearch.Logprob

Infos for supporting OpenAI compatible logprobs and token ranks.
Attributes:
logprob: The logprob of chosen token
rank: The vocab rank of chosen token (>=1)
decoded_token: The decoded chosen token index

 Summary

 Types

 t()

 Functions

 decoded_token(ref)

 new(logprob, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 rank(ref)

 Types

 t()

 @opaque t()

 Functions

 decoded_token(ref)

 @spec decoded_token(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(logprob, args, opts \\ [])

 @spec new(float(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	logprob (float())
	rank (term() default: None)
	decoded_token (term() default: None)

 rank(ref)

 @spec rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Benchmarks

Submodule bindings for vllm.benchmarks.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Benchmarks.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Benchmarks.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Benchmarks.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Benchmarks.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.CollectEnv

Submodule bindings for vllm.collect_env.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.CollectEnv.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.CollectEnv.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.CollectEnv.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.CollectEnv.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 check_release_file(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.check_release_file.

 default_conda_patterns()

 set() -> new empty set object

 default_pip_patterns()

 set() -> new empty set object

 env_info_fmt()

 str(object='') -> str

 environment_variables()

 dict() -> new empty dictionary

 get_cachingallocator_config(opts \\ [])

 Python binding for vllm.collect_env.get_cachingallocator_config.

 get_clang_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_clang_version.

 get_cmake_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_cmake_version.

 get_conda_packages(run_lambda)

 Python binding for vllm.collect_env.get_conda_packages.

 get_conda_packages(run_lambda, opts)

 get_conda_packages(run_lambda, patterns, opts)

 get_cpu_info(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_cpu_info.

 get_cuda_module_loading_config(opts \\ [])

 Python binding for vllm.collect_env.get_cuda_module_loading_config.

 get_cudnn_version(run_lambda, opts \\ [])

 Return a list of libcudnn.so; it's hard to tell which one is being used.

 get_env_info(opts \\ [])

 Python binding for vllm.collect_env.get_env_info.

 get_env_vars(opts \\ [])

 Python binding for vllm.collect_env.get_env_vars.

 get_gcc_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_gcc_version.

 get_gpu_info(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_gpu_info.

 get_gpu_topo(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_gpu_topo.

 get_libc_version(opts \\ [])

 Python binding for vllm.collect_env.get_libc_version.

 get_lsb_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_lsb_version.

 get_mac_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_mac_version.

 get_nvidia_driver_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_nvidia_driver_version.

 get_nvidia_smi(opts \\ [])

 Python binding for vllm.collect_env.get_nvidia_smi.

 get_os(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_os.

 get_pip_packages(run_lambda)

 Return pip list output. Note: will also find conda-installed pytorch and numpy packages.

 get_pip_packages(run_lambda, opts)

 get_pip_packages(run_lambda, patterns, opts)

 get_platform(opts \\ [])

 Python binding for vllm.collect_env.get_platform.

 get_pretty_env_info(opts \\ [])

 Python binding for vllm.collect_env.get_pretty_env_info.

 get_python_platform(opts \\ [])

 Python binding for vllm.collect_env.get_python_platform.

 get_rocm_version(run_lambda, opts \\ [])

 Returns the ROCm version if available, otherwise 'N/A'.

 get_running_cuda_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_running_cuda_version.

 get_vllm_version(opts \\ [])

 Python binding for vllm.collect_env.get_vllm_version.

 get_windows_version(run_lambda, opts \\ [])

 Python binding for vllm.collect_env.get_windows_version.

 is_uv_venv(opts \\ [])

 Python binding for vllm.collect_env.is_uv_venv.

 is_xnnpack_available(opts \\ [])

 Python binding for vllm.collect_env.is_xnnpack_available.

 main(opts \\ [])

 Python binding for vllm.collect_env.main.

 pretty_str(envinfo, opts \\ [])

 Python binding for vllm.collect_env.pretty_str.

 run(command, opts \\ [])

 Return (return-code, stdout, stderr).

 run_and_parse_first_match(run_lambda, command, regex, opts \\ [])

 Run command using run_lambda, returns the first regex match if it exists.

 run_and_read_all(run_lambda, command, opts \\ [])

 Run command using run_lambda; reads and returns entire output if rc is 0.

 run_and_return_first_line(run_lambda, command, opts \\ [])

 Run command using run_lambda and returns first line if output is not empty.

 summarize_vllm_build_flags(opts \\ [])

 Python binding for vllm.collect_env.summarize_vllm_build_flags.

 torch_available()

 bool(x) -> bool

 Functions

 check_release_file(run_lambda, opts \\ [])

 @spec check_release_file(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.check_release_file.
Parameters
	run_lambda (term())

Returns
	term()

 default_conda_patterns()

 @spec default_conda_patterns() ::
 {:ok, MapSet.t(term())} | {:error, Snakepit.Error.t()}

set() -> new empty set object
set(iterable) -> new set object
Build an unordered collection of unique elements.
Returns
	MapSet.t(term())

 default_pip_patterns()

 @spec default_pip_patterns() :: {:ok, MapSet.t(term())} | {:error, Snakepit.Error.t()}

set() -> new empty set object
set(iterable) -> new set object
Build an unordered collection of unique elements.
Returns
	MapSet.t(term())

 env_info_fmt()

 @spec env_info_fmt() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 environment_variables()

 @spec environment_variables() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 get_cachingallocator_config(opts \\ [])

 @spec get_cachingallocator_config(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_cachingallocator_config.
Returns
	term()

 get_clang_version(run_lambda, opts \\ [])

 @spec get_clang_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_clang_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_cmake_version(run_lambda, opts \\ [])

 @spec get_cmake_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_cmake_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_conda_packages(run_lambda)

 @spec get_conda_packages(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_conda_packages.
Parameters
	run_lambda (term())
	patterns (term() default: None)

Returns
	term()

 get_conda_packages(run_lambda, opts)

 @spec get_conda_packages(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_conda_packages(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_conda_packages(run_lambda, patterns, opts)

 @spec get_conda_packages(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_cpu_info(run_lambda, opts \\ [])

 @spec get_cpu_info(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_cpu_info.
Parameters
	run_lambda (term())

Returns
	term()

 get_cuda_module_loading_config(opts \\ [])

 @spec get_cuda_module_loading_config(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_cuda_module_loading_config.
Returns
	term()

 get_cudnn_version(run_lambda, opts \\ [])

 @spec get_cudnn_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a list of libcudnn.so; it's hard to tell which one is being used.
Parameters
	run_lambda (term())

Returns
	term()

 get_env_info(opts \\ [])

 @spec get_env_info(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_env_info.
Returns
	term()

 get_env_vars(opts \\ [])

 @spec get_env_vars(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_env_vars.
Returns
	term()

 get_gcc_version(run_lambda, opts \\ [])

 @spec get_gcc_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_gcc_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_gpu_info(run_lambda, opts \\ [])

 @spec get_gpu_info(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_gpu_info.
Parameters
	run_lambda (term())

Returns
	term()

 get_gpu_topo(run_lambda, opts \\ [])

 @spec get_gpu_topo(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_gpu_topo.
Parameters
	run_lambda (term())

Returns
	term()

 get_libc_version(opts \\ [])

 @spec get_libc_version(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_libc_version.
Returns
	term()

 get_lsb_version(run_lambda, opts \\ [])

 @spec get_lsb_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_lsb_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_mac_version(run_lambda, opts \\ [])

 @spec get_mac_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_mac_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_nvidia_driver_version(run_lambda, opts \\ [])

 @spec get_nvidia_driver_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_nvidia_driver_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_nvidia_smi(opts \\ [])

 @spec get_nvidia_smi(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_nvidia_smi.
Returns
	term()

 get_os(run_lambda, opts \\ [])

 @spec get_os(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_os.
Parameters
	run_lambda (term())

Returns
	term()

 get_pip_packages(run_lambda)

 @spec get_pip_packages(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return pip list output. Note: will also find conda-installed pytorch and numpy packages.
Parameters
	run_lambda (term())
	patterns (term() default: None)

Returns
	term()

 get_pip_packages(run_lambda, opts)

 @spec get_pip_packages(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_pip_packages(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 get_pip_packages(run_lambda, patterns, opts)

 @spec get_pip_packages(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_platform(opts \\ [])

 @spec get_platform(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_platform.
Returns
	term()

 get_pretty_env_info(opts \\ [])

 @spec get_pretty_env_info(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_pretty_env_info.
Returns
	term()

 get_python_platform(opts \\ [])

 @spec get_python_platform(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_python_platform.
Returns
	term()

 get_rocm_version(run_lambda, opts \\ [])

 @spec get_rocm_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns the ROCm version if available, otherwise 'N/A'.
Parameters
	run_lambda (term())

Returns
	term()

 get_running_cuda_version(run_lambda, opts \\ [])

 @spec get_running_cuda_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_running_cuda_version.
Parameters
	run_lambda (term())

Returns
	term()

 get_vllm_version(opts \\ [])

 @spec get_vllm_version(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_vllm_version.
Returns
	term()

 get_windows_version(run_lambda, opts \\ [])

 @spec get_windows_version(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.get_windows_version.
Parameters
	run_lambda (term())

Returns
	term()

 is_uv_venv(opts \\ [])

 @spec is_uv_venv(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.is_uv_venv.
Returns
	term()

 is_xnnpack_available(opts \\ [])

 @spec is_xnnpack_available(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.is_xnnpack_available.
Returns
	term()

 main(opts \\ [])

 @spec main(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.main.
Returns
	term()

 pretty_str(envinfo, opts \\ [])

 @spec pretty_str(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.pretty_str.
Parameters
	envinfo (term())

Returns
	term()

 run(command, opts \\ [])

 @spec run(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return (return-code, stdout, stderr).
Parameters
	command (term())

Returns
	term()

 run_and_parse_first_match(run_lambda, command, regex, opts \\ [])

 @spec run_and_parse_first_match(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Run command using run_lambda, returns the first regex match if it exists.
Parameters
	run_lambda (term())
	command (term())
	regex (term())

Returns
	term()

 run_and_read_all(run_lambda, command, opts \\ [])

 @spec run_and_read_all(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Run command using run_lambda; reads and returns entire output if rc is 0.
Parameters
	run_lambda (term())
	command (term())

Returns
	term()

 run_and_return_first_line(run_lambda, command, opts \\ [])

 @spec run_and_return_first_line(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Run command using run_lambda and returns first line if output is not empty.
Parameters
	run_lambda (term())
	command (term())

Returns
	term()

 summarize_vllm_build_flags(opts \\ [])

 @spec summarize_vllm_build_flags(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.collect_env.summarize_vllm_build_flags.
Returns
	term()

 torch_available()

 @spec torch_available() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

Vllm.CollectEnv.SystemEnv

SystemEnv(torch_version, is_debug_build, cuda_compiled_version, gcc_version, clang_version, cmake_version, os, libc_version, python_version, python_platform, is_cuda_available, cuda_runtime_version, cuda_module_loading, nvidia_driver_version, nvidia_gpu_models, cudnn_version, pip_version, pip_packages, conda_packages, hip_compiled_version, hip_runtime_version, miopen_runtime_version, caching_allocator_config, is_xnnpack_available, cpu_info, rocm_version, vllm_version, vllm_build_flags, gpu_topo, env_vars)

 Summary

 Types

 t()

 Functions

 _asdict(ref, opts \\ [])

 Return a new dict which maps field names to their values.

 _make(ref, iterable, opts \\ [])

 Make a new SystemEnv object from a sequence or iterable

 _replace(ref, opts \\ [])

 Return a new SystemEnv object replacing specified fields with new values

 caching_allocator_config(ref)

 clang_version(ref)

 cmake_version(ref)

 conda_packages(ref)

 count(ref, value, opts \\ [])

 Return number of occurrences of value.

 cpu_info(ref)

 cuda_compiled_version(ref)

 cuda_module_loading(ref)

 cuda_runtime_version(ref)

 cudnn_version(ref)

 env_vars(ref)

 gcc_version(ref)

 gpu_topo(ref)

 hip_compiled_version(ref)

 hip_runtime_version(ref)

 index(ref, value, args, opts \\ [])

 Return first index of value.

 is_cuda_available(ref)

 is_debug_build(ref)

 is_xnnpack_available(ref)

 libc_version(ref)

 miopen_runtime_version(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 nvidia_driver_version(ref)

 nvidia_gpu_models(ref)

 os(ref)

 pip_packages(ref)

 pip_version(ref)

 python_platform(ref)

 python_version(ref)

 rocm_version(ref)

 torch_version(ref)

 vllm_build_flags(ref)

 vllm_version(ref)

 Types

 t()

 @opaque t()

 Functions

 _asdict(ref, opts \\ [])

 @spec _asdict(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a new dict which maps field names to their values.
Returns
	term()

 _make(ref, iterable, opts \\ [])

 @spec _make(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Make a new SystemEnv object from a sequence or iterable
Parameters
	iterable (term())

Returns
	term()

 _replace(ref, opts \\ [])

 @spec _replace(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a new SystemEnv object replacing specified fields with new values
Parameters
	kwds (term())

Returns
	term()

 caching_allocator_config(ref)

 @spec caching_allocator_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clang_version(ref)

 @spec clang_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_version(ref)

 @spec cmake_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conda_packages(ref)

 @spec conda_packages(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 count(ref, value, opts \\ [])

 @spec count(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return number of occurrences of value.
Parameters
	value (term())

Returns
	term()

 cpu_info(ref)

 @spec cpu_info(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_compiled_version(ref)

 @spec cuda_compiled_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_module_loading(ref)

 @spec cuda_module_loading(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_runtime_version(ref)

 @spec cuda_runtime_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cudnn_version(ref)

 @spec cudnn_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 env_vars(ref)

 @spec env_vars(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 gcc_version(ref)

 @spec gcc_version(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 gpu_topo(ref)

 @spec gpu_topo(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 hip_compiled_version(ref)

 @spec hip_compiled_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 hip_runtime_version(ref)

 @spec hip_runtime_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 index(ref, value, args, opts \\ [])

 @spec index(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return first index of value.
Raises ValueError if the value is not present.
Parameters
	value (term())
	start (term() default: 0)
	stop (term() default: 9223372036854775807)

Returns
	term()

 is_cuda_available(ref)

 @spec is_cuda_available(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_debug_build(ref)

 @spec is_debug_build(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_xnnpack_available(ref)

 @spec is_xnnpack_available(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 libc_version(ref)

 @spec libc_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 miopen_runtime_version(ref)

 @spec miopen_runtime_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 nvidia_driver_version(ref)

 @spec nvidia_driver_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvidia_gpu_models(ref)

 @spec nvidia_gpu_models(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 os(ref)

 @spec os(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pip_packages(ref)

 @spec pip_packages(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pip_version(ref)

 @spec pip_version(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 python_platform(ref)

 @spec python_platform(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 python_version(ref)

 @spec python_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 rocm_version(ref)

 @spec rocm_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_version(ref)

 @spec torch_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_build_flags(ref)

 @spec vllm_build_flags(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_version(ref)

 @spec vllm_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Compilation

Submodule bindings for vllm.compilation.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Compilation.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Compilation.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Compilation.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Compilation.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Config

Submodule bindings for vllm.config.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Config.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Config.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Config.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Config.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 config(cls, opts \\ [])

 A decorator that ensures all fields in a dataclass have default values

 config_type(opts \\ [])

 type(object) -> the object's type

 get_attr_docs(cls, opts \\ [])

 Get any docstrings placed after attribute assignments in a class body.

 get_cached_compilation_config(opts \\ [])

 Cache config to avoid repeated calls to get_current_vllm_config()

 get_current_vllm_config(opts \\ [])

 Python binding for vllm.config.get_current_vllm_config.

 get_current_vllm_config_or_none(opts \\ [])

 Python binding for vllm.config.get_current_vllm_config_or_none.

 get_layers_from_vllm_config(vllm_config, layer_type)

 Get layers from the vLLM config.

 get_layers_from_vllm_config(vllm_config, layer_type, opts)

 get_layers_from_vllm_config(vllm_config, layer_type, layer_names, opts)

 is_init_field(cls, name, opts \\ [])

 Python binding for vllm.config.is_init_field.

 iter_architecture_defaults(opts \\ [])

 Python binding for vllm.config.iter_architecture_defaults.

 set_current_vllm_config(vllm_config)

 Temporarily set the current vLLM config.

 set_current_vllm_config(vllm_config, opts)

 set_current_vllm_config(vllm_config, check_compile, opts)

 set_current_vllm_config(vllm_config, check_compile, prefix, opts)

 str_dtype_to_torch_dtype(type, opts \\ [])

 Python binding for vllm.config.str_dtype_to_torch_dtype.

 try_match_architecture_defaults(architecture, opts \\ [])

 Python binding for vllm.config.try_match_architecture_defaults.

 update_config(config, overrides, opts \\ [])

 Python binding for vllm.config.update_config.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 config(cls, opts \\ [])

 @spec config(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A decorator that ensures all fields in a dataclass have default values
and that each field has a docstring.
If a ConfigT is used as a CLI argument itself, the type keyword argument
provided by get_kwargs will be
pydantic.TypeAdapter(ConfigT).validate_json(cli_arg) which treats the
cli_arg as a JSON string which gets validated by pydantic.
Config validation is performed by the tools/pre_commit/validate_config.py
script, which is invoked during the pre-commit checks.
Parameters
	cls (term())

Returns
	term()

 config_type(opts \\ [])

 @spec config_type(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

type(object) -> the object's type
type(name, bases, dict, **kwds) -> a new type
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 get_attr_docs(cls, opts \\ [])

 @spec get_attr_docs(
 term(),
 keyword()
) :: {:ok, %{optional(String.t()) => String.t()}} | {:error, Snakepit.Error.t()}

Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
Parameters
	cls (term())

Returns
	%{optional(String.t()) => String.t()}

 get_cached_compilation_config(opts \\ [])

 @spec get_cached_compilation_config(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Cache config to avoid repeated calls to get_current_vllm_config()
Returns
	term()

 get_current_vllm_config(opts \\ [])

 @spec get_current_vllm_config(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.get_current_vllm_config.
Returns
	term()

 get_current_vllm_config_or_none(opts \\ [])

 @spec get_current_vllm_config_or_none(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.get_current_vllm_config_or_none.
Returns
	term()

 get_layers_from_vllm_config(vllm_config, layer_type)

 @spec get_layers_from_vllm_config(term(), term()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Get layers from the vLLM config.
Parameters
	vllm_config - The vLLM config.
	layer_type - The type of the layer to get.
	layer_names - The names of the layers to get. If None, return all layers.

Returns
	%{optional(String.t()) => term()}

 get_layers_from_vllm_config(vllm_config, layer_type, opts)

 @spec get_layers_from_vllm_config(term(), term(), keyword()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

 @spec get_layers_from_vllm_config(term(), term(), term()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

 get_layers_from_vllm_config(vllm_config, layer_type, layer_names, opts)

 @spec get_layers_from_vllm_config(term(), term(), term(), keyword()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

 is_init_field(cls, name, opts \\ [])

 @spec is_init_field(term(), String.t(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.is_init_field.
Parameters
	cls (term())
	name (String.t())

Returns
	boolean()

 iter_architecture_defaults(opts \\ [])

 @spec iter_architecture_defaults(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.iter_architecture_defaults.
Returns
	term()

 set_current_vllm_config(vllm_config)

 @spec set_current_vllm_config(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Temporarily set the current vLLM config.
Used during model initialization.
We save the current vLLM config in a global variable,
so that all modules can access it, e.g. custom ops
can access the vLLM config to determine how to dispatch.
Parameters
	vllm_config (term())
	check_compile (term() default: False)
	prefix (term() default: None)

Returns
	term()

 set_current_vllm_config(vllm_config, opts)

 @spec set_current_vllm_config(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_current_vllm_config(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_current_vllm_config(vllm_config, check_compile, opts)

 @spec set_current_vllm_config(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_current_vllm_config(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_current_vllm_config(vllm_config, check_compile, prefix, opts)

 @spec set_current_vllm_config(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 str_dtype_to_torch_dtype(type, opts \\ [])

 @spec str_dtype_to_torch_dtype(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.str_dtype_to_torch_dtype.
Parameters
	type (String.t())

Returns
	term()

 try_match_architecture_defaults(architecture, opts \\ [])

 @spec try_match_architecture_defaults(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.try_match_architecture_defaults.
Parameters
	architecture (String.t())
	runner_type (term() | nil keyword-only default: None)

	convert_type (term() | nil keyword-only default: None)

Returns
	term()

 update_config(config, overrides, opts \\ [])

 @spec update_config(term(), %{optional(String.t()) => term()}, keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.config.update_config.
Parameters
	config (term())
	overrides (%{optional(String.t()) => term()})

Returns
	term()

Vllm.Config.AttentionConfig

Configuration for attention mechanisms in vLLM.

 Summary

 Types

 t()

 Functions

 _set_from_env_if_set(ref, field_name, env_var_name, opts \\ [])

 Set field from env var if set, with deprecation warning.

 backend(ref)

 compute_hash(ref, opts \\ [])

 Provide a hash that uniquely identifies all the configs

 disable_flashinfer_prefill(ref)

 disable_flashinfer_q_quantization(ref)

 flash_attn_max_num_splits_for_cuda_graph(ref)

 flash_attn_version(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs AttentionConfig.

 use_cudnn_prefill(ref)

 use_prefill_decode_attention(ref)

 use_trtllm_attention(ref)

 use_trtllm_ragged_deepseek_prefill(ref)

 validate_backend_before(ref, value, opts \\ [])

 Enable parsing of the backend enum type from string.

 Types

 t()

 @opaque t()

 Functions

 _set_from_env_if_set(ref, field_name, env_var_name, opts \\ [])

 @spec _set_from_env_if_set(SnakeBridge.Ref.t(), String.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Set field from env var if set, with deprecation warning.
Parameters
	field_name (String.t())
	env_var_name (String.t())

Returns
	nil

 backend(ref)

 @spec backend(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 disable_flashinfer_prefill(ref)

 @spec disable_flashinfer_prefill(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_flashinfer_q_quantization(ref)

 @spec disable_flashinfer_q_quantization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 flash_attn_max_num_splits_for_cuda_graph(ref)

 @spec flash_attn_max_num_splits_for_cuda_graph(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 flash_attn_version(ref)

 @spec flash_attn_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs AttentionConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 use_cudnn_prefill(ref)

 @spec use_cudnn_prefill(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_prefill_decode_attention(ref)

 @spec use_prefill_decode_attention(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_trtllm_attention(ref)

 @spec use_trtllm_attention(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_trtllm_ragged_deepseek_prefill(ref)

 @spec use_trtllm_ragged_deepseek_prefill(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 validate_backend_before(ref, value, opts \\ [])

 @spec validate_backend_before(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Enable parsing of the backend enum type from string.
Parameters
	value (term())

Returns
	term()

Vllm.Config.CUDAGraphMode

Constants for the cudagraph mode in CompilationConfig.
Meanwhile, the subset enum NONE, PIECEWISE and FULL are also
treated as concrete runtime mode for cudagraph runtime dispatching.

 Summary

 Types

 t()

 Functions

 full(ref)

 full_and_piecewise(ref)

 full_decode_only(ref)

 name(ref)

 new(opts \\ [])

 Constructs CUDAGraphMode.

 none(ref)

 piecewise(ref)

 value(ref)

 Types

 t()

 @opaque t()

 Functions

 full(ref)

 @spec full(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 full_and_piecewise(ref)

 @spec full_and_piecewise(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 full_decode_only(ref)

 @spec full_decode_only(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs CUDAGraphMode.

 none(ref)

 @spec none(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 piecewise(ref)

 @spec piecewise(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 value(ref)

 @spec value(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.CacheConfig

Configuration for the KV cache.

 Summary

 Types

 t()

 Functions

 _validate_cache_dtype(ref, cache_dtype, opts \\ [])

 Python method CacheConfig._validate_cache_dtype.

 block_size(ref)

 cache_dtype(ref)

 calculate_kv_scales(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 cpu_kvcache_space_bytes(ref)

 cpu_offload_gb(ref)

 enable_prefix_caching(ref)

 gpu_memory_utilization(ref)

 is_attention_free(ref)

 kv_cache_memory_bytes(ref)

 kv_offloading_backend(ref)

 kv_offloading_size(ref)

 kv_sharing_fast_prefill(ref)

 mamba_block_size(ref)

 mamba_cache_dtype(ref)

 mamba_page_size_padded(ref)

 mamba_ssm_cache_dtype(ref)

 metrics_info(ref, opts \\ [])

 Python method CacheConfig.metrics_info.

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs CacheConfig.

 num_cpu_blocks(ref)

 num_gpu_blocks(ref)

 num_gpu_blocks_override(ref)

 prefix_caching_hash_algo(ref)

 sliding_window(ref)

 swap_space(ref)

 verify_with_parallel_config(ref, parallel_config, opts \\ [])

 Python method CacheConfig.verify_with_parallel_config.

 Types

 t()

 @opaque t()

 Functions

 _validate_cache_dtype(ref, cache_dtype, opts \\ [])

 @spec _validate_cache_dtype(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method CacheConfig._validate_cache_dtype.
Parameters
	cache_dtype (term())

Returns
	term()

 block_size(ref)

 @spec block_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 cache_dtype(ref)

 @spec cache_dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 calculate_kv_scales(ref)

 @spec calculate_kv_scales(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 cpu_kvcache_space_bytes(ref)

 @spec cpu_kvcache_space_bytes(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cpu_offload_gb(ref)

 @spec cpu_offload_gb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_prefix_caching(ref)

 @spec enable_prefix_caching(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gpu_memory_utilization(ref)

 @spec gpu_memory_utilization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_attention_free(ref)

 @spec is_attention_free(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_cache_memory_bytes(ref)

 @spec kv_cache_memory_bytes(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_offloading_backend(ref)

 @spec kv_offloading_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_offloading_size(ref)

 @spec kv_offloading_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_sharing_fast_prefill(ref)

 @spec kv_sharing_fast_prefill(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mamba_block_size(ref)

 @spec mamba_block_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mamba_cache_dtype(ref)

 @spec mamba_cache_dtype(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mamba_page_size_padded(ref)

 @spec mamba_page_size_padded(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mamba_ssm_cache_dtype(ref)

 @spec mamba_ssm_cache_dtype(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 metrics_info(ref, opts \\ [])

 @spec metrics_info(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method CacheConfig.metrics_info.
Returns
	term()

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs CacheConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 num_cpu_blocks(ref)

 @spec num_cpu_blocks(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 num_gpu_blocks(ref)

 @spec num_gpu_blocks(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 num_gpu_blocks_override(ref)

 @spec num_gpu_blocks_override(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 prefix_caching_hash_algo(ref)

 @spec prefix_caching_hash_algo(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 sliding_window(ref)

 @spec sliding_window(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 swap_space(ref)

 @spec swap_space(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 verify_with_parallel_config(ref, parallel_config, opts \\ [])

 @spec verify_with_parallel_config(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method CacheConfig.verify_with_parallel_config.
Parameters
	parallel_config (term())

Returns
	nil

Vllm.Config.CompilationConfig

Configuration for compilation.
You must pass CompilationConfig to VLLMConfig constructor.
VLLMConfig's post_init does further initialization. If used outside of the
VLLMConfig, some fields will be left in an improper state.
It has three parts:
	Top-level Compilation control:	[mode][vllm.config.CompilationConfig.mode]
	[debug_dump_path][vllm.config.CompilationConfig.debug_dump_path]
	[cache_dir][vllm.config.CompilationConfig.cache_dir]
	[backend][vllm.config.CompilationConfig.backend]
	[custom_ops][vllm.config.CompilationConfig.custom_ops]
	[splitting_ops][vllm.config.CompilationConfig.splitting_ops]
	[compile_mm_encoder][vllm.config.CompilationConfig.compile_mm_encoder]

	CudaGraph capture:	[cudagraph_mode][vllm.config.CompilationConfig.cudagraph_mode]
	[cudagraph_capture_sizes]
[vllm.config.CompilationConfig.cudagraph_capture_sizes]
	[max_cudagraph_capture_size]
[vllm.config.CompilationConfig.max_cudagraph_capture_size]
	[cudagraph_num_of_warmups]
[vllm.config.CompilationConfig.cudagraph_num_of_warmups]
	[cudagraph_copy_inputs]
[vllm.config.CompilationConfig.cudagraph_copy_inputs]

	Inductor compilation:	[compile_sizes][vllm.config.CompilationConfig.compile_sizes]
	[compile_ranges_split_points]
 [vllm.config.CompilationConfig.compile_ranges_split_points]
	[inductor_compile_config]
[vllm.config.CompilationConfig.inductor_compile_config]
	[inductor_passes][vllm.config.CompilationConfig.inductor_passes]
	custom inductor passes

Why we have different sizes for cudagraph and inductor:
	cudagraph: a cudagraph captured for a specific size can only be used
 for the same size. We need to capture all the sizes we want to use.
	inductor: a graph compiled by inductor for a general shape can be used
 for different sizes. Inductor can also compile for specific sizes,
 where it can have more information to optimize the graph with fully
 static shapes. However, we find the general shape compilation is
 sufficient for most cases. It might be beneficial to compile for
 certain small batchsizes, where inductor is good at optimizing.

 Summary

 Types

 t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 Skip validation if the value is None when initialisation is delayed.

 adjust_cudagraph_sizes_for_spec_decode(ref, uniform_decode_query_len, tensor_parallel_size, opts \\ [])

 Python method CompilationConfig.adjust_cudagraph_sizes_for_spec_decode.

 backend(ref)

 bs_to_padded_graph_size(ref)

 cache_dir(ref)

 compilation_time(ref)

 compile_mm_encoder(ref)

 compile_ranges_split_points(ref)

 compile_sizes(ref)

 compute_bs_to_padded_graph_size(ref, opts \\ [])

 Python method CompilationConfig.compute_bs_to_padded_graph_size.

 compute_hash(ref, opts \\ [])

 Provide a hash that uniquely identifies all the configs

 cudagraph_capture_sizes(ref)

 cudagraph_copy_inputs(ref)

 cudagraph_mode(ref)

 cudagraph_num_of_warmups(ref)

 cudagraph_specialize_lora(ref)

 custom_op_log_check(ref, opts \\ [])

 This method logs the enabled/disabled custom ops and checks that the

 debug_dump_path(ref)

 get_compile_ranges(ref, opts \\ [])

 Get the compile ranges for the compilation config.

 init_backend(ref, vllm_config, opts \\ [])

 Initialize the backend for the compilation config from a vllm config.

 is_attention_compiled_piecewise(ref, opts \\ [])

 Python method CompilationConfig.is_attention_compiled_piecewise.

 is_custom_op_enabled(ref, op, opts \\ [])

 Python method CompilationConfig.is_custom_op_enabled.

 level(ref)

 local_cache_dir(ref)

 max_cudagraph_capture_size(ref)

 mode(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs CompilationConfig.

 post_init_cudagraph_sizes(ref, opts \\ [])

 To complete the initialization after cudagraph related

 set_splitting_ops_for_attn_fusion(ref, opts \\ [])

 Python method CompilationConfig.set_splitting_ops_for_attn_fusion.

 set_splitting_ops_for_v1(ref, all2all_backend, args, opts \\ [])

 Python method CompilationConfig.set_splitting_ops_for_v1.

 splitting_ops(ref)

 splitting_ops_contain_attention(ref, opts \\ [])

 Python method CompilationConfig.splitting_ops_contain_attention.

 use_inductor_graph_partition(ref)

 validate_compile_cache_save_format(ref, value, opts \\ [])

 Python method CompilationConfig.validate_compile_cache_save_format.

 validate_cudagraph_mode_before(ref, value, opts \\ [])

 Enable parsing of the cudagraph_mode enum type from string.

 validate_mode_before(ref, value, opts \\ [])

 Enable parsing the mode field from string mode names.

 validate_pass_config_before(ref, value, opts \\ [])

 Enable parsing of the pass_config field from a dictionary.

 Types

 t()

 @opaque t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 @spec _skip_none_validation(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Skip validation if the value is None when initialisation is delayed.
Parameters
	value (term())
	handler (term())

Returns
	term()

 adjust_cudagraph_sizes_for_spec_decode(ref, uniform_decode_query_len, tensor_parallel_size, opts \\ [])

 @spec adjust_cudagraph_sizes_for_spec_decode(
 SnakeBridge.Ref.t(),
 integer(),
 integer(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.adjust_cudagraph_sizes_for_spec_decode.
Parameters
	uniform_decode_query_len (integer())
	tensor_parallel_size (integer())

Returns
	term()

 backend(ref)

 @spec backend(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 bs_to_padded_graph_size(ref)

 @spec bs_to_padded_graph_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cache_dir(ref)

 @spec cache_dir(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 compilation_time(ref)

 @spec compilation_time(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compile_mm_encoder(ref)

 @spec compile_mm_encoder(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compile_ranges_split_points(ref)

 @spec compile_ranges_split_points(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compile_sizes(ref)

 @spec compile_sizes(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_bs_to_padded_graph_size(ref, opts \\ [])

 @spec compute_bs_to_padded_graph_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.compute_bs_to_padded_graph_size.
Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 cudagraph_capture_sizes(ref)

 @spec cudagraph_capture_sizes(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cudagraph_copy_inputs(ref)

 @spec cudagraph_copy_inputs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cudagraph_mode(ref)

 @spec cudagraph_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cudagraph_num_of_warmups(ref)

 @spec cudagraph_num_of_warmups(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cudagraph_specialize_lora(ref)

 @spec cudagraph_specialize_lora(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 custom_op_log_check(ref, opts \\ [])

 @spec custom_op_log_check(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

This method logs the enabled/disabled custom ops and checks that the
passed custom_ops field only contains relevant ops.
It is called at the end of set_current_vllm_config,
after the custom ops have been instantiated.
Returns
	term()

 debug_dump_path(ref)

 @spec debug_dump_path(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_compile_ranges(ref, opts \\ [])

 @spec get_compile_ranges(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Get the compile ranges for the compilation config.
Returns
	list(term())

 init_backend(ref, vllm_config, opts \\ [])

 @spec init_backend(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Initialize the backend for the compilation config from a vllm config.
Parameters
	vllm_config - The vllm config to initialize the backend from.

Returns
	term()

 is_attention_compiled_piecewise(ref, opts \\ [])

 @spec is_attention_compiled_piecewise(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.is_attention_compiled_piecewise.
Returns
	boolean()

 is_custom_op_enabled(ref, op, opts \\ [])

 @spec is_custom_op_enabled(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.is_custom_op_enabled.
Parameters
	op (String.t())

Returns
	boolean()

 level(ref)

 @spec level(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 local_cache_dir(ref)

 @spec local_cache_dir(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_cudagraph_capture_size(ref)

 @spec max_cudagraph_capture_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mode(ref)

 @spec mode(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs CompilationConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 post_init_cudagraph_sizes(ref, opts \\ [])

 @spec post_init_cudagraph_sizes(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

To complete the initialization after cudagraph related
configs are set. This includes:
	initialize compile_sizes
	pre-compute the mapping bs_to_padded_graph_size

Returns
	nil

 set_splitting_ops_for_attn_fusion(ref, opts \\ [])

 @spec set_splitting_ops_for_attn_fusion(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.set_splitting_ops_for_attn_fusion.
Returns
	term()

 set_splitting_ops_for_v1(ref, all2all_backend, args, opts \\ [])

 @spec set_splitting_ops_for_v1(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.set_splitting_ops_for_v1.
Parameters
	all2all_backend (String.t())
	data_parallel_size (integer() default: 1)

Returns
	term()

 splitting_ops(ref)

 @spec splitting_ops(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 splitting_ops_contain_attention(ref, opts \\ [])

 @spec splitting_ops_contain_attention(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.splitting_ops_contain_attention.
Returns
	boolean()

 use_inductor_graph_partition(ref)

 @spec use_inductor_graph_partition(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 validate_compile_cache_save_format(ref, value, opts \\ [])

 @spec validate_compile_cache_save_format(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method CompilationConfig.validate_compile_cache_save_format.
Parameters
	value (String.t())

Returns
	String.t()

 validate_cudagraph_mode_before(ref, value, opts \\ [])

 @spec validate_cudagraph_mode_before(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Enable parsing of the cudagraph_mode enum type from string.
Parameters
	value (term())

Returns
	term()

 validate_mode_before(ref, value, opts \\ [])

 @spec validate_mode_before(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Enable parsing the mode field from string mode names.
Accepts both integers (0-3) and string names, like NONE, STOCK_TORCH_COMPILE,
DYNAMO_TRACE_ONCE, VLLM_COMPILE.
Parameters
	value (term())

Returns
	term()

 validate_pass_config_before(ref, value, opts \\ [])

 @spec validate_pass_config_before(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Enable parsing of the pass_config field from a dictionary.
Parameters
	value (term())

Returns
	term()

Vllm.Config.CompilationMode

The compilation approach used for torch.compile-based compilation of the
model.

 Summary

 Types

 t()

 Functions

 as_integer_ratio(ref, opts \\ [])

 Return a pair of integers, whose ratio is equal to the original int.

 bit_count(ref, opts \\ [])

 Number of ones in the binary representation of the absolute value of self.

 bit_length(ref, opts \\ [])

 Number of bits necessary to represent self in binary.

 conjugate(ref)

 Returns self, the complex conjugate of any int.

 conjugate(ref, opts)

 conjugate(ref, arg1, opts)

 conjugate(ref, arg1, arg2, opts)

 conjugate(ref, arg1, arg2, arg3, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 denominator(ref)

 dynamo_trace_once(ref)

 from_bytes(ref, bytes, args, opts \\ [])

 Return the integer represented by the given array of bytes.

 imag(ref)

 is_integer(ref, opts \\ [])

 Returns True. Exists for duck type compatibility with float.is_integer.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 none(ref)

 numerator(ref)

 real(ref)

 stock_torch_compile(ref)

 to_bytes(ref, args, opts \\ [])

 Return an array of bytes representing an integer.

 vllm_compile(ref)

 Types

 t()

 @opaque t()

 Functions

 as_integer_ratio(ref, opts \\ [])

 @spec as_integer_ratio(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a pair of integers, whose ratio is equal to the original int.
The ratio is in lowest terms and has a positive denominator.
(10).as_integer_ratio()
(10, 1)
(-10).as_integer_ratio()
(-10, 1)
(0).as_integer_ratio()
(0, 1)

Returns
	term()

 bit_count(ref, opts \\ [])

 @spec bit_count(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Number of ones in the binary representation of the absolute value of self.
Also known as the population count.
bin(13)
'0b1101'
(13).bit_count()
3

Returns
	term()

 bit_length(ref, opts \\ [])

 @spec bit_length(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Number of bits necessary to represent self in binary.
bin(37)
'0b100101'
(37).bit_length()
6

Returns
	term()

 conjugate(ref)

 @spec conjugate(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns self, the complex conjugate of any int.
Returns
	term()

 conjugate(ref, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 denominator(ref)

 @spec denominator(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 dynamo_trace_once(ref)

 @spec dynamo_trace_once(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 from_bytes(ref, bytes, args, opts \\ [])

 @spec from_bytes(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the integer represented by the given array of bytes.
bytes
 Holds the array of bytes to convert. The argument must either
 support the buffer protocol or be an iterable object producing bytes.
 Bytes and bytearray are examples of built-in objects that support the
 buffer protocol.
byteorder
 The byte order used to represent the integer. If byteorder is 'big',
 the most significant byte is at the beginning of the byte array. If
 byteorder is 'little', the most significant byte is at the end of the
 byte array. To request the native byte order of the host system, use
 sys.byteorder as the byte order value. Default is to use 'big'.
signed
 Indicates whether two's complement is used to represent the integer.
Parameters
	bytes (term())
	byteorder (term() default: 'big')
	signed (term() keyword-only default: False)

Returns
	term()

 imag(ref)

 @spec imag(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_integer(ref, opts \\ [])

 @spec is_integer(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns True. Exists for duck type compatibility with float.is_integer.
Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwds (term())

 none(ref)

 @spec none(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 numerator(ref)

 @spec numerator(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 real(ref)

 @spec real(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 stock_torch_compile(ref)

 @spec stock_torch_compile(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 to_bytes(ref, args, opts \\ [])

 @spec to_bytes(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return an array of bytes representing an integer.
length
 Length of bytes object to use. An OverflowError is raised if the
 integer is not representable with the given number of bytes. Default
 is length 1.
byteorder
 The byte order used to represent the integer. If byteorder is 'big',
 the most significant byte is at the beginning of the byte array. If
 byteorder is 'little', the most significant byte is at the end of the
 byte array. To request the native byte order of the host system, use
 sys.byteorder as the byte order value. Default is to use 'big'.
signed
 Determines whether two's complement is used to represent the integer.
 If signed is False and a negative integer is given, an OverflowError
 is raised.
Parameters
	length (term() default: 1)
	byteorder (term() default: 'big')
	signed (term() keyword-only default: False)

Returns
	term()

 vllm_compile(ref)

 @spec vllm_compile(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.DeviceConfig

Configuration for the device to use for vLLM execution.

 Summary

 Types

 t()

 Functions

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 device(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs DeviceConfig.

 Types

 t()

 @opaque t()

 Functions

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 device(ref)

 @spec device(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs DeviceConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

Vllm.Config.ECTransferConfig

Configuration for distributed EC cache transfer.

 Summary

 Types

 t()

 Functions

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 ec_buffer_device(ref)

 ec_buffer_size(ref)

 ec_connector(ref)

 ec_connector_module_path(ref)

 ec_ip(ref)

 ec_parallel_size(ref)

 ec_port(ref)

 ec_rank(ref)

 ec_role(ref)

 engine_id(ref)

 get_from_extra_config(ref, key, default, opts \\ [])

 Python method ECTransferConfig.get_from_extra_config.

 is_ec_consumer(ref)

 is_ec_producer(ref)

 is_ec_transfer_instance(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs ECTransferConfig.

 Types

 t()

 @opaque t()

 Functions

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 ec_buffer_device(ref)

 @spec ec_buffer_device(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_buffer_size(ref)

 @spec ec_buffer_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_connector(ref)

 @spec ec_connector(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_connector_module_path(ref)

 @spec ec_connector_module_path(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_ip(ref)

 @spec ec_ip(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_parallel_size(ref)

 @spec ec_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_port(ref)

 @spec ec_port(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_rank(ref)

 @spec ec_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_role(ref)

 @spec ec_role(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 engine_id(ref)

 @spec engine_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 get_from_extra_config(ref, key, default, opts \\ [])

 @spec get_from_extra_config(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ECTransferConfig.get_from_extra_config.
Parameters
	key (term())
	default (term())

Returns
	term()

 is_ec_consumer(ref)

 @spec is_ec_consumer(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_ec_producer(ref)

 @spec is_ec_producer(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_ec_transfer_instance(ref)

 @spec is_ec_transfer_instance(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs ECTransferConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

Vllm.Config.EPLBConfig

Configuration for Expert Parallel Load Balancing (EP).

 Summary

 Types

 t()

 Functions

 _validate_eplb_config(ref, opts \\ [])

 Python method EPLBConfig._validate_eplb_config.

 log_balancedness(ref)

 log_balancedness_interval(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs EPLBConfig.

 num_redundant_experts(ref)

 policy(ref)

 step_interval(ref)

 use_async(ref)

 window_size(ref)

 Types

 t()

 @opaque t()

 Functions

 _validate_eplb_config(ref, opts \\ [])

 @spec _validate_eplb_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method EPLBConfig._validate_eplb_config.
Returns
	term()

 log_balancedness(ref)

 @spec log_balancedness(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 log_balancedness_interval(ref)

 @spec log_balancedness_interval(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs EPLBConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 num_redundant_experts(ref)

 @spec num_redundant_experts(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 policy(ref)

 @spec policy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 step_interval(ref)

 @spec step_interval(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_async(ref)

 @spec use_async(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 window_size(ref)

 @spec window_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.KVEventsConfig

Configuration for KV event publishing.

 Summary

 Types

 t()

 Functions

 buffer_steps(ref)

 enable_kv_cache_events(ref)

 endpoint(ref)

 hwm(ref)

 max_queue_size(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs KVEventsConfig.

 publisher(ref)

 replay_endpoint(ref)

 topic(ref)

 Types

 t()

 @opaque t()

 Functions

 buffer_steps(ref)

 @spec buffer_steps(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_kv_cache_events(ref)

 @spec enable_kv_cache_events(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 endpoint(ref)

 @spec endpoint(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 hwm(ref)

 @spec hwm(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_queue_size(ref)

 @spec max_queue_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs KVEventsConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 publisher(ref)

 @spec publisher(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 replay_endpoint(ref)

 @spec replay_endpoint(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 topic(ref)

 @spec topic(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.KVTransferConfig

Configuration for distributed KV cache transfer.

 Summary

 Types

 t()

 Functions

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 enable_permute_local_kv(ref)

 engine_id(ref)

 get_from_extra_config(ref, key, default, opts \\ [])

 Python method KVTransferConfig.get_from_extra_config.

 is_kv_consumer(ref)

 is_kv_producer(ref)

 is_kv_transfer_instance(ref)

 kv_buffer_device(ref)

 kv_buffer_size(ref)

 kv_connector(ref)

 kv_connector_module_path(ref)

 kv_ip(ref)

 kv_load_failure_policy(ref)

 kv_parallel_size(ref)

 kv_port(ref)

 kv_rank(ref)

 kv_role(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs KVTransferConfig.

 Types

 t()

 @opaque t()

 Functions

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 enable_permute_local_kv(ref)

 @spec enable_permute_local_kv(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 engine_id(ref)

 @spec engine_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 get_from_extra_config(ref, key, default, opts \\ [])

 @spec get_from_extra_config(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method KVTransferConfig.get_from_extra_config.
Parameters
	key (term())
	default (term())

Returns
	term()

 is_kv_consumer(ref)

 @spec is_kv_consumer(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_kv_producer(ref)

 @spec is_kv_producer(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_kv_transfer_instance(ref)

 @spec is_kv_transfer_instance(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_buffer_device(ref)

 @spec kv_buffer_device(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_buffer_size(ref)

 @spec kv_buffer_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_connector(ref)

 @spec kv_connector(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_connector_module_path(ref)

 @spec kv_connector_module_path(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_ip(ref)

 @spec kv_ip(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_load_failure_policy(ref)

 @spec kv_load_failure_policy(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_parallel_size(ref)

 @spec kv_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_port(ref)

 @spec kv_port(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_rank(ref)

 @spec kv_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_role(ref)

 @spec kv_role(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs KVTransferConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

Vllm.Config.LoRAConfig

Configuration for LoRA.

 Summary

 Types

 t()

 Functions

 _validate_lora_config(ref, opts \\ [])

 Python method LoRAConfig._validate_lora_config.

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 default_mm_loras(ref)

 enable_tower_connector_lora(ref)

 fully_sharded_loras(ref)

 lora_dtype(ref)

 max_cpu_loras(ref)

 max_lora_rank(ref)

 max_loras(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs LoRAConfig.

 verify_with_model_config(ref, model_config, opts \\ [])

 Python method LoRAConfig.verify_with_model_config.

 Types

 t()

 @opaque t()

 Functions

 _validate_lora_config(ref, opts \\ [])

 @spec _validate_lora_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method LoRAConfig._validate_lora_config.
Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 default_mm_loras(ref)

 @spec default_mm_loras(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_tower_connector_lora(ref)

 @spec enable_tower_connector_lora(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 fully_sharded_loras(ref)

 @spec fully_sharded_loras(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 lora_dtype(ref)

 @spec lora_dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_cpu_loras(ref)

 @spec max_cpu_loras(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_lora_rank(ref)

 @spec max_lora_rank(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_loras(ref)

 @spec max_loras(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs LoRAConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 verify_with_model_config(ref, model_config, opts \\ [])

 @spec verify_with_model_config(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method LoRAConfig.verify_with_model_config.
Parameters
	model_config (term())

Returns
	nil

Vllm.Config.LoadConfig

Configuration for loading the model weights.

 Summary

 Types

 t()

 Functions

 _lowercase_load_format(ref, load_format, opts \\ [])

 Python method LoadConfig._lowercase_load_format.

 _validate_ignore_patterns(ref, ignore_patterns, opts \\ [])

 Python method LoadConfig._validate_ignore_patterns.

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 device(ref)

 download_dir(ref)

 ignore_patterns(ref)

 load_format(ref)

 model_loader_extra_config(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs LoadConfig.

 pt_load_map_location(ref)

 safetensors_load_strategy(ref)

 use_tqdm_on_load(ref)

 Types

 t()

 @opaque t()

 Functions

 _lowercase_load_format(ref, load_format, opts \\ [])

 @spec _lowercase_load_format(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method LoadConfig._lowercase_load_format.
Parameters
	load_format (String.t())

Returns
	String.t()

 _validate_ignore_patterns(ref, ignore_patterns, opts \\ [])

 @spec _validate_ignore_patterns(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method LoadConfig._validate_ignore_patterns.
Parameters
	ignore_patterns (term())

Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 device(ref)

 @spec device(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 download_dir(ref)

 @spec download_dir(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ignore_patterns(ref)

 @spec ignore_patterns(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 load_format(ref)

 @spec load_format(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 model_loader_extra_config(ref)

 @spec model_loader_extra_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs LoadConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 pt_load_map_location(ref)

 @spec pt_load_map_location(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 safetensors_load_strategy(ref)

 @spec safetensors_load_strategy(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_tqdm_on_load(ref)

 @spec use_tqdm_on_load(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.ModelConfig

Configuration for the model.

 Summary

 Types

 t()

 Functions

 _apply_dict_overrides(ref, config, overrides, opts \\ [])

 Apply dict overrides, handling both nested configs and dict values.

 _get_convert_type(ref, architectures, runner_type, convert, opts \\ [])

 Python method ModelConfig._get_convert_type.

 _get_default_convert_type(ref, architectures, runner_type, opts \\ [])

 Python method ModelConfig._get_default_convert_type.

 _get_default_runner_type(ref, architectures, opts \\ [])

 Python method ModelConfig._get_default_runner_type.

 _get_encoder_config(ref, opts \\ [])

 Python method ModelConfig._get_encoder_config.

 _get_runner_type(ref, architectures, runner, opts \\ [])

 Python method ModelConfig._get_runner_type.

 _get_transformers_backend_cls(ref, opts \\ [])

 Determine which Transformers modeling backend class will be used if

 _lowercase_tokenizer_mode(ref, tokenizer_mode, opts \\ [])

 Python method ModelConfig._lowercase_tokenizer_mode.

 _skip_none_validation(ref, value, handler, opts \\ [])

 Skip validation if the value is None when initialisation is delayed.

 _try_verify_and_update_model_config(ref, opts \\ [])

 Python method ModelConfig._try_verify_and_update_model_config.

 _update_nested(ref, target, updates, opts \\ [])

 Recursively updates a config or dict with nested updates.

 _verify_bnb_config(ref, opts \\ [])

 The current version of bitsandbytes (0.46.1) with 8-bit models does not

 _verify_cuda_graph(ref, opts \\ [])

 Python method ModelConfig._verify_cuda_graph.

 _verify_quantization(ref, opts \\ [])

 Python method ModelConfig._verify_quantization.

 _verify_with_expert_parallelism(ref, opts \\ [])

 Python method ModelConfig._verify_with_expert_parallelism.

 allow_deprecated_quantization(ref)

 allowed_local_media_path(ref)

 allowed_media_domains(ref)

 architecture(ref)

 architectures(ref)

 attn_type(ref)

 code_revision(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 config_format(ref)

 convert(ref)

 disable_cascade_attn(ref)

 disable_sliding_window(ref)

 dtype(ref)

 embedding_size(ref)

 enable_mm_embeds(ref)

 enable_prompt_embeds(ref)

 enable_return_routed_experts(ref)

 enable_sleep_mode(ref)

 enforce_eager(ref)

 generation_config(ref)

 get_and_verify_max_len(ref, max_model_len, opts \\ [])

 Python method ModelConfig.get_and_verify_max_len.

 get_diff_sampling_param(ref, opts \\ [])

 This method returns a dictionary containing the non-default sampling

 get_head_size(ref, opts \\ [])

 Python method ModelConfig.get_head_size.

 get_hidden_size(ref, opts \\ [])

 Python method ModelConfig.get_hidden_size.

 get_inputs_embeds_size(ref, opts \\ [])

 Python method ModelConfig.get_inputs_embeds_size.

 get_layers_start_end_indices(ref, parallel_config, opts \\ [])

 Python method ModelConfig.get_layers_start_end_indices.

 get_mamba_chunk_size(ref, opts \\ [])

 Returns the mamba chunk size if it exists

 get_model_arch_config(ref, opts \\ [])

 Python method ModelConfig.get_model_arch_config.

 get_multimodal_config(ref, opts \\ [])

 Get the multimodal configuration of the model.

 get_num_attention_heads(ref, parallel_config, opts \\ [])

 Python method ModelConfig.get_num_attention_heads.

 get_num_experts(ref, opts \\ [])

 Python method ModelConfig.get_num_experts.

 get_num_kv_heads(ref, parallel_config, opts \\ [])

 Returns the number of KV heads per GPU.

 get_num_layers(ref, parallel_config, opts \\ [])

 Python method ModelConfig.get_num_layers.

 get_num_layers_by_block_type(ref, parallel_config, args, opts \\ [])

 Python method ModelConfig.get_num_layers_by_block_type.

 get_sliding_window(ref, opts \\ [])

 Get the sliding window size from the HF text config if present.

 get_total_num_hidden_layers(ref, opts \\ [])

 Python method ModelConfig.get_total_num_hidden_layers.

 get_total_num_kv_heads(ref, opts \\ [])

 Returns the total number of KV heads.

 get_vocab_size(ref, opts \\ [])

 Python method ModelConfig.get_vocab_size.

 has_inner_state(ref)

 has_noops(ref)

 head_dtype(ref)

 hf_config_path(ref)

 hf_token(ref)

 interleave_mm_strings(ref)

 io_processor_plugin(ref)

 is_attention_free(ref)

 is_chunked_prefill_supported(ref)

 is_cross_encoder(ref)

 is_deepseek_mla(ref)

 is_encoder_decoder(ref)

 is_hybrid(ref)

 is_matryoshka(ref)

 is_mm_prefix_lm(ref)

 is_moe(ref)

 is_multimodal_model(ref)

 is_multimodal_raw_input_only_model(ref)

 is_pp_supported(ref)

 is_prefix_caching_supported(ref)

 is_quantized(ref)

 limit_mm_per_prompt(ref)

 logits_processor_pattern(ref)

 logits_processors(ref)

 logprobs_mode(ref)

 matryoshka_dimensions(ref)

 max_logprobs(ref)

 max_model_len(ref)

 maybe_pull_model_tokenizer_for_runai(ref, model, tokenizer, opts \\ [])

 Pull model/tokenizer from Object Storage to temporary

 media_io_kwargs(ref)

 mm_encoder_attn_backend(ref)

 mm_encoder_tp_mode(ref)

 mm_processor_cache_gb(ref)

 mm_processor_cache_type(ref)

 mm_processor_kwargs(ref)

 mm_shm_cache_max_object_size_mb(ref)

 model(ref)

 model_impl(ref)

 model_weights(ref)

 multimodal_config(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs ModelConfig.

 override_attention_dtype(ref)

 pooler_config(ref)

 quantization(ref)

 registry(ref)

 requires_raw_input_tokens(ref)

 revision(ref)

 runner(ref)

 seed(ref)

 served_model_name(ref)

 skip_mm_profiling(ref)

 skip_tokenizer_init(ref)

 spec_target_max_model_len(ref)

 supports_mamba_prefix_caching(ref)

 tokenizer(ref)

 tokenizer_mode(ref)

 tokenizer_revision(ref)

 trust_remote_code(ref)

 try_get_generation_config(ref, opts \\ [])

 This method attempts to retrieve the non-default values of the

 use_mla(ref)

 use_sep_token(ref)

 uses_alibi(ref)

 uses_mrope(ref)

 uses_xdrope_dim(ref)

 using_transformers_backend(ref, opts \\ [])

 Check if the model is using the Transformers modeling backend class.

 validate_model_config_after(ref, opts \\ [])

 Called after post_init

 validate_quantization_before(ref, value, opts \\ [])

 Python method ModelConfig.validate_quantization_before.

 verify_dual_chunk_attention_config(ref, load_config, opts \\ [])

 Python method ModelConfig.verify_dual_chunk_attention_config.

 verify_with_parallel_config(ref, parallel_config, opts \\ [])

 Python method ModelConfig.verify_with_parallel_config.

 video_pruning_rate(ref)

 Types

 t()

 @opaque t()

 Functions

 _apply_dict_overrides(ref, config, overrides, opts \\ [])

 @spec _apply_dict_overrides(
 SnakeBridge.Ref.t(),
 term(),
 %{optional(String.t()) => term()},
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Apply dict overrides, handling both nested configs and dict values.
Parameters
	config (term())
	overrides (%{optional(String.t()) => term()})

Returns
	nil

 _get_convert_type(ref, architectures, runner_type, convert, opts \\ [])

 @spec _get_convert_type(SnakeBridge.Ref.t(), [String.t()], term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._get_convert_type.
Parameters
	architectures (list(String.t()))
	runner_type (term())
	convert (term())

Returns
	term()

 _get_default_convert_type(ref, architectures, runner_type, opts \\ [])

 @spec _get_default_convert_type(SnakeBridge.Ref.t(), [String.t()], term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._get_default_convert_type.
Parameters
	architectures (list(String.t()))
	runner_type (term())

Returns
	term()

 _get_default_runner_type(ref, architectures, opts \\ [])

 @spec _get_default_runner_type(SnakeBridge.Ref.t(), [String.t()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._get_default_runner_type.
Parameters
	architectures (list(String.t()))

Returns
	term()

 _get_encoder_config(ref, opts \\ [])

 @spec _get_encoder_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._get_encoder_config.
Returns
	term()

 _get_runner_type(ref, architectures, runner, opts \\ [])

 @spec _get_runner_type(SnakeBridge.Ref.t(), [String.t()], term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._get_runner_type.
Parameters
	architectures (list(String.t()))
	runner (term())

Returns
	term()

 _get_transformers_backend_cls(ref, opts \\ [])

 @spec _get_transformers_backend_cls(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Determine which Transformers modeling backend class will be used if
model_impl is set to transformers or auto.
Returns
	String.t()

 _lowercase_tokenizer_mode(ref, tokenizer_mode, opts \\ [])

 @spec _lowercase_tokenizer_mode(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._lowercase_tokenizer_mode.
Parameters
	tokenizer_mode (String.t())

Returns
	String.t()

 _skip_none_validation(ref, value, handler, opts \\ [])

 @spec _skip_none_validation(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Skip validation if the value is None when initialisation is delayed.
Parameters
	value (term())
	handler (term())

Returns
	term()

 _try_verify_and_update_model_config(ref, opts \\ [])

 @spec _try_verify_and_update_model_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig._try_verify_and_update_model_config.
Returns
	term()

 _update_nested(ref, target, updates, opts \\ [])

 @spec _update_nested(
 SnakeBridge.Ref.t(),
 term(),
 %{optional(String.t()) => term()},
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Recursively updates a config or dict with nested updates.
Parameters
	target (term())
	updates (%{optional(String.t()) => term()})

Returns
	nil

 _verify_bnb_config(ref, opts \\ [])

 @spec _verify_bnb_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

The current version of bitsandbytes (0.46.1) with 8-bit models does not
yet support CUDA graph.
TODO Remove this when bitsandbytes supports.
Returns
	nil

 _verify_cuda_graph(ref, opts \\ [])

 @spec _verify_cuda_graph(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Python method ModelConfig._verify_cuda_graph.
Returns
	nil

 _verify_quantization(ref, opts \\ [])

 @spec _verify_quantization(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Python method ModelConfig._verify_quantization.
Returns
	nil

 _verify_with_expert_parallelism(ref, opts \\ [])

 @spec _verify_with_expert_parallelism(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Python method ModelConfig._verify_with_expert_parallelism.
Returns
	nil

 allow_deprecated_quantization(ref)

 @spec allow_deprecated_quantization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 allowed_local_media_path(ref)

 @spec allowed_local_media_path(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 allowed_media_domains(ref)

 @spec allowed_media_domains(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 architecture(ref)

 @spec architecture(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 architectures(ref)

 @spec architectures(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 attn_type(ref)

 @spec attn_type(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 code_revision(ref)

 @spec code_revision(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 config_format(ref)

 @spec config_format(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 convert(ref)

 @spec convert(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_cascade_attn(ref)

 @spec disable_cascade_attn(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_sliding_window(ref)

 @spec disable_sliding_window(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 dtype(ref)

 @spec dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 embedding_size(ref)

 @spec embedding_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_mm_embeds(ref)

 @spec enable_mm_embeds(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_prompt_embeds(ref)

 @spec enable_prompt_embeds(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_return_routed_experts(ref)

 @spec enable_return_routed_experts(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_sleep_mode(ref)

 @spec enable_sleep_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enforce_eager(ref)

 @spec enforce_eager(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 generation_config(ref)

 @spec generation_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_and_verify_max_len(ref, max_model_len, opts \\ [])

 @spec get_and_verify_max_len(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_and_verify_max_len.
Parameters
	max_model_len (integer())

Returns
	term()

 get_diff_sampling_param(ref, opts \\ [])

 @spec get_diff_sampling_param(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

This method returns a dictionary containing the non-default sampling
parameters with override_generation_config applied.
The default sampling parameters are:
	vLLM's neutral defaults if self.generation_config="vllm"
	the model's defaults if self.generation_config="auto"
	as defined in generation_config.json if
 self.generation_config="path/to/generation_config/dir"

Returns
	%{optional(String.t()) => term()}

 get_head_size(ref, opts \\ [])

 @spec get_head_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_head_size.
Returns
	integer()

 get_hidden_size(ref, opts \\ [])

 @spec get_hidden_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_hidden_size.
Returns
	integer()

 get_inputs_embeds_size(ref, opts \\ [])

 @spec get_inputs_embeds_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_inputs_embeds_size.
Returns
	integer()

 get_layers_start_end_indices(ref, parallel_config, opts \\ [])

 @spec get_layers_start_end_indices(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, {integer(), integer()}} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_layers_start_end_indices.
Parameters
	parallel_config (term())

Returns
	{integer(), integer()}

 get_mamba_chunk_size(ref, opts \\ [])

 @spec get_mamba_chunk_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns the mamba chunk size if it exists
Returns
	term()

 get_model_arch_config(ref, opts \\ [])

 @spec get_model_arch_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_model_arch_config.
Returns
	term()

 get_multimodal_config(ref, opts \\ [])

 @spec get_multimodal_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Get the multimodal configuration of the model.
Raises
	ArgumentError - If the model is not multimodal.

Returns
	term()

 get_num_attention_heads(ref, parallel_config, opts \\ [])

 @spec get_num_attention_heads(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_num_attention_heads.
Parameters
	parallel_config (term())

Returns
	integer()

 get_num_experts(ref, opts \\ [])

 @spec get_num_experts(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_num_experts.
Returns
	integer()

 get_num_kv_heads(ref, parallel_config, opts \\ [])

 @spec get_num_kv_heads(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Returns the number of KV heads per GPU.
Parameters
	parallel_config (term())

Returns
	integer()

 get_num_layers(ref, parallel_config, opts \\ [])

 @spec get_num_layers(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_num_layers.
Parameters
	parallel_config (term())

Returns
	integer()

 get_num_layers_by_block_type(ref, parallel_config, args, opts \\ [])

 @spec get_num_layers_by_block_type(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_num_layers_by_block_type.
Parameters
	parallel_config (term())
	block_type (term() default: 'attention')

Returns
	integer()

 get_sliding_window(ref, opts \\ [])

 @spec get_sliding_window(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Get the sliding window size from the HF text config if present.
Returns
	term()

 get_total_num_hidden_layers(ref, opts \\ [])

 @spec get_total_num_hidden_layers(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_total_num_hidden_layers.
Returns
	integer()

 get_total_num_kv_heads(ref, opts \\ [])

 @spec get_total_num_kv_heads(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Returns the total number of KV heads.
Returns
	integer()

 get_vocab_size(ref, opts \\ [])

 @spec get_vocab_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.get_vocab_size.
Returns
	integer()

 has_inner_state(ref)

 @spec has_inner_state(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 has_noops(ref)

 @spec has_noops(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 head_dtype(ref)

 @spec head_dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 hf_config_path(ref)

 @spec hf_config_path(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 hf_token(ref)

 @spec hf_token(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 interleave_mm_strings(ref)

 @spec interleave_mm_strings(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 io_processor_plugin(ref)

 @spec io_processor_plugin(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_attention_free(ref)

 @spec is_attention_free(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_chunked_prefill_supported(ref)

 @spec is_chunked_prefill_supported(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_cross_encoder(ref)

 @spec is_cross_encoder(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_deepseek_mla(ref)

 @spec is_deepseek_mla(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_encoder_decoder(ref)

 @spec is_encoder_decoder(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_hybrid(ref)

 @spec is_hybrid(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_matryoshka(ref)

 @spec is_matryoshka(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mm_prefix_lm(ref)

 @spec is_mm_prefix_lm(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_moe(ref)

 @spec is_moe(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_multimodal_model(ref)

 @spec is_multimodal_model(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_multimodal_raw_input_only_model(ref)

 @spec is_multimodal_raw_input_only_model(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_pp_supported(ref)

 @spec is_pp_supported(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_prefix_caching_supported(ref)

 @spec is_prefix_caching_supported(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_quantized(ref)

 @spec is_quantized(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 limit_mm_per_prompt(ref)

 @spec limit_mm_per_prompt(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logits_processor_pattern(ref)

 @spec logits_processor_pattern(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logits_processors(ref)

 @spec logits_processors(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logprobs_mode(ref)

 @spec logprobs_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 matryoshka_dimensions(ref)

 @spec matryoshka_dimensions(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_logprobs(ref)

 @spec max_logprobs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_model_len(ref)

 @spec max_model_len(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 maybe_pull_model_tokenizer_for_runai(ref, model, tokenizer, opts \\ [])

 @spec maybe_pull_model_tokenizer_for_runai(
 SnakeBridge.Ref.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Pull model/tokenizer from Object Storage to temporary
directory when needed.
Parameters
	model - Model name or path
	tokenizer - Tokenizer name or path

Returns
	nil

 media_io_kwargs(ref)

 @spec media_io_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_encoder_attn_backend(ref)

 @spec mm_encoder_attn_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_encoder_tp_mode(ref)

 @spec mm_encoder_tp_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_cache_gb(ref)

 @spec mm_processor_cache_gb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_cache_type(ref)

 @spec mm_processor_cache_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_kwargs(ref)

 @spec mm_processor_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_shm_cache_max_object_size_mb(ref)

 @spec mm_shm_cache_max_object_size_mb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 model(ref)

 @spec model(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 model_impl(ref)

 @spec model_impl(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 model_weights(ref)

 @spec model_weights(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 multimodal_config(ref)

 @spec multimodal_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs ModelConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 override_attention_dtype(ref)

 @spec override_attention_dtype(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pooler_config(ref)

 @spec pooler_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 quantization(ref)

 @spec quantization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 registry(ref)

 @spec registry(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 requires_raw_input_tokens(ref)

 @spec requires_raw_input_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 revision(ref)

 @spec revision(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 runner(ref)

 @spec runner(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 seed(ref)

 @spec seed(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 served_model_name(ref)

 @spec served_model_name(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_mm_profiling(ref)

 @spec skip_mm_profiling(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_tokenizer_init(ref)

 @spec skip_tokenizer_init(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 spec_target_max_model_len(ref)

 @spec spec_target_max_model_len(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 supports_mamba_prefix_caching(ref)

 @spec supports_mamba_prefix_caching(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tokenizer(ref)

 @spec tokenizer(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 tokenizer_mode(ref)

 @spec tokenizer_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tokenizer_revision(ref)

 @spec tokenizer_revision(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 trust_remote_code(ref)

 @spec trust_remote_code(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 try_get_generation_config(ref, opts \\ [])

 @spec try_get_generation_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

This method attempts to retrieve the non-default values of the
generation config for this model.
The generation config can contain information about special tokens, as
well as sampling parameters. Which is why this method exists separately
to get_diff_sampling_param.
Returns
	%{optional(String.t()) => term()}

 use_mla(ref)

 @spec use_mla(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 use_sep_token(ref)

 @spec use_sep_token(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 uses_alibi(ref)

 @spec uses_alibi(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uses_mrope(ref)

 @spec uses_mrope(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uses_xdrope_dim(ref)

 @spec uses_xdrope_dim(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 using_transformers_backend(ref, opts \\ [])

 @spec using_transformers_backend(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the model is using the Transformers modeling backend class.
Returns
	boolean()

 validate_model_config_after(ref, opts \\ [])

 @spec validate_model_config_after(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Called after post_init
Returns
	term()

 validate_quantization_before(ref, value, opts \\ [])

 @spec validate_quantization_before(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ModelConfig.validate_quantization_before.
Parameters
	value (term())

Returns
	term()

 verify_dual_chunk_attention_config(ref, load_config, opts \\ [])

 @spec verify_dual_chunk_attention_config(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method ModelConfig.verify_dual_chunk_attention_config.
Parameters
	load_config (term())

Returns
	nil

 verify_with_parallel_config(ref, parallel_config, opts \\ [])

 @spec verify_with_parallel_config(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method ModelConfig.verify_with_parallel_config.
Parameters
	parallel_config (term())

Returns
	nil

 video_pruning_rate(ref)

 @spec video_pruning_rate(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.MultiModalConfig

Controls the behavior of multimodal models.

 Summary

 Types

 t()

 Functions

 _validate_limit_per_prompt(ref, value, opts \\ [])

 Python method MultiModalConfig._validate_limit_per_prompt.

 _validate_mm_encoder_attn_backend(ref, value, opts \\ [])

 Python method MultiModalConfig._validate_mm_encoder_attn_backend.

 _validate_multimodal_config(ref, opts \\ [])

 Python method MultiModalConfig._validate_multimodal_config.

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 enable_mm_embeds(ref)

 get_dummy_options(ref, modality, opts \\ [])

 Get the configurable dummy data options for a modality.

 get_limit_per_prompt(ref, modality, opts \\ [])

 Get the maximum number of input items allowed per prompt

 interleave_mm_strings(ref)

 is_multimodal_pruning_enabled(ref, opts \\ [])

 Python method MultiModalConfig.is_multimodal_pruning_enabled.

 limit_per_prompt(ref)

 media_io_kwargs(ref)

 merge_mm_processor_kwargs(ref, inference_kwargs, opts \\ [])

 Get the keyword arguments to pass to the multi-modal processor

 mm_encoder_attn_backend(ref)

 mm_encoder_tp_mode(ref)

 mm_processor_cache_gb(ref)

 mm_processor_cache_type(ref)

 mm_processor_kwargs(ref)

 mm_shm_cache_max_object_size_mb(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs MultiModalConfig.

 skip_mm_profiling(ref)

 video_pruning_rate(ref)

 Types

 t()

 @opaque t()

 Functions

 _validate_limit_per_prompt(ref, value, opts \\ [])

 @spec _validate_limit_per_prompt(
 SnakeBridge.Ref.t(),
 %{optional(String.t()) => term()},
 keyword()
) :: {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Python method MultiModalConfig._validate_limit_per_prompt.
Parameters
	value (%{optional(String.t()) => term()})

Returns
	%{optional(String.t()) => term()}

 _validate_mm_encoder_attn_backend(ref, value, opts \\ [])

 @spec _validate_mm_encoder_attn_backend(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalConfig._validate_mm_encoder_attn_backend.
Parameters
	value (term())

Returns
	term()

 _validate_multimodal_config(ref, opts \\ [])

 @spec _validate_multimodal_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalConfig._validate_multimodal_config.
Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 enable_mm_embeds(ref)

 @spec enable_mm_embeds(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_dummy_options(ref, modality, opts \\ [])

 @spec get_dummy_options(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Get the configurable dummy data options for a modality.
Returns None if no options are configured for this modality.
Parameters
	modality (String.t())

Returns
	term()

 get_limit_per_prompt(ref, modality, opts \\ [])

 @spec get_limit_per_prompt(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Get the maximum number of input items allowed per prompt
for the given modality (backward compatible).
Parameters
	modality (String.t())

Returns
	integer()

 interleave_mm_strings(ref)

 @spec interleave_mm_strings(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_multimodal_pruning_enabled(ref, opts \\ [])

 @spec is_multimodal_pruning_enabled(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalConfig.is_multimodal_pruning_enabled.
Returns
	term()

 limit_per_prompt(ref)

 @spec limit_per_prompt(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 media_io_kwargs(ref)

 @spec media_io_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 merge_mm_processor_kwargs(ref, inference_kwargs, opts \\ [])

 @spec merge_mm_processor_kwargs(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Get the keyword arguments to pass to the multi-modal processor
according to the extra arguments passed during inference.
Parameters
	inference_kwargs (term())

Returns
	%{optional(String.t()) => term()}

 mm_encoder_attn_backend(ref)

 @spec mm_encoder_attn_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_encoder_tp_mode(ref)

 @spec mm_encoder_tp_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_cache_gb(ref)

 @spec mm_processor_cache_gb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_cache_type(ref)

 @spec mm_processor_cache_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_processor_kwargs(ref)

 @spec mm_processor_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 mm_shm_cache_max_object_size_mb(ref)

 @spec mm_shm_cache_max_object_size_mb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs MultiModalConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 skip_mm_profiling(ref)

 @spec skip_mm_profiling(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 video_pruning_rate(ref)

 @spec video_pruning_rate(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.ObservabilityConfig

Configuration for observability - metrics and tracing.

 Summary

 Types

 t()

 Functions

 _validate_collect_detailed_traces(ref, value, opts \\ [])

 Handle the legacy case where users might provide a comma-separated

 _validate_otlp_traces_endpoint(ref, value, opts \\ [])

 Python method ObservabilityConfig._validate_otlp_traces_endpoint.

 _validate_show_hidden_metrics_for_version(ref, value, opts \\ [])

 Python method ObservabilityConfig._validate_show_hidden_metrics_for_version.

 _validate_tracing_config(ref, opts \\ [])

 Python method ObservabilityConfig._validate_tracing_config.

 collect_detailed_traces(ref)

 collect_model_execute_time(ref)

 collect_model_forward_time(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 cudagraph_metrics(ref)

 enable_layerwise_nvtx_tracing(ref)

 enable_logging_iteration_details(ref)

 enable_mfu_metrics(ref)

 enable_mm_processor_stats(ref)

 kv_cache_metrics(ref)

 kv_cache_metrics_sample(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs ObservabilityConfig.

 otlp_traces_endpoint(ref)

 show_hidden_metrics(ref)

 show_hidden_metrics_for_version(ref)

 Types

 t()

 @opaque t()

 Functions

 _validate_collect_detailed_traces(ref, value, opts \\ [])

 @spec _validate_collect_detailed_traces(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Handle the legacy case where users might provide a comma-separated
string instead of a list of strings.
Parameters
	value (term())

Returns
	term()

 _validate_otlp_traces_endpoint(ref, value, opts \\ [])

 @spec _validate_otlp_traces_endpoint(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ObservabilityConfig._validate_otlp_traces_endpoint.
Parameters
	value (term())

Returns
	term()

 _validate_show_hidden_metrics_for_version(ref, value, opts \\ [])

 @spec _validate_show_hidden_metrics_for_version(
 SnakeBridge.Ref.t(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ObservabilityConfig._validate_show_hidden_metrics_for_version.
Parameters
	value (term())

Returns
	term()

 _validate_tracing_config(ref, opts \\ [])

 @spec _validate_tracing_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ObservabilityConfig._validate_tracing_config.
Returns
	term()

 collect_detailed_traces(ref)

 @spec collect_detailed_traces(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 collect_model_execute_time(ref)

 @spec collect_model_execute_time(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 collect_model_forward_time(ref)

 @spec collect_model_forward_time(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 cudagraph_metrics(ref)

 @spec cudagraph_metrics(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_layerwise_nvtx_tracing(ref)

 @spec enable_layerwise_nvtx_tracing(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_logging_iteration_details(ref)

 @spec enable_logging_iteration_details(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_mfu_metrics(ref)

 @spec enable_mfu_metrics(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_mm_processor_stats(ref)

 @spec enable_mm_processor_stats(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_cache_metrics(ref)

 @spec kv_cache_metrics(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_cache_metrics_sample(ref)

 @spec kv_cache_metrics_sample(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs ObservabilityConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 otlp_traces_endpoint(ref)

 @spec otlp_traces_endpoint(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 show_hidden_metrics(ref)

 @spec show_hidden_metrics(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 show_hidden_metrics_for_version(ref)

 @spec show_hidden_metrics_for_version(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.ParallelConfig

Configuration for the distributed execution.

 Summary

 Types

 t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 Skip validation if the value is None when initialisation is delayed.

 _validate_parallel_config(ref, opts \\ [])

 Python method ParallelConfig._validate_parallel_config.

 _verify_args(ref, opts \\ [])

 Python method ParallelConfig._verify_args.

 all2all_backend(ref)

 compute_hash(ref, opts \\ [])

 Provide a hash that uniquely identifies all the configs

 cp_kv_cache_interleave_size(ref)

 data_parallel_backend(ref)

 data_parallel_external_lb(ref)

 data_parallel_hybrid_lb(ref)

 data_parallel_index(ref)

 data_parallel_master_ip(ref)

 data_parallel_master_port(ref)

 data_parallel_rank(ref)

 data_parallel_rank_local(ref)

 data_parallel_rpc_port(ref)

 data_parallel_size(ref)

 data_parallel_size_local(ref)

 dbo_decode_token_threshold(ref)

 dbo_prefill_token_threshold(ref)

 dcp_kv_cache_interleave_size(ref)

 decode_context_parallel_size(ref)

 disable_custom_all_reduce(ref)

 disable_nccl_for_dp_synchronization(ref)

 distributed_executor_backend(ref)

 enable_dbo(ref)

 enable_eplb(ref)

 enable_expert_parallel(ref)

 eplb_config(ref)

 expert_placement_strategy(ref)

 get_next_dp_init_port(ref, opts \\ [])

 We might need to initialize process groups in multiple

 has_unfinished_dp(ref, dp_group, has_unfinished, opts \\ [])

 Python method ParallelConfig.has_unfinished_dp.

 is_moe_model(ref)

 local_world_size(ref)

 master_addr(ref)

 master_port(ref)

 max_parallel_loading_workers(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs ParallelConfig.

 nnodes(ref)

 nnodes_within_dp(ref)

 node_rank(ref)

 node_rank_within_dp(ref)

 num_ubatches(ref)

 pipeline_parallel_size(ref)

 placement_group(ref)

 prefill_context_parallel_size(ref)

 rank(ref)

 ray_runtime_env(ref)

 ray_workers_use_nsight(ref)

 sd_worker_cls(ref)

 stateless_init_dp_group(ref, opts \\ [])

 Python method ParallelConfig.stateless_init_dp_group.

 sync_kv_cache_memory_size(ref, dp_group, kv_cache_memory, opts \\ [])

 Python method ParallelConfig.sync_kv_cache_memory_size.

 tensor_parallel_size(ref)

 ubatch_size(ref)

 use_ray(ref)

 use_sequence_parallel_moe(ref)

 use_ubatching(ref)

 worker_cls(ref)

 worker_extension_cls(ref)

 world_size(ref)

 world_size_across_dp(ref)

 Types

 t()

 @opaque t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 @spec _skip_none_validation(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Skip validation if the value is None when initialisation is delayed.
Parameters
	value (term())
	handler (term())

Returns
	term()

 _validate_parallel_config(ref, opts \\ [])

 @spec _validate_parallel_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ParallelConfig._validate_parallel_config.
Returns
	term()

 _verify_args(ref, opts \\ [])

 @spec _verify_args(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ParallelConfig._verify_args.
Returns
	term()

 all2all_backend(ref)

 @spec all2all_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
This hash is also used for DP worker configuration validation
to prevent hangs from mismatched collective communication patterns.
Returns
	term()

 cp_kv_cache_interleave_size(ref)

 @spec cp_kv_cache_interleave_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_backend(ref)

 @spec data_parallel_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_external_lb(ref)

 @spec data_parallel_external_lb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_hybrid_lb(ref)

 @spec data_parallel_hybrid_lb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_index(ref)

 @spec data_parallel_index(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_master_ip(ref)

 @spec data_parallel_master_ip(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_master_port(ref)

 @spec data_parallel_master_port(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_rank(ref)

 @spec data_parallel_rank(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_rank_local(ref)

 @spec data_parallel_rank_local(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_rpc_port(ref)

 @spec data_parallel_rpc_port(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_size(ref)

 @spec data_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data_parallel_size_local(ref)

 @spec data_parallel_size_local(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 dbo_decode_token_threshold(ref)

 @spec dbo_decode_token_threshold(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 dbo_prefill_token_threshold(ref)

 @spec dbo_prefill_token_threshold(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 dcp_kv_cache_interleave_size(ref)

 @spec dcp_kv_cache_interleave_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 decode_context_parallel_size(ref)

 @spec decode_context_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_custom_all_reduce(ref)

 @spec disable_custom_all_reduce(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_nccl_for_dp_synchronization(ref)

 @spec disable_nccl_for_dp_synchronization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 distributed_executor_backend(ref)

 @spec distributed_executor_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_dbo(ref)

 @spec enable_dbo(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_eplb(ref)

 @spec enable_eplb(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_expert_parallel(ref)

 @spec enable_expert_parallel(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 eplb_config(ref)

 @spec eplb_config(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 expert_placement_strategy(ref)

 @spec expert_placement_strategy(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_next_dp_init_port(ref, opts \\ [])

 @spec get_next_dp_init_port(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

We might need to initialize process groups in multiple
processes that is related to data parallelism,
e.g. both in the worker and in the engine, which
can live in different processes. To avoid port conflicts, we
pop a new port from the prepared port list each time we need to
initialize a new process group related to data parallelism.
Returns
	integer()

 has_unfinished_dp(ref, dp_group, has_unfinished, opts \\ [])

 @spec has_unfinished_dp(SnakeBridge.Ref.t(), term(), boolean(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method ParallelConfig.has_unfinished_dp.
Parameters
	dp_group (term())
	has_unfinished (boolean())

Returns
	boolean()

 is_moe_model(ref)

 @spec is_moe_model(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 local_world_size(ref)

 @spec local_world_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 master_addr(ref)

 @spec master_addr(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 master_port(ref)

 @spec master_port(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_parallel_loading_workers(ref)

 @spec max_parallel_loading_workers(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs ParallelConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 nnodes(ref)

 @spec nnodes(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 nnodes_within_dp(ref)

 @spec nnodes_within_dp(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 node_rank(ref)

 @spec node_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 node_rank_within_dp(ref)

 @spec node_rank_within_dp(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 num_ubatches(ref)

 @spec num_ubatches(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pipeline_parallel_size(ref)

 @spec pipeline_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 placement_group(ref)

 @spec placement_group(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 prefill_context_parallel_size(ref)

 @spec prefill_context_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 rank(ref)

 @spec rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ray_runtime_env(ref)

 @spec ray_runtime_env(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ray_workers_use_nsight(ref)

 @spec ray_workers_use_nsight(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 sd_worker_cls(ref)

 @spec sd_worker_cls(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stateless_init_dp_group(ref, opts \\ [])

 @spec stateless_init_dp_group(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ParallelConfig.stateless_init_dp_group.
Returns
	term()

 sync_kv_cache_memory_size(ref, dp_group, kv_cache_memory, opts \\ [])

 @spec sync_kv_cache_memory_size(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ParallelConfig.sync_kv_cache_memory_size.
Parameters
	dp_group (term())
	kv_cache_memory (integer())

Returns
	integer()

 tensor_parallel_size(ref)

 @spec tensor_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ubatch_size(ref)

 @spec ubatch_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 use_ray(ref)

 @spec use_ray(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 use_sequence_parallel_moe(ref)

 @spec use_sequence_parallel_moe(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_ubatching(ref)

 @spec use_ubatching(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 worker_cls(ref)

 @spec worker_cls(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 worker_extension_cls(ref)

 @spec worker_extension_cls(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 world_size(ref)

 @spec world_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 world_size_across_dp(ref)

 @spec world_size_across_dp(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.PassConfig

Configuration for custom Inductor passes.
This is separate from general CompilationConfig so that inductor passes
don't all have access to full configuration - that would create a cycle as
the PassManager is set as a property of config.
You must pass PassConfig to VLLMConfig constructor via the CompilationConfig
constructor. VLLMConfig's post_init does further initialization.
If used outside of the VLLMConfig, some fields may be left in an
improper state.

 Summary

 Types

 t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 Skip validation if the value is None when initialisation is delayed.

 compute_hash(ref, opts \\ [])

 Produces a hash unique to the pass configuration.

 default_fi_allreduce_fusion_max_size_mb(ref, opts \\ [])

 Python method PassConfig.default_fi_allreduce_fusion_max_size_mb.

 eliminate_noops(ref)

 enable_qk_norm_rope_fusion(ref)

 enable_sp(ref)

 fi_allreduce_fusion_max_size_mb(ref)

 flashinfer_max_size(ref, world_size, opts \\ [])

 Returns the max communication size in bytes for flashinfer

 fuse_act_quant(ref)

 fuse_allreduce_rms(ref)

 fuse_attn_quant(ref)

 fuse_gemm_comms(ref)

 fuse_norm_quant(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs PassConfig.

 Types

 t()

 @opaque t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 @spec _skip_none_validation(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Skip validation if the value is None when initialisation is delayed.
Parameters
	value (term())
	handler (term())

Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Produces a hash unique to the pass configuration.
Any new fields that affect compilation should be added to the hash.
Any future fields that don't affect compilation should be excluded.
Returns
	String.t()

 default_fi_allreduce_fusion_max_size_mb(ref, opts \\ [])

 @spec default_fi_allreduce_fusion_max_size_mb(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(integer()) => float()}} | {:error, Snakepit.Error.t()}

Python method PassConfig.default_fi_allreduce_fusion_max_size_mb.
Returns
	%{optional(integer()) => float()}

 eliminate_noops(ref)

 @spec eliminate_noops(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_qk_norm_rope_fusion(ref)

 @spec enable_qk_norm_rope_fusion(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_sp(ref)

 @spec enable_sp(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fi_allreduce_fusion_max_size_mb(ref)

 @spec fi_allreduce_fusion_max_size_mb(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 flashinfer_max_size(ref, world_size, opts \\ [])

 @spec flashinfer_max_size(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Returns the max communication size in bytes for flashinfer
allreduce fusion for the given world size. Returns None if world size
is not supported by configs as it's not supported by flashinfer.
Parameters
	world_size (integer())

Returns
	term()

 fuse_act_quant(ref)

 @spec fuse_act_quant(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 fuse_allreduce_rms(ref)

 @spec fuse_allreduce_rms(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 fuse_attn_quant(ref)

 @spec fuse_attn_quant(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 fuse_gemm_comms(ref)

 @spec fuse_gemm_comms(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 fuse_norm_quant(ref)

 @spec fuse_norm_quant(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs PassConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

Vllm.Config.PoolerConfig

Controls the behavior of output pooling in pooling models.

 Summary

 Types

 t()

 Functions

 activation(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 dimensions(ref)

 enable_chunked_processing(ref)

 get_seq_pooling_type(ref, opts \\ [])

 Python method PoolerConfig.get_seq_pooling_type.

 get_tok_pooling_type(ref, opts \\ [])

 Python method PoolerConfig.get_tok_pooling_type.

 logit_bias(ref)

 max_embed_len(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs PoolerConfig.

 normalize(ref)

 pooling_type(ref)

 returned_token_ids(ref)

 seq_pooling_type(ref)

 softmax(ref)

 step_tag_id(ref)

 tok_pooling_type(ref)

 use_activation(ref)

 Types

 t()

 @opaque t()

 Functions

 activation(ref)

 @spec activation(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 dimensions(ref)

 @spec dimensions(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_chunked_processing(ref)

 @spec enable_chunked_processing(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_seq_pooling_type(ref, opts \\ [])

 @spec get_seq_pooling_type(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method PoolerConfig.get_seq_pooling_type.
Returns
	term()

 get_tok_pooling_type(ref, opts \\ [])

 @spec get_tok_pooling_type(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method PoolerConfig.get_tok_pooling_type.
Returns
	term()

 logit_bias(ref)

 @spec logit_bias(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_embed_len(ref)

 @spec max_embed_len(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs PoolerConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 normalize(ref)

 @spec normalize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pooling_type(ref)

 @spec pooling_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 returned_token_ids(ref)

 @spec returned_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 seq_pooling_type(ref)

 @spec seq_pooling_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 softmax(ref)

 @spec softmax(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 step_tag_id(ref)

 @spec step_tag_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 tok_pooling_type(ref)

 @spec tok_pooling_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_activation(ref)

 @spec use_activation(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.ProfilerConfig

Dataclass which contains profiler config for the engine.

 Summary

 Types

 t()

 Functions

 _get_from_env_if_set(ref, field_name, env_var_name, opts \\ [])

 Get field from env var if set, with deprecation warning.

 _set_from_env_if_set(ref, field_name, env_var_name, args, opts \\ [])

 Set field from env var if set, with deprecation warning.

 _validate_profiler_config(ref, opts \\ [])

 Python method ProfilerConfig._validate_profiler_config.

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 delay_iterations(ref)

 ignore_frontend(ref)

 max_iterations(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs ProfilerConfig.

 profiler(ref)

 torch_profiler_dir(ref)

 torch_profiler_dump_cuda_time_total(ref)

 torch_profiler_record_shapes(ref)

 torch_profiler_use_gzip(ref)

 torch_profiler_with_flops(ref)

 torch_profiler_with_memory(ref)

 torch_profiler_with_stack(ref)

 Types

 t()

 @opaque t()

 Functions

 _get_from_env_if_set(ref, field_name, env_var_name, opts \\ [])

 @spec _get_from_env_if_set(SnakeBridge.Ref.t(), String.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Get field from env var if set, with deprecation warning.
Parameters
	field_name (String.t())
	env_var_name (String.t())

Returns
	nil

 _set_from_env_if_set(ref, field_name, env_var_name, args, opts \\ [])

 @spec _set_from_env_if_set(
 SnakeBridge.Ref.t(),
 String.t(),
 String.t(),
 [term()],
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Set field from env var if set, with deprecation warning.
Parameters
	field_name (String.t())
	env_var_name (String.t())
	to_bool (boolean() default: True)
	to_int (boolean() default: False)

Returns
	nil

 _validate_profiler_config(ref, opts \\ [])

 @spec _validate_profiler_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ProfilerConfig._validate_profiler_config.
Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 delay_iterations(ref)

 @spec delay_iterations(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ignore_frontend(ref)

 @spec ignore_frontend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_iterations(ref)

 @spec max_iterations(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs ProfilerConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 profiler(ref)

 @spec profiler(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_dir(ref)

 @spec torch_profiler_dir(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_dump_cuda_time_total(ref)

 @spec torch_profiler_dump_cuda_time_total(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_record_shapes(ref)

 @spec torch_profiler_record_shapes(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_use_gzip(ref)

 @spec torch_profiler_use_gzip(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_with_flops(ref)

 @spec torch_profiler_with_flops(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_with_memory(ref)

 @spec torch_profiler_with_memory(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 torch_profiler_with_stack(ref)

 @spec torch_profiler_with_stack(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.SchedulerConfig

Scheduler configuration.

 Summary

 Types

 t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 Skip validation if the value is None when initialisation is delayed.

 async_scheduling(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 default_factory(ref, opts \\ [])

 Factory method to create SchedulerConfig with default values for InitVars.

 default_max_num_batched_tokens(ref)

 default_max_num_seqs(ref)

 disable_chunked_mm_input(ref)

 disable_hybrid_kv_cache_manager(ref)

 enable_chunked_prefill(ref)

 encoder_cache_size(ref)

 get_scheduler_cls(ref, opts \\ [])

 Python method SchedulerConfig.get_scheduler_cls.

 is_multimodal_model(ref)

 long_prefill_token_threshold(ref)

 max_long_partial_prefills(ref)

 max_num_batched_tokens(ref)

 max_num_encoder_input_tokens(ref)

 max_num_partial_prefills(ref)

 max_num_seqs(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs SchedulerConfig.

 policy(ref)

 runner_type(ref)

 scheduler_cls(ref)

 stream_interval(ref)

 verify_max_model_len(ref, max_model_len, opts \\ [])

 Python method SchedulerConfig.verify_max_model_len.

 Types

 t()

 @opaque t()

 Functions

 _skip_none_validation(ref, value, handler, opts \\ [])

 @spec _skip_none_validation(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Skip validation if the value is None when initialisation is delayed.
Parameters
	value (term())
	handler (term())

Returns
	term()

 async_scheduling(ref)

 @spec async_scheduling(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 default_factory(ref, opts \\ [])

 @spec default_factory(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Factory method to create SchedulerConfig with default values for InitVars.
Parameters
	kwargs (term())

Returns
	term()

 default_max_num_batched_tokens(ref)

 @spec default_max_num_batched_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 default_max_num_seqs(ref)

 @spec default_max_num_seqs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_chunked_mm_input(ref)

 @spec disable_chunked_mm_input(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_hybrid_kv_cache_manager(ref)

 @spec disable_hybrid_kv_cache_manager(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_chunked_prefill(ref)

 @spec enable_chunked_prefill(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 encoder_cache_size(ref)

 @spec encoder_cache_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_scheduler_cls(ref, opts \\ [])

 @spec get_scheduler_cls(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method SchedulerConfig.get_scheduler_cls.
Returns
	term()

 is_multimodal_model(ref)

 @spec is_multimodal_model(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 long_prefill_token_threshold(ref)

 @spec long_prefill_token_threshold(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_long_partial_prefills(ref)

 @spec max_long_partial_prefills(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_num_batched_tokens(ref)

 @spec max_num_batched_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_num_encoder_input_tokens(ref)

 @spec max_num_encoder_input_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_num_partial_prefills(ref)

 @spec max_num_partial_prefills(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_num_seqs(ref)

 @spec max_num_seqs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs SchedulerConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 policy(ref)

 @spec policy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 runner_type(ref)

 @spec runner_type(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 scheduler_cls(ref)

 @spec scheduler_cls(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_interval(ref)

 @spec stream_interval(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 verify_max_model_len(ref, max_model_len, opts \\ [])

 @spec verify_max_model_len(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method SchedulerConfig.verify_max_model_len.
Parameters
	max_model_len (integer())

Returns
	term()

Vllm.Config.SpeculativeConfig

Configuration for speculative decoding.

 Summary

 Types

 t()

 Functions

 _maybe_override_draft_max_model_len(ref, speculative_max_model_len, draft_max_model_len, target_max_model_len, opts \\ [])

 Determine the max sequence len for the draft model. This is usually

 _validate_suffix_decoding(ref, opts \\ [])

 Python method SpeculativeConfig._validate_suffix_decoding.

 _verify_and_get_draft_tp(ref, target_parallel_config, speculative_draft_tensor_parallel_size, draft_hf_config, opts \\ [])

 Verifies and adjusts the tensor parallel size for a draft model

 _verify_args(ref, opts \\ [])

 Python method SpeculativeConfig._verify_args.

 code_revision(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 create_draft_parallel_config(ref, target_parallel_config, speculative_draft_tensor_parallel_size, opts \\ [])

 Create a parallel config for use by the draft worker.

 disable_by_batch_size(ref)

 disable_padded_drafter_batch(ref)

 draft_model_config(ref)

 draft_parallel_config(ref)

 draft_tensor_parallel_size(ref)

 enforce_eager(ref)

 hf_config_override(ref, hf_config, opts \\ [])

 Python method SpeculativeConfig.hf_config_override.

 max_model_len(ref)

 method(ref)

 model(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs SpeculativeConfig.

 num_speculative_tokens(ref)

 prompt_lookup_max(ref)

 prompt_lookup_min(ref)

 quantization(ref)

 revision(ref)

 speculative_token_tree(ref)

 suffix_decoding_max_cached_requests(ref)

 suffix_decoding_max_spec_factor(ref)

 suffix_decoding_max_tree_depth(ref)

 suffix_decoding_min_token_prob(ref)

 target_model_config(ref)

 target_parallel_config(ref)

 use_eagle(ref, opts \\ [])

 Python method SpeculativeConfig.use_eagle.

 Types

 t()

 @opaque t()

 Functions

 _maybe_override_draft_max_model_len(ref, speculative_max_model_len, draft_max_model_len, target_max_model_len, opts \\ [])

 @spec _maybe_override_draft_max_model_len(
 SnakeBridge.Ref.t(),
 term(),
 integer(),
 integer(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Determine the max sequence len for the draft model. This is usually
the draft_max_model_len, but may be the target_max_model_len if it is
less than the draft_max_model_len, or may be speculative_max_model_len
if it is specified.
This is necessary so that sequences do not exceed the capacity of the
draft model or the target model.
speculative_max_model_len is mainly used for testing that sequences can
skip speculation.
Parameters
	speculative_max_model_len (term())
	draft_max_model_len (integer())
	target_max_model_len (integer())

Returns
	integer()

 _validate_suffix_decoding(ref, opts \\ [])

 @spec _validate_suffix_decoding(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method SpeculativeConfig._validate_suffix_decoding.
Returns
	term()

 _verify_and_get_draft_tp(ref, target_parallel_config, speculative_draft_tensor_parallel_size, draft_hf_config, opts \\ [])

 @spec _verify_and_get_draft_tp(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Verifies and adjusts the tensor parallel size for a draft model
specified using speculative_draft_tensor_parallel_size.
Parameters
	target_parallel_config (term())
	speculative_draft_tensor_parallel_size (term())
	draft_hf_config (term())

Returns
	integer()

 _verify_args(ref, opts \\ [])

 @spec _verify_args(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method SpeculativeConfig._verify_args.
Returns
	term()

 code_revision(ref)

 @spec code_revision(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 create_draft_parallel_config(ref, target_parallel_config, speculative_draft_tensor_parallel_size, opts \\ [])

 @spec create_draft_parallel_config(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a parallel config for use by the draft worker.
This is mostly a copy of the target parallel config, except the tp_size.
Parameters
	target_parallel_config (term())
	speculative_draft_tensor_parallel_size (integer())

Returns
	term()

 disable_by_batch_size(ref)

 @spec disable_by_batch_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_padded_drafter_batch(ref)

 @spec disable_padded_drafter_batch(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 draft_model_config(ref)

 @spec draft_model_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 draft_parallel_config(ref)

 @spec draft_parallel_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 draft_tensor_parallel_size(ref)

 @spec draft_tensor_parallel_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enforce_eager(ref)

 @spec enforce_eager(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 hf_config_override(ref, hf_config, opts \\ [])

 @spec hf_config_override(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method SpeculativeConfig.hf_config_override.
Parameters
	hf_config (term())

Returns
	term()

 max_model_len(ref)

 @spec max_model_len(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 method(ref)

 @spec method(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 model(ref)

 @spec model(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs SpeculativeConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 num_speculative_tokens(ref)

 @spec num_speculative_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 prompt_lookup_max(ref)

 @spec prompt_lookup_max(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 prompt_lookup_min(ref)

 @spec prompt_lookup_min(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 quantization(ref)

 @spec quantization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 revision(ref)

 @spec revision(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 speculative_token_tree(ref)

 @spec speculative_token_tree(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 suffix_decoding_max_cached_requests(ref)

 @spec suffix_decoding_max_cached_requests(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 suffix_decoding_max_spec_factor(ref)

 @spec suffix_decoding_max_spec_factor(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 suffix_decoding_max_tree_depth(ref)

 @spec suffix_decoding_max_tree_depth(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 suffix_decoding_min_token_prob(ref)

 @spec suffix_decoding_min_token_prob(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 target_model_config(ref)

 @spec target_model_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 target_parallel_config(ref)

 @spec target_parallel_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_eagle(ref, opts \\ [])

 @spec use_eagle(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method SpeculativeConfig.use_eagle.
Returns
	boolean()

Vllm.Config.SpeechToTextConfig

Configuration for speech-to-text models.

 Summary

 Types

 t()

 Functions

 allow_audio_chunking(ref)

 max_audio_clip_s(ref)

 min_energy_split_window_size(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs SpeechToTextConfig.

 overlap_chunk_second(ref)

 sample_rate(ref)

 Types

 t()

 @opaque t()

 Functions

 allow_audio_chunking(ref)

 @spec allow_audio_chunking(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_audio_clip_s(ref)

 @spec max_audio_clip_s(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 min_energy_split_window_size(ref)

 @spec min_energy_split_window_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs SpeechToTextConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 overlap_chunk_second(ref)

 @spec overlap_chunk_second(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 sample_rate(ref)

 @spec sample_rate(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.StructuredOutputsConfig

Dataclass which contains structured outputs config for the engine.

 Summary

 Types

 t()

 Functions

 _validate_structured_output_config(ref, opts \\ [])

 Python method StructuredOutputsConfig._validate_structured_output_config.

 backend(ref)

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 disable_additional_properties(ref)

 disable_any_whitespace(ref)

 disable_fallback(ref)

 enable_in_reasoning(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs StructuredOutputsConfig.

 reasoning_parser(ref)

 reasoning_parser_plugin(ref)

 Types

 t()

 @opaque t()

 Functions

 _validate_structured_output_config(ref, opts \\ [])

 @spec _validate_structured_output_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method StructuredOutputsConfig._validate_structured_output_config.
Returns
	term()

 backend(ref)

 @spec backend(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 disable_additional_properties(ref)

 @spec disable_additional_properties(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_any_whitespace(ref)

 @spec disable_any_whitespace(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_fallback(ref)

 @spec disable_fallback(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_in_reasoning(ref)

 @spec enable_in_reasoning(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs StructuredOutputsConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 reasoning_parser(ref)

 @spec reasoning_parser(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 reasoning_parser_plugin(ref)

 @spec reasoning_parser_plugin(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Config.SupportsMetricsInfo

Base class for protocol classes.
Protocol classes are defined as::
class Proto(Protocol):
 def meth(self) -> int:
 ...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing).
For example::
class C:
 def meth(self) -> int:
 return 0

def func(x: Proto) -> int:
 return x.meth()

func(C()) # Passes static type check
See PEP 544 for details. Protocol classes decorated with
@typing.runtime_checkable act as simple-minded runtime protocols that check
only the presence of given attributes, ignoring their type signatures.
Protocol classes can be generic, they are defined as::
class GenProto[T](Protocol):
 def meth(self) -> T:
 ...

 Summary

 Types

 t()

 Functions

 metrics_info(ref, opts \\ [])

 Python method SupportsMetricsInfo.metrics_info.

 new(args, opts \\ [])

 Constructs SupportsMetricsInfo.

 Types

 t()

 @opaque t()

 Functions

 metrics_info(ref, opts \\ [])

 @spec metrics_info(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => String.t()}} | {:error, Snakepit.Error.t()}

Python method SupportsMetricsInfo.metrics_info.
Returns
	%{optional(String.t()) => String.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs SupportsMetricsInfo.
Parameters
	args (term())
	kwargs (term())

Vllm.Config.VllmConfig

Dataclass which contains all vllm-related configuration. This
simplifies passing around the distinct configurations in the codebase.

 Summary

 Types

 t()

 Functions

 _apply_optimization_level_defaults(ref, defaults, opts \\ [])

 Apply optimization level defaults using self as root.

 _get_quantization_config(ref, model_config, load_config, opts \\ [])

 Get the quantization config.

 _post_init_kv_transfer_config(ref, opts \\ [])

 Update KVTransferConfig based on top-level configs in VllmConfig.

 _set_compile_ranges(ref, opts \\ [])

 Set the compile ranges for the compilation config.

 _set_config_default(ref, config_obj, key, value, opts \\ [])

 Set config attribute to default if not already set by user.

 _set_cudagraph_sizes(ref, opts \\ [])

 vLLM defines the default candidate list of batch sizes for CUDA graph

 additional_config(ref)

 attention_config(ref)

 cache_config(ref)

 compilation_config(ref)

 compile_debug_dump_path(ref, opts \\ [])

 Returns a rank-aware path for dumping

 compute_hash(ref, opts \\ [])

 WARNING: Whenever a new field is added to this config,

 device_config(ref)

 ec_transfer_config(ref)

 enable_trace_function_call_for_thread(ref, opts \\ [])

 Set up function tracing for the current thread,

 get_quantization_config(ref, model_config, load_config, opts \\ [])

 Python method VllmConfig.get_quantization_config.

 instance_id(ref)

 kv_events_config(ref)

 kv_transfer_config(ref)

 load_config(ref)

 lora_config(ref)

 model_config(ref)

 needs_dp_coordinator(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Constructs VllmConfig.

 observability_config(ref)

 optimization_level(ref)

 pad_for_cudagraph(ref, batch_size, opts \\ [])

 Python method VllmConfig.pad_for_cudagraph.

 parallel_config(ref)

 profiler_config(ref)

 quant_config(ref)

 scheduler_config(ref)

 speculative_config(ref)

 structured_outputs_config(ref)

 try_verify_and_update_config(ref, opts \\ [])

 Python method VllmConfig.try_verify_and_update_config.

 update_sizes_for_sequence_parallelism(ref, possible_sizes, opts \\ [])

 Python method VllmConfig.update_sizes_for_sequence_parallelism.

 validate_mamba_block_size(ref, opts \\ [])

 Python method VllmConfig.validate_mamba_block_size.

 with_hf_config(ref, hf_config, args, opts \\ [])

 Python method VllmConfig.with_hf_config.

 Types

 t()

 @opaque t()

 Functions

 _apply_optimization_level_defaults(ref, defaults, opts \\ [])

 @spec _apply_optimization_level_defaults(
 SnakeBridge.Ref.t(),
 %{optional(String.t()) => term()},
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Apply optimization level defaults using self as root.
Recursively applies values from defaults into nested config objects.
Only fields present in defaults are overwritten.
If the user configuration does not specify a value for a default field
and if the default field is still None after all user selections are
applied, then default values will be applied to the field. User speciied
fields will not be overridden by the default.
Parameters
	defaults - Dictionary of default values to apply.

Returns
	nil

 _get_quantization_config(ref, model_config, load_config, opts \\ [])

 @spec _get_quantization_config(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Get the quantization config.
Parameters
	model_config (term())
	load_config (term())

Returns
	term()

 _post_init_kv_transfer_config(ref, opts \\ [])

 @spec _post_init_kv_transfer_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Update KVTransferConfig based on top-level configs in VllmConfig.
Right now, this function reads the offloading settings from
CacheConfig and configures the KVTransferConfig accordingly.
Returns
	nil

 _set_compile_ranges(ref, opts \\ [])

 @spec _set_compile_ranges(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Set the compile ranges for the compilation config.
Returns
	term()

 _set_config_default(ref, config_obj, key, value, opts \\ [])

 @spec _set_config_default(SnakeBridge.Ref.t(), term(), String.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Set config attribute to default if not already set by user.
Parameters
	config_obj - Configuration object to update.
	key - Attribute name.
	value - Default value (static or callable).

Returns
	nil

 _set_cudagraph_sizes(ref, opts \\ [])

 @spec _set_cudagraph_sizes(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM defines the default candidate list of batch sizes for CUDA graph
capture as:
max_graph_size = min(max_num_seqs * 2, 512)
1, 2, 4, then multiples of 8 up to 256 and then multiples of 16
up to max_graph_size
cudagraph_capture_sizes = [1, 2, 4] + list(range(8, 256, 8)) + list(
 range(256, max_graph_size + 1, 16))
In the end, vllm_config.compilation_config.cudagraph_capture_sizes
will be the final sizes to capture cudagraph (in ascending order).
These sizes are used to capture and reuse CUDA graphs for
performance-critical paths (e.g., decoding). Capturing enables
significantly faster kernel dispatch by avoiding Python overhead. The
list is then filtered based on max_num_batched_tokens (e.g., 8192 on
most GPUs), which controls the total allowed number of tokens in a
batch. Since each sequence may have a variable number of tokens, the
maximum usable batch size will depend on actual sequence lengths.
Examples
With `max_num_batched_tokens = 8192`, and typical sequences
averaging ~32 tokens, most practical batch sizes fall below 256.
However, the system will still allow capture sizes up to 512 if
shape and memory permit.
Notes
If users explicitly specify cudagraph capture sizes in the
compilation config, those will override this default logic.
At runtime:

- If batch size <= one of the `cudagraph_capture_sizes`, the closest
padded CUDA graph will be used.
- If batch size > largest `cudagraph_capture_sizes`, cudagraph will
not be used.
Returns
	term()

 additional_config(ref)

 @spec additional_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 attention_config(ref)

 @spec attention_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cache_config(ref)

 @spec cache_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compilation_config(ref)

 @spec compilation_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 compile_debug_dump_path(ref, opts \\ [])

 @spec compile_debug_dump_path(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns a rank-aware path for dumping
torch.compile debug information.
Returns
	term()

 compute_hash(ref, opts \\ [])

 @spec compute_hash(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
Returns
	String.t()

 device_config(ref)

 @spec device_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ec_transfer_config(ref)

 @spec ec_transfer_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_trace_function_call_for_thread(ref, opts \\ [])

 @spec enable_trace_function_call_for_thread(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Set up function tracing for the current thread,
if enabled via the VLLM_TRACE_FUNCTION environment variable.
Returns
	nil

 get_quantization_config(ref, model_config, load_config, opts \\ [])

 @spec get_quantization_config(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method VllmConfig.get_quantization_config.
Parameters
	model_config (term())
	load_config (term())

Returns
	term()

 instance_id(ref)

 @spec instance_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_events_config(ref)

 @spec kv_events_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 kv_transfer_config(ref)

 @spec kv_transfer_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 load_config(ref)

 @spec load_config(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 lora_config(ref)

 @spec lora_config(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 model_config(ref)

 @spec model_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 needs_dp_coordinator(ref)

 @spec needs_dp_coordinator(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs VllmConfig.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 observability_config(ref)

 @spec observability_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 optimization_level(ref)

 @spec optimization_level(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pad_for_cudagraph(ref, batch_size, opts \\ [])

 @spec pad_for_cudagraph(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method VllmConfig.pad_for_cudagraph.
Parameters
	batch_size (integer())

Returns
	integer()

 parallel_config(ref)

 @spec parallel_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 profiler_config(ref)

 @spec profiler_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 quant_config(ref)

 @spec quant_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 scheduler_config(ref)

 @spec scheduler_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 speculative_config(ref)

 @spec speculative_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 structured_outputs_config(ref)

 @spec structured_outputs_config(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 try_verify_and_update_config(ref, opts \\ [])

 @spec try_verify_and_update_config(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method VllmConfig.try_verify_and_update_config.
Returns
	term()

 update_sizes_for_sequence_parallelism(ref, possible_sizes, opts \\ [])

 @spec update_sizes_for_sequence_parallelism(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Python method VllmConfig.update_sizes_for_sequence_parallelism.
Parameters
	possible_sizes (list(term()))

Returns
	list(term())

 validate_mamba_block_size(ref, opts \\ [])

 @spec validate_mamba_block_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method VllmConfig.validate_mamba_block_size.
Returns
	term()

 with_hf_config(ref, hf_config, args, opts \\ [])

 @spec with_hf_config(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method VllmConfig.with_hf_config.
Parameters
	hf_config (term())
	architectures (term() default: None)

Returns
	term()

Vllm.Connections

Submodule bindings for vllm.connections.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Connections.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Connections.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Connections.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Connections.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 global_http_connection()

 Helper class to send HTTP requests.

 Functions

 global_http_connection()

 @spec global_http_connection() ::
 {:ok, Vllm.Connections.HTTPConnection.t()} | {:error, Snakepit.Error.t()}

Helper class to send HTTP requests.
Returns
	Vllm.Connections.HTTPConnection.t()

Vllm.Connections.HTTPConnection

Helper class to send HTTP requests.

 Summary

 Types

 t()

 Functions

 _headers(ref, opts \\ [])

 Python method HTTPConnection._headers.

 _validate_http_url(ref, url, opts \\ [])

 Python method HTTPConnection._validate_http_url.

 async_download_file(ref, url, save_path, opts \\ [])

 Python method HTTPConnection.async_download_file.

 async_get_bytes(ref, url, opts \\ [])

 Python method HTTPConnection.async_get_bytes.

 async_get_json(ref, url, opts \\ [])

 Python method HTTPConnection.async_get_json.

 async_get_text(ref, url, opts \\ [])

 Python method HTTPConnection.async_get_text.

 download_file(ref, url, save_path, opts \\ [])

 Python method HTTPConnection.download_file.

 get_async_client(ref, opts \\ [])

 Python method HTTPConnection.get_async_client.

 get_async_response(ref, url, opts \\ [])

 Python method HTTPConnection.get_async_response.

 get_bytes(ref, url, opts \\ [])

 Python method HTTPConnection.get_bytes.

 get_json(ref, url, opts \\ [])

 Python method HTTPConnection.get_json.

 get_response(ref, url, opts \\ [])

 Python method HTTPConnection.get_response.

 get_sync_client(ref, opts \\ [])

 Python method HTTPConnection.get_sync_client.

 get_text(ref, url, opts \\ [])

 Python method HTTPConnection.get_text.

 new(opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 _headers(ref, opts \\ [])

 @spec _headers(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection._headers.
Parameters
	extras (String.t())

Returns
	term()

 _validate_http_url(ref, url, opts \\ [])

 @spec _validate_http_url(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection._validate_http_url.
Parameters
	url (String.t())

Returns
	term()

 async_download_file(ref, url, save_path, opts \\ [])

 @spec async_download_file(SnakeBridge.Ref.t(), String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.async_download_file.
Parameters
	url (String.t())
	save_path (term())
	timeout (term() keyword-only default: None)
	chunk_size (integer() keyword-only default: 128)

Returns
	term()

 async_get_bytes(ref, url, opts \\ [])

 @spec async_get_bytes(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, binary()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.async_get_bytes.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)
	allow_redirects (boolean() keyword-only default: True)

Returns
	binary()

 async_get_json(ref, url, opts \\ [])

 @spec async_get_json(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.async_get_json.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)

Returns
	String.t()

 async_get_text(ref, url, opts \\ [])

 @spec async_get_text(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.async_get_text.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)

Returns
	String.t()

 download_file(ref, url, save_path, opts \\ [])

 @spec download_file(SnakeBridge.Ref.t(), String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.download_file.
Parameters
	url (String.t())
	save_path (term())
	timeout (term() keyword-only default: None)
	chunk_size (integer() keyword-only default: 128)

Returns
	term()

 get_async_client(ref, opts \\ [])

 @spec get_async_client(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_async_client.
Returns
	term()

 get_async_response(ref, url, opts \\ [])

 @spec get_async_response(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_async_response.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)
	extra_headers (term() keyword-only default: None)
	allow_redirects (boolean() keyword-only default: True)

Returns
	term()

 get_bytes(ref, url, opts \\ [])

 @spec get_bytes(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, binary()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_bytes.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)
	allow_redirects (boolean() keyword-only default: True)

Returns
	binary()

 get_json(ref, url, opts \\ [])

 @spec get_json(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_json.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)

Returns
	String.t()

 get_response(ref, url, opts \\ [])

 @spec get_response(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_response.
Parameters
	url (String.t())
	stream (boolean() keyword-only default: False)
	timeout (term() keyword-only default: None)
	extra_headers (term() keyword-only default: None)
	allow_redirects (boolean() keyword-only default: True)

Returns
	term()

 get_sync_client(ref, opts \\ [])

 @spec get_sync_client(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_sync_client.
Returns
	term()

 get_text(ref, url, opts \\ [])

 @spec get_text(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method HTTPConnection.get_text.
Parameters
	url (String.t())
	timeout (term() keyword-only default: None)

Returns
	String.t()

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	reuse_client (boolean() keyword-only default: True)

Vllm.DeviceAllocator

Submodule bindings for vllm.device_allocator.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.DeviceAllocator.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.DeviceAllocator.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.DeviceAllocator.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.DeviceAllocator.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Distributed

Submodule bindings for vllm.distributed.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Distributed.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Distributed.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Distributed.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Distributed.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 all_gather(tensor, dim, world_size, group_name, opts \\ [])

 Python binding for vllm.distributed.all_gather.

 all_gather_fake(tensor, dim, world_size, group_name, opts \\ [])

 Python binding for vllm.distributed.all_gather_fake.

 all_reduce(tensor, group_name, opts \\ [])

 Python binding for vllm.distributed.all_reduce.

 all_reduce_fake(tensor, group_name, opts \\ [])

 Python binding for vllm.distributed.all_reduce_fake.

 broadcast_tensor_dict()

 Python binding for vllm.distributed.broadcast_tensor_dict.

 broadcast_tensor_dict(opts)

 broadcast_tensor_dict(tensor_dict, opts)

 broadcast_tensor_dict(tensor_dict, src, opts)

 cleanup_dist_env_and_memory()

 Python binding for vllm.distributed.cleanup_dist_env_and_memory.

 cleanup_dist_env_and_memory(opts)

 cleanup_dist_env_and_memory(shutdown_ray, opts)

 destroy_distributed_environment(opts \\ [])

 Python binding for vllm.distributed.destroy_distributed_environment.

 destroy_model_parallel(opts \\ [])

 Set the groups to none and destroy them.

 direct_register_custom_op(op_name, op_func)

 torch.library.custom_op can have significant overhead because it

 direct_register_custom_op(op_name, op_func, opts)

 direct_register_custom_op(op_name, op_func, mutates_args, opts)

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, opts)

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, target_lib, opts)

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, target_lib, dispatch_key, opts)

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, target_lib, dispatch_key, tags, opts)

 divide(numerator, denominator, opts \\ [])

 Ensure that numerator is divisible by the denominator and return

 ensure_divisibility(numerator, denominator, opts \\ [])

 Ensure that numerator is divisible by the denominator.

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size)

 Helper to initialize model parallel groups if they are not initialized,

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, opts)

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, opts)

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, opts)

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, backend, opts)

 get_context_model_parallel_group(opts \\ [])

 Python binding for vllm.distributed.get_context_model_parallel_group.

 get_dcp_group(opts \\ [])

 Python binding for vllm.distributed.get_dcp_group.

 get_decode_context_model_parallel_rank(opts \\ [])

 Return my rank for the decode context model parallel group.

 get_decode_context_model_parallel_world_size(opts \\ [])

 Return world size for the decode context model parallel group.

 get_distributed_init_method(ip, port, opts \\ [])

 Python binding for vllm.distributed.get_distributed_init_method.

 get_dp_group(opts \\ [])

 Python binding for vllm.distributed.get_dp_group.

 get_ep_group(opts \\ [])

 Python binding for vllm.distributed.get_ep_group.

 get_inner_dp_world_group(opts \\ [])

 Python binding for vllm.distributed.get_inner_dp_world_group.

 get_node_count(opts \\ [])

 Return the total number of nodes in the distributed environment.

 get_pcp_group(opts \\ [])

 Python binding for vllm.distributed.get_pcp_group.

 get_pp_group(opts \\ [])

 Python binding for vllm.distributed.get_pp_group.

 get_pp_indices(num_hidden_layers, pp_rank, pp_size, opts \\ [])

 Try to evenly distribute layers across partitions.

 get_tcp_uri(ip, port, opts \\ [])

 Python binding for vllm.distributed.get_tcp_uri.

 get_tensor_model_parallel_rank(opts \\ [])

 Return my rank for the tensor model parallel group.

 get_tensor_model_parallel_world_size(opts \\ [])

 Return world size for the tensor model parallel group.

 get_tp_group(opts \\ [])

 Python binding for vllm.distributed.get_tp_group.

 get_world_group(opts \\ [])

 Python binding for vllm.distributed.get_world_group.

 graph_capture(device, opts \\ [])

 graph_capture is a context manager which should surround the code that

 in_the_same_node_as(pg)

 This is a collective operation that returns if each rank is in the same node

 in_the_same_node_as(pg, opts)

 in_the_same_node_as(pg, source_rank, opts)

 init_distributed_environment()

 Python binding for vllm.distributed.init_distributed_environment.

 init_distributed_environment(opts)

 init_distributed_environment(world_size, opts)

 init_distributed_environment(world_size, rank, opts)

 init_distributed_environment(world_size, rank, distributed_init_method, opts)

 init_distributed_environment(world_size, rank, distributed_init_method, local_rank, opts)

 init_distributed_environment(world_size, rank, distributed_init_method, local_rank, backend, opts)

 init_distributed_environment(world_size, rank, distributed_init_method, local_rank, backend, timeout, opts)

 init_gloo_process_group(prefix_store, group_rank, group_size, timeout, opts \\ [])

 Stateless init ProcessGroup with gloo backend compatible with

 init_logger(name, opts \\ [])

 The main purpose of this function is to ensure that loggers are

 init_model_parallel_group(group_ranks, local_rank, backend)

 Python binding for vllm.distributed.init_model_parallel_group.

 init_model_parallel_group(group_ranks, local_rank, backend, opts)

 init_model_parallel_group(group_ranks, local_rank, backend, use_message_queue_broadcaster, opts)

 init_model_parallel_group(group_ranks, local_rank, backend, use_message_queue_broadcaster, group_name, opts)

 init_model_parallel_group(group_ranks, local_rank, backend, use_message_queue_broadcaster, group_name, use_device_communicator, opts)

 init_world_group(ranks, local_rank, backend, opts \\ [])

 Python binding for vllm.distributed.init_world_group.

 initialize_model_parallel()

 Initialize model parallel groups.

 initialize_model_parallel(opts)

 initialize_model_parallel(tensor_model_parallel_size, opts)

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, opts)

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, opts)

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, opts)

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, backend, opts)

 is_global_first_rank(opts \\ [])

 Check if the current process is the first rank globally across all

 is_local_first_rank(opts \\ [])

 Check if the current process is the first local rank (rank 0 on its node).

 is_torch_equal_or_newer(target, opts \\ [])

 Check if the installed torch version is >= the target version.

 logger()

 Instances of the Logger class represent a single logging channel. A

 model_parallel_is_initialized(opts \\ [])

 Check if tensor and pipeline parallel groups are initialized.

 patch_tensor_parallel_group(tp_group, opts \\ [])

 Patch the tp group temporarily until this function ends.

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape)

 Python binding for vllm.distributed.patched_fused_scaled_matmul_reduce_scatter.

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, opts)

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, opts)

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, opts)

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, opts)

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, use_fast_accum, opts)

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape)

 Python binding for vllm.distributed.patched_fused_scaled_matmul_reduce_scatter_fake.

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, opts)

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, opts)

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, opts)

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, opts)

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, use_fast_accum, opts)

 prepare_communication_buffer_for_model(model, opts \\ [])

 Prepare the communication buffer for the model.

 reduce_scatter(tensor, dim, world_size, group_name, opts \\ [])

 Python binding for vllm.distributed.reduce_scatter.

 reduce_scatter_fake(tensor, dim, world_size, group_name, opts \\ [])

 Python binding for vllm.distributed.reduce_scatter_fake.

 resolve_obj_by_qualname(qualname, opts \\ [])

 Resolve an object by its fully-qualified class name.

 sched_yield(opts \\ [])

 Python binding for vllm.distributed.sched_yield.

 set_custom_all_reduce(enable, opts \\ [])

 Python binding for vllm.distributed.set_custom_all_reduce.

 split_tensor_along_last_dim(tensor, num_partitions)

 Split a tensor along its last dimension.

 split_tensor_along_last_dim(tensor, num_partitions, opts)

 split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks, opts)

 stateless_destroy_torch_distributed_process_group(pg, opts \\ [])

 Destroy ProcessGroup returned by

 stateless_init_torch_distributed_process_group(host, port, rank, world_size, backend, opts \\ [])

 A replacement for torch.distributed.init_process_group that does not

 suppress_stdout(opts \\ [])

 Suppress stdout from C libraries at the file descriptor level.

 tensor_model_parallel_all_gather(input_)

 All-gather the input tensor across model parallel group.

 tensor_model_parallel_all_gather(input_, opts)

 tensor_model_parallel_all_gather(input_, dim, opts)

 tensor_model_parallel_all_reduce(input_, opts \\ [])

 All-reduce the input tensor across model parallel group.

 tensor_model_parallel_gather(input_)

 Gather the input tensor across model parallel group.

 tensor_model_parallel_gather(input_, opts)

 tensor_model_parallel_gather(input_, dst, opts)

 tensor_model_parallel_gather(input_, dst, dim, opts)

 tensor_model_parallel_reduce_scatter(input_)

 Reduce-Scatter the input tensor across model parallel group.

 tensor_model_parallel_reduce_scatter(input_, opts)

 tensor_model_parallel_reduce_scatter(input_, dim, opts)

 use_sched_yield()

 bool(x) -> bool

 Functions

 all_gather(tensor, dim, world_size, group_name, opts \\ [])

 @spec all_gather(term(), integer(), integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.all_gather.
Parameters
	tensor (term())
	dim (integer())
	world_size (integer())
	group_name (String.t())

Returns
	term()

 all_gather_fake(tensor, dim, world_size, group_name, opts \\ [])

 @spec all_gather_fake(term(), integer(), integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.all_gather_fake.
Parameters
	tensor (term())
	dim (integer())
	world_size (integer())
	group_name (String.t())

Returns
	term()

 all_reduce(tensor, group_name, opts \\ [])

 @spec all_reduce(term(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.all_reduce.
Parameters
	tensor (term())
	group_name (String.t())

Returns
	term()

 all_reduce_fake(tensor, group_name, opts \\ [])

 @spec all_reduce_fake(term(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.all_reduce_fake.
Parameters
	tensor (term())
	group_name (String.t())

Returns
	term()

 broadcast_tensor_dict()

 @spec broadcast_tensor_dict() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.broadcast_tensor_dict.
Parameters
	tensor_dict (term() default: None)
	src (integer() default: 0)

Returns
	term()

 broadcast_tensor_dict(opts)

 @spec broadcast_tensor_dict(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec broadcast_tensor_dict(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 broadcast_tensor_dict(tensor_dict, opts)

 @spec broadcast_tensor_dict(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec broadcast_tensor_dict(term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 broadcast_tensor_dict(tensor_dict, src, opts)

 @spec broadcast_tensor_dict(term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cleanup_dist_env_and_memory()

 @spec cleanup_dist_env_and_memory() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.cleanup_dist_env_and_memory.
Parameters
	shutdown_ray (boolean() default: False)

Returns
	term()

 cleanup_dist_env_and_memory(opts)

 @spec cleanup_dist_env_and_memory(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cleanup_dist_env_and_memory(boolean()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cleanup_dist_env_and_memory(shutdown_ray, opts)

 @spec cleanup_dist_env_and_memory(
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 destroy_distributed_environment(opts \\ [])

 @spec destroy_distributed_environment(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.destroy_distributed_environment.
Returns
	term()

 destroy_model_parallel(opts \\ [])

 @spec destroy_model_parallel(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Set the groups to none and destroy them.
Returns
	term()

 direct_register_custom_op(op_name, op_func)

 @spec direct_register_custom_op(String.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

torch.library.custom_op can have significant overhead because it
needs to consider complicated dispatching logic. This function
directly registers a custom op and dispatches it to the CUDA backend.
See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
for more details.
By default, the custom op is registered to the vLLM library. If you
want to register it to a different library, you can pass the library
object to the target_lib argument.
IMPORTANT: the lifetime of the operator is tied to the lifetime of the
library object. If you want to bind the operator to a different library,
make sure the library object is alive when the operator is used.
Parameters
	op_name (String.t())
	op_func (term())
	mutates_args (term() default: None)
	fake_impl (term() default: None)
	target_lib (term() default: None)
	dispatch_key (term() default: None)
	tags ({term(), term()} default: ())

Returns
	term()

 direct_register_custom_op(op_name, op_func, opts)

 @spec direct_register_custom_op(String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec direct_register_custom_op(String.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 direct_register_custom_op(op_name, op_func, mutates_args, opts)

 @spec direct_register_custom_op(String.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec direct_register_custom_op(String.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, opts)

 @spec direct_register_custom_op(String.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec direct_register_custom_op(String.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, target_lib, opts)

 @spec direct_register_custom_op(String.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec direct_register_custom_op(String.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, target_lib, dispatch_key, opts)

 @spec direct_register_custom_op(
 String.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec direct_register_custom_op(
 String.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 {term(), term()}
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 direct_register_custom_op(op_name, op_func, mutates_args, fake_impl, target_lib, dispatch_key, tags, opts)

 @spec direct_register_custom_op(
 String.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 {term(), term()},
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 divide(numerator, denominator, opts \\ [])

 @spec divide(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Ensure that numerator is divisible by the denominator and return
the division value.
Parameters
	numerator (term())
	denominator (term())

Returns
	term()

 ensure_divisibility(numerator, denominator, opts \\ [])

 @spec ensure_divisibility(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Ensure that numerator is divisible by the denominator.
Parameters
	numerator (term())
	denominator (term())

Returns
	term()

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size)

 @spec ensure_model_parallel_initialized(integer(), integer()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Helper to initialize model parallel groups if they are not initialized,
or ensure tensor-parallel and pipeline-parallel sizes are equal to expected
values if the model parallel groups are initialized.
Parameters
	tensor_model_parallel_size (integer())
	pipeline_model_parallel_size (integer())
	prefill_context_model_parallel_size (integer() default: 1)
	decode_context_model_parallel_size (term() default: 1)
	backend (term() default: None)

Returns
	nil

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, opts)

 @spec ensure_model_parallel_initialized(integer(), integer(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec ensure_model_parallel_initialized(integer(), integer(), integer()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, opts)

 @spec ensure_model_parallel_initialized(integer(), integer(), integer(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec ensure_model_parallel_initialized(integer(), integer(), integer(), term()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, opts)

 @spec ensure_model_parallel_initialized(
 integer(),
 integer(),
 integer(),
 term(),
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec ensure_model_parallel_initialized(
 integer(),
 integer(),
 integer(),
 term(),
 term()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 ensure_model_parallel_initialized(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, backend, opts)

 @spec ensure_model_parallel_initialized(
 integer(),
 integer(),
 integer(),
 term(),
 term(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

 get_context_model_parallel_group(opts \\ [])

 @spec get_context_model_parallel_group(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_context_model_parallel_group.
Returns
	term()

 get_dcp_group(opts \\ [])

 @spec get_dcp_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_dcp_group.
Returns
	term()

 get_decode_context_model_parallel_rank(opts \\ [])

 @spec get_decode_context_model_parallel_rank(keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Return my rank for the decode context model parallel group.
Returns
	integer()

 get_decode_context_model_parallel_world_size(opts \\ [])

 @spec get_decode_context_model_parallel_world_size(keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Return world size for the decode context model parallel group.
Returns
	integer()

 get_distributed_init_method(ip, port, opts \\ [])

 @spec get_distributed_init_method(String.t(), integer(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_distributed_init_method.
Parameters
	ip (String.t())
	port (integer())

Returns
	String.t()

 get_dp_group(opts \\ [])

 @spec get_dp_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_dp_group.
Returns
	term()

 get_ep_group(opts \\ [])

 @spec get_ep_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_ep_group.
Returns
	term()

 get_inner_dp_world_group(opts \\ [])

 @spec get_inner_dp_world_group(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_inner_dp_world_group.
Returns
	term()

 get_node_count(opts \\ [])

 @spec get_node_count(keyword()) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Return the total number of nodes in the distributed environment.
Returns
	integer()

 get_pcp_group(opts \\ [])

 @spec get_pcp_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_pcp_group.
Returns
	term()

 get_pp_group(opts \\ [])

 @spec get_pp_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_pp_group.
Returns
	term()

 get_pp_indices(num_hidden_layers, pp_rank, pp_size, opts \\ [])

 @spec get_pp_indices(integer(), integer(), integer(), keyword()) ::
 {:ok, {integer(), integer()}} | {:error, Snakepit.Error.t()}

Try to evenly distribute layers across partitions.
If the number of layers is not divisible by the number of partitions,
the remaining layers are evenly distributed across all but the last
partition. The last partition is excluded because it often contains an
additional norm layer and we are attempting to balance compute.
If pp_size > 2 and the number of remaining layers is
0 < x <= pp_size - 2 then the remaining layers are evenly distributed
across the middle partitions. The first and last partitions are excluded
because they contain the input and output embeddings respectively and we
are attempting to reduce maximum memory consumption across partitions.
Parameters
	num_hidden_layers (integer())
	pp_rank (integer())
	pp_size (integer())

Returns
	{integer(), integer()}

 get_tcp_uri(ip, port, opts \\ [])

 @spec get_tcp_uri(String.t(), integer(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_tcp_uri.
Parameters
	ip (String.t())
	port (integer())

Returns
	String.t()

 get_tensor_model_parallel_rank(opts \\ [])

 @spec get_tensor_model_parallel_rank(keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Return my rank for the tensor model parallel group.
Returns
	integer()

 get_tensor_model_parallel_world_size(opts \\ [])

 @spec get_tensor_model_parallel_world_size(keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Return world size for the tensor model parallel group.
Returns
	integer()

 get_tp_group(opts \\ [])

 @spec get_tp_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_tp_group.
Returns
	term()

 get_world_group(opts \\ [])

 @spec get_world_group(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.get_world_group.
Returns
	term()

 graph_capture(device, opts \\ [])

 @spec graph_capture(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

graph_capture is a context manager which should surround the code that
is capturing the CUDA graph. Its main purpose is to ensure that some
operations will be run after the graph is captured, before the graph
is replayed. It returns a GraphCaptureContext object which contains the
necessary data for the graph capture. Currently, it only contains the
stream that the graph capture is running on. This stream is set to the
current CUDA stream when the context manager is entered and reset to the
default stream when the context manager is exited. This is to ensure that
the graph capture is running on a separate stream from the default stream,
in order to explicitly distinguish the kernels to capture
from other kernels possibly launched on background in the default stream.
Parameters
	device (term())

Returns
	term()

 in_the_same_node_as(pg)

 @spec in_the_same_node_as(term()) :: {:ok, [boolean()]} | {:error, Snakepit.Error.t()}

This is a collective operation that returns if each rank is in the same node
as the source rank. It tests if processes are attached to the same
memory system (shared access to shared memory).
Parameters
	pg (term())
	source_rank (integer() default: 0)

Returns
	list(boolean())

 in_the_same_node_as(pg, opts)

 @spec in_the_same_node_as(
 term(),
 keyword()
) :: {:ok, [boolean()]} | {:error, Snakepit.Error.t()}

 @spec in_the_same_node_as(term(), integer()) ::
 {:ok, [boolean()]} | {:error, Snakepit.Error.t()}

 in_the_same_node_as(pg, source_rank, opts)

 @spec in_the_same_node_as(term(), integer(), keyword()) ::
 {:ok, [boolean()]} | {:error, Snakepit.Error.t()}

 init_distributed_environment()

 @spec init_distributed_environment() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.init_distributed_environment.
Parameters
	world_size (integer() default: -1)
	rank (integer() default: -1)
	distributed_init_method (String.t() default: 'env://')
	local_rank (integer() default: -1)
	backend (String.t() default: 'nccl')
	timeout (term() default: None)

Returns
	term()

 init_distributed_environment(opts)

 @spec init_distributed_environment(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_distributed_environment(integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_distributed_environment(world_size, opts)

 @spec init_distributed_environment(
 integer(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_distributed_environment(integer(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_distributed_environment(world_size, rank, opts)

 @spec init_distributed_environment(integer(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_distributed_environment(integer(), integer(), String.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_distributed_environment(world_size, rank, distributed_init_method, opts)

 @spec init_distributed_environment(integer(), integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_distributed_environment(integer(), integer(), String.t(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_distributed_environment(world_size, rank, distributed_init_method, local_rank, opts)

 @spec init_distributed_environment(
 integer(),
 integer(),
 String.t(),
 integer(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_distributed_environment(
 integer(),
 integer(),
 String.t(),
 integer(),
 String.t()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_distributed_environment(world_size, rank, distributed_init_method, local_rank, backend, opts)

 @spec init_distributed_environment(
 integer(),
 integer(),
 String.t(),
 integer(),
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_distributed_environment(
 integer(),
 integer(),
 String.t(),
 integer(),
 String.t(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 init_distributed_environment(world_size, rank, distributed_init_method, local_rank, backend, timeout, opts)

 @spec init_distributed_environment(
 integer(),
 integer(),
 String.t(),
 integer(),
 String.t(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 init_gloo_process_group(prefix_store, group_rank, group_size, timeout, opts \\ [])

 @spec init_gloo_process_group(term(), integer(), integer(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Stateless init ProcessGroup with gloo backend compatible with
different torch versions.
Parameters
	prefix_store (term())
	group_rank (integer())
	group_size (integer())
	timeout (term())

Returns
	term()

 init_logger(name, opts \\ [])

 @spec init_logger(
 String.t(),
 keyword()
) :: {:ok, Vllm.Logger.VllmLogger.t()} | {:error, Snakepit.Error.t()}

The main purpose of this function is to ensure that loggers are
retrieved in such a way that we can be sure the root vllm logger has
already been configured.
Parameters
	name (String.t())

Returns
	Vllm.Logger.VllmLogger.t()

 init_model_parallel_group(group_ranks, local_rank, backend)

 @spec init_model_parallel_group([[integer()]], integer(), String.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.init_model_parallel_group.
Parameters
	group_ranks (list(list(integer())))
	local_rank (integer())
	backend (String.t())
	use_message_queue_broadcaster (boolean() default: False)
	group_name (term() default: None)
	use_device_communicator (boolean() default: True)

Returns
	term()

 init_model_parallel_group(group_ranks, local_rank, backend, opts)

 @spec init_model_parallel_group([[integer()]], integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_model_parallel_group([[integer()]], integer(), String.t(), boolean()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_model_parallel_group(group_ranks, local_rank, backend, use_message_queue_broadcaster, opts)

 @spec init_model_parallel_group(
 [[integer()]],
 integer(),
 String.t(),
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_model_parallel_group(
 [[integer()]],
 integer(),
 String.t(),
 boolean(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_model_parallel_group(group_ranks, local_rank, backend, use_message_queue_broadcaster, group_name, opts)

 @spec init_model_parallel_group(
 [[integer()]],
 integer(),
 String.t(),
 boolean(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec init_model_parallel_group(
 [[integer()]],
 integer(),
 String.t(),
 boolean(),
 term(),
 boolean()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 init_model_parallel_group(group_ranks, local_rank, backend, use_message_queue_broadcaster, group_name, use_device_communicator, opts)

 @spec init_model_parallel_group(
 [[integer()]],
 integer(),
 String.t(),
 boolean(),
 term(),
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 init_world_group(ranks, local_rank, backend, opts \\ [])

 @spec init_world_group([integer()], integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.init_world_group.
Parameters
	ranks (list(integer()))
	local_rank (integer())
	backend (String.t())

Returns
	term()

 initialize_model_parallel()

 @spec initialize_model_parallel() :: {:ok, nil} | {:error, Snakepit.Error.t()}

Initialize model parallel groups.
Parameters
	tensor_model_parallel_size - number of GPUs used for tensor model parallelism.
	pipeline_model_parallel_size - number of GPUs used for pipeline model parallelism.
	backend - name of torch distributed communication backend.

Returns
	nil

 initialize_model_parallel(opts)

 @spec initialize_model_parallel(keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec initialize_model_parallel(integer()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 initialize_model_parallel(tensor_model_parallel_size, opts)

 @spec initialize_model_parallel(
 integer(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec initialize_model_parallel(integer(), integer()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, opts)

 @spec initialize_model_parallel(integer(), integer(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec initialize_model_parallel(integer(), integer(), integer()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, opts)

 @spec initialize_model_parallel(integer(), integer(), integer(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec initialize_model_parallel(integer(), integer(), integer(), term()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, opts)

 @spec initialize_model_parallel(integer(), integer(), integer(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 @spec initialize_model_parallel(integer(), integer(), integer(), term(), term()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, prefill_context_model_parallel_size, decode_context_model_parallel_size, backend, opts)

 @spec initialize_model_parallel(
 integer(),
 integer(),
 integer(),
 term(),
 term(),
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

 is_global_first_rank(opts \\ [])

 @spec is_global_first_rank(keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the current process is the first rank globally across all
parallelism strategies (PP, TP, DP, EP, etc.).
Unlike group-specific checks like get_tensor_model_parallel_rank() == 0
or get_pp_group().is_first_rank, this function checks the global rank
across all parallelism dimensions.
Returns
Returns boolean(). True if this is the global first rank (rank 0), False otherwise. Returns True if distributed is not initialized (single process).

 is_local_first_rank(opts \\ [])

 @spec is_local_first_rank(keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the current process is the first local rank (rank 0 on its node).
Returns
	boolean()

 is_torch_equal_or_newer(target, opts \\ [])

 @spec is_torch_equal_or_newer(
 String.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the installed torch version is >= the target version.
Parameters
	target - a version string, like "2.6.0".

Returns
	boolean()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 model_parallel_is_initialized(opts \\ [])

 @spec model_parallel_is_initialized(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Check if tensor and pipeline parallel groups are initialized.
Returns
	term()

 patch_tensor_parallel_group(tp_group, opts \\ [])

 @spec patch_tensor_parallel_group(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Patch the tp group temporarily until this function ends.
This method is for draft workers of speculative decoding to run draft model
with different tp degree from that of target model workers.
Parameters
	tp_group - the tp group coordinator (type: GroupCoordinator)

Returns
	term()

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape)

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()]
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.patched_fused_scaled_matmul_reduce_scatter.
Parameters
	a (term())
	b (term())
	a_scale (term())
	b_scale (term())
	reduce_op (String.t())
	orig_scatter_dim (integer())
	scatter_dim_after_maybe_reshape (integer())
	group_name (String.t())
	output_shape (list(integer()))
	bias (term() default: None)
	result_scale (term() default: None)
	out_dtype (term() default: None)
	use_fast_accum (boolean() default: False)

Returns
	term()

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term(),
 boolean()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, use_fast_accum, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term(),
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape)

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()]
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.patched_fused_scaled_matmul_reduce_scatter_fake.
Parameters
	a (term())
	b (term())
	a_scale (term())
	b_scale (term())
	reduce_op (String.t())
	orig_scatter_dim (integer())
	scatter_dim_after_maybe_reshape (integer())
	group_name (String.t())
	output_shape (list(integer()))
	bias (term() default: None)
	result_scale (term() default: None)
	out_dtype (term() default: None)
	use_fast_accum (boolean() default: False)

Returns
	term()

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term(),
 boolean()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 patched_fused_scaled_matmul_reduce_scatter_fake(a, b, a_scale, b_scale, reduce_op, orig_scatter_dim, scatter_dim_after_maybe_reshape, group_name, output_shape, bias, result_scale, out_dtype, use_fast_accum, opts)

 @spec patched_fused_scaled_matmul_reduce_scatter_fake(
 term(),
 term(),
 term(),
 term(),
 String.t(),
 integer(),
 integer(),
 String.t(),
 [integer()],
 term(),
 term(),
 term(),
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 prepare_communication_buffer_for_model(model, opts \\ [])

 @spec prepare_communication_buffer_for_model(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Prepare the communication buffer for the model.
Traditional communication libraries like NCCL are almost
model agnostic. However, emerging new communication libraries like
MoE all2all (DeepEP) usually allocate the communication buffer
based on the model shape for optimal performance.
Parameters
	model (term())

Returns
	term()

 reduce_scatter(tensor, dim, world_size, group_name, opts \\ [])

 @spec reduce_scatter(term(), integer(), integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.reduce_scatter.
Parameters
	tensor (term())
	dim (integer())
	world_size (integer())
	group_name (String.t())

Returns
	term()

 reduce_scatter_fake(tensor, dim, world_size, group_name, opts \\ [])

 @spec reduce_scatter_fake(term(), integer(), integer(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.reduce_scatter_fake.
Parameters
	tensor (term())
	dim (integer())
	world_size (integer())
	group_name (String.t())

Returns
	term()

 resolve_obj_by_qualname(qualname, opts \\ [])

 @spec resolve_obj_by_qualname(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Resolve an object by its fully-qualified class name.
Parameters
	qualname (String.t())

Returns
	term()

 sched_yield(opts \\ [])

 @spec sched_yield(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.sched_yield.
Returns
	term()

 set_custom_all_reduce(enable, opts \\ [])

 @spec set_custom_all_reduce(
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.distributed.set_custom_all_reduce.
Parameters
	enable (boolean())

Returns
	term()

 split_tensor_along_last_dim(tensor, num_partitions)

 @spec split_tensor_along_last_dim(term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Split a tensor along its last dimension.
Parameters
	tensor - input tensor.
	num_partitions - number of partitions to split the tensor
	contiguous_split_chunks - If True, make each chunk contiguous in memory.

Returns
	term()

 split_tensor_along_last_dim(tensor, num_partitions, opts)

 @spec split_tensor_along_last_dim(term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec split_tensor_along_last_dim(term(), integer(), boolean()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks, opts)

 @spec split_tensor_along_last_dim(term(), integer(), boolean(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stateless_destroy_torch_distributed_process_group(pg, opts \\ [])

 @spec stateless_destroy_torch_distributed_process_group(
 term(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Destroy ProcessGroup returned by
stateless_init_torch_distributed_process_group().
Parameters
	pg (term())

Returns
	nil

 stateless_init_torch_distributed_process_group(host, port, rank, world_size, backend, opts \\ [])

 @spec stateless_init_torch_distributed_process_group(
 String.t(),
 integer(),
 integer(),
 integer(),
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A replacement for torch.distributed.init_process_group that does not
pollute the global state. The created ProcessGroup object can be used for
some operations such as allreduce, because it does not depend on the
global rank. However, some operations such as broadcast cannot be used
because it depends on the global rank.
TODO: ask for help from PyTorch team if we need the broadcast operation.
This function is useful when we are not sure about the total number of
processes in the process group. For example, we may have process
1, 2, ..., 8 who want to communicate, and process 9 might be the same
process as process 1, or it might be a different process; process 10
might be the same process as process 5, or it might be a different process.
In this case, how can we reliably form a communication channel within
process 9 and 10, without affecting the communication channel within
process 1, 2, ..., 8?
One possible solution is to figure out if process 9 and 10 are the same
as process 1 and 5 beforehand, and then form a communication channel
based on the information, adjusting the ranks and world_size etc. However,
figuring out the information is not always easy, and it will interfere
with the main communication channel.
Our solution is to always form a communication channel with process 1, 2,
..., 8, and then use this function to form another communication channel
with process 9 and 10. This way, regardless of whether process 9 and 10
are the same as process 1 and 5, the main communication channel is
always formed with process 1, 2, ..., 8, and the additional communication
channel is formed with process 9 and 10.
Parameters
	host (String.t())
	port (integer())
	rank (integer())
	world_size (integer())
	backend (String.t())

Returns
	term()

 suppress_stdout(opts \\ [])

 @spec suppress_stdout(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Suppress stdout from C libraries at the file descriptor level.
Only suppresses stdout, not stderr, to preserve error messages.
Suppression is disabled when VLLM_LOGGING_LEVEL is set to DEBUG.
Examples
 with suppress_stdout():
 # C library calls that would normally print to stdout
 torch.distributed.new_group(ranks, backend="gloo")
Returns
	term()

 tensor_model_parallel_all_gather(input_)

 @spec tensor_model_parallel_all_gather(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

All-gather the input tensor across model parallel group.
Parameters
	input_ (term())
	dim (integer() default: -1)

Returns
	term()

 tensor_model_parallel_all_gather(input_, opts)

 @spec tensor_model_parallel_all_gather(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec tensor_model_parallel_all_gather(term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tensor_model_parallel_all_gather(input_, dim, opts)

 @spec tensor_model_parallel_all_gather(term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tensor_model_parallel_all_reduce(input_, opts \\ [])

 @spec tensor_model_parallel_all_reduce(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

All-reduce the input tensor across model parallel group.
Parameters
	input_ (term())

Returns
	term()

 tensor_model_parallel_gather(input_)

 @spec tensor_model_parallel_gather(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Gather the input tensor across model parallel group.
Parameters
	input_ (term())
	dst (integer() default: 0)
	dim (integer() default: -1)

Returns
	term()

 tensor_model_parallel_gather(input_, opts)

 @spec tensor_model_parallel_gather(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec tensor_model_parallel_gather(term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tensor_model_parallel_gather(input_, dst, opts)

 @spec tensor_model_parallel_gather(term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec tensor_model_parallel_gather(term(), integer(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tensor_model_parallel_gather(input_, dst, dim, opts)

 @spec tensor_model_parallel_gather(term(), integer(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tensor_model_parallel_reduce_scatter(input_)

 @spec tensor_model_parallel_reduce_scatter(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Reduce-Scatter the input tensor across model parallel group.
Parameters
	input_ (term())
	dim (integer() default: -1)

Returns
	term()

 tensor_model_parallel_reduce_scatter(input_, opts)

 @spec tensor_model_parallel_reduce_scatter(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec tensor_model_parallel_reduce_scatter(term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 tensor_model_parallel_reduce_scatter(input_, dim, opts)

 @spec tensor_model_parallel_reduce_scatter(term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_sched_yield()

 @spec use_sched_yield() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

Vllm.Distributed.DeviceCommunicatorBase

Base class for device-specific communicator.
It can use the cpu_group to initialize the communicator.
If the device has PyTorch integration (PyTorch can recognize its
communication backend), the device_group will also be given.

 Summary

 Types

 t()

 Functions

 all_gather(ref, input_, args, opts \\ [])

 Python method DeviceCommunicatorBase.all_gather.

 all_gatherv(ref, input_, args, opts \\ [])

 Python method DeviceCommunicatorBase.all_gatherv.

 all_reduce(ref, input_, opts \\ [])

 Python method DeviceCommunicatorBase.all_reduce.

 combine(ref, hidden_states, args, opts \\ [])

 Combine the hidden states and router logits from the appropriate device.

 destroy(ref, opts \\ [])

 Python method DeviceCommunicatorBase.destroy.

 dispatch(ref, hidden_states, router_logits, args, opts \\ [])

 Dispatch the hidden states and router logits to the appropriate device.

 gather(ref, input_, args, opts \\ [])

 NOTE: We assume that the input tensor is on the same device across

 new(cpu_group, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 prepare_communication_buffer_for_model(ref, model, opts \\ [])

 Prepare the communication buffer for the model.

 recv(ref, size, dtype, args, opts \\ [])

 Receives a tensor from the source rank.

 reduce_scatter(ref, input_, args, opts \\ [])

 Python method DeviceCommunicatorBase.reduce_scatter.

 reduce_scatterv(ref, input_, args, opts \\ [])

 Python method DeviceCommunicatorBase.reduce_scatterv.

 send(ref, tensor, args, opts \\ [])

 Sends a tensor to the destination rank in a blocking way

 Types

 t()

 @opaque t()

 Functions

 all_gather(ref, input_, args, opts \\ [])

 @spec all_gather(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DeviceCommunicatorBase.all_gather.
Parameters
	input_ (term())
	dim (integer() default: -1)

Returns
	term()

 all_gatherv(ref, input_, args, opts \\ [])

 @spec all_gatherv(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DeviceCommunicatorBase.all_gatherv.
Parameters
	input_ (term())
	dim (integer() default: 0)
	sizes (term() default: None)

Returns
	term()

 all_reduce(ref, input_, opts \\ [])

 @spec all_reduce(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DeviceCommunicatorBase.all_reduce.
Parameters
	input_ (term())

Returns
	term()

 combine(ref, hidden_states, args, opts \\ [])

 @spec combine(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Combine the hidden states and router logits from the appropriate device.
This is a no-op in the base class.
Parameters
	hidden_states (term())
	is_sequence_parallel (boolean() default: False)

Returns
	term()

 destroy(ref, opts \\ [])

 @spec destroy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DeviceCommunicatorBase.destroy.
Returns
	term()

 dispatch(ref, hidden_states, router_logits, args, opts \\ [])

 @spec dispatch(SnakeBridge.Ref.t(), term(), term(), [term()], keyword()) ::
 {:ok, {term(), term()}} | {:error, Snakepit.Error.t()}

Dispatch the hidden states and router logits to the appropriate device.
This is a no-op in the base class.
Parameters
	hidden_states (term())
	router_logits (term())
	is_sequence_parallel (boolean() default: False)
	extra_tensors (term() default: None)

Returns
	{term(), term()}

 gather(ref, input_, args, opts \\ [])

 @spec gather(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

NOTE: We assume that the input tensor is on the same device across
all the ranks.
NOTE: dst is the local rank of the destination rank.
Parameters
	input_ (term())
	dst (integer() default: 0)
	dim (integer() default: -1)

Returns
	term()

 new(cpu_group, args, opts \\ [])

 @spec new(term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	cpu_group (term())
	device (term() default: None)
	device_group (term() default: None)
	unique_name (String.t() default: '')

 prepare_communication_buffer_for_model(ref, model, opts \\ [])

 @spec prepare_communication_buffer_for_model(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Prepare the communication buffer for the model.
Parameters
	model (term())

Returns
	nil

 recv(ref, size, dtype, args, opts \\ [])

 @spec recv(SnakeBridge.Ref.t(), term(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Receives a tensor from the source rank.
Parameters
	size (term())
	dtype (term())
	src (term() default: None)

Returns
	term()

 reduce_scatter(ref, input_, args, opts \\ [])

 @spec reduce_scatter(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DeviceCommunicatorBase.reduce_scatter.
Parameters
	input_ (term())
	dim (integer() default: -1)

Returns
	term()

 reduce_scatterv(ref, input_, args, opts \\ [])

 @spec reduce_scatterv(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DeviceCommunicatorBase.reduce_scatterv.
Parameters
	input_ (term())
	dim (integer() default: -1)
	sizes (term() default: None)

Returns
	term()

 send(ref, tensor, args, opts \\ [])

 @spec send(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Sends a tensor to the destination rank in a blocking way
Parameters
	tensor (term())
	dst (term() default: None)

Returns
	nil

Vllm.Distributed.GraphCaptureContext

GraphCaptureContext(stream: torch.cuda.streams.Stream)

 Summary

 Types

 t()

 Functions

 new(stream, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(stream, opts \\ [])

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	stream (term())

Vllm.Distributed.GroupCoordinator

PyTorch ProcessGroup wrapper for a group of processes.
PyTorch ProcessGroup is bound to one specific communication backend,
e.g. NCCL, Gloo, MPI, etc.
GroupCoordinator takes charge of all the communication operations among
the processes in the group. It manages both CPU and device
communication.

 Summary

 Types

 t()

 Functions

 _all_gather_out_place(ref, input_, dim, opts \\ [])

 Python method GroupCoordinator._all_gather_out_place.

 _all_reduce_out_place(ref, input_, opts \\ [])

 Python method GroupCoordinator._all_reduce_out_place.

 _reduce_scatter_out_place(ref, input_, dim, opts \\ [])

 Python method GroupCoordinator._reduce_scatter_out_place.

 all_gather(ref, input_, args, opts \\ [])

 Python method GroupCoordinator.all_gather.

 all_gatherv(ref, input_, args, opts \\ [])

 Python method GroupCoordinator.all_gatherv.

 all_reduce(ref, input_, opts \\ [])

 User-facing all-reduce function before we actually call the

 barrier(ref, opts \\ [])

 Barrier synchronization among the group.

 broadcast(ref, input_, args, opts \\ [])

 Broadcast the input tensor.

 broadcast_object(ref, args, opts \\ [])

 Broadcast the input object.

 broadcast_object_list(ref, obj_list, args, opts \\ [])

 Broadcast the input object list.

 broadcast_tensor_dict(ref, args, opts \\ [])

 Broadcast the input tensor dictionary.

 combine(ref, hidden_states, args, opts \\ [])

 Python method GroupCoordinator.combine.

 create_mq_broadcaster(ref, args, opts \\ [])

 Python method GroupCoordinator.create_mq_broadcaster.

 create_single_reader_mq_broadcasters(ref, args, opts \\ [])

 Python method GroupCoordinator.create_single_reader_mq_broadcasters.

 destroy(ref, opts \\ [])

 Python method GroupCoordinator.destroy.

 dispatch(ref, hidden_states, router_logits, args, opts \\ [])

 Python method GroupCoordinator.dispatch.

 first_rank(ref)

 gather(ref, input_, args, opts \\ [])

 NOTE: We assume that the input tensor is on the same device across

 graph_capture(ref, args, opts \\ [])

 Python method GroupCoordinator.graph_capture.

 is_first_rank(ref)

 is_last_rank(ref)

 last_rank(ref)

 new(group_ranks, local_rank, torch_distributed_backend, use_device_communicator, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 next_rank(ref)

 prepare_communication_buffer_for_model(ref, model, opts \\ [])

 Python method GroupCoordinator.prepare_communication_buffer_for_model.

 prev_rank(ref)

 recv(ref, size, dtype, args, opts \\ [])

 Receives a tensor from the source rank.

 recv_object(ref, src, opts \\ [])

 Receive the input object list from the source rank.

 recv_tensor_dict(ref, args, opts \\ [])

 Recv the input tensor dictionary.

 reduce_scatter(ref, input_, args, opts \\ [])

 Python method GroupCoordinator.reduce_scatter.

 reduce_scatterv(ref, input_, args, opts \\ [])

 Python method GroupCoordinator.reduce_scatterv.

 send(ref, tensor, args, opts \\ [])

 Sends a tensor to the destination rank in a blocking way

 send_object(ref, obj, dst, opts \\ [])

 Send the input object list to the destination rank.

 send_tensor_dict(ref, tensor_dict, args, opts \\ [])

 Send the input tensor dictionary.

 Types

 t()

 @opaque t()

 Functions

 _all_gather_out_place(ref, input_, dim, opts \\ [])

 @spec _all_gather_out_place(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator._all_gather_out_place.
Parameters
	input_ (term())
	dim (integer())

Returns
	term()

 _all_reduce_out_place(ref, input_, opts \\ [])

 @spec _all_reduce_out_place(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator._all_reduce_out_place.
Parameters
	input_ (term())

Returns
	term()

 _reduce_scatter_out_place(ref, input_, dim, opts \\ [])

 @spec _reduce_scatter_out_place(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator._reduce_scatter_out_place.
Parameters
	input_ (term())
	dim (integer())

Returns
	term()

 all_gather(ref, input_, args, opts \\ [])

 @spec all_gather(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.all_gather.
Parameters
	input_ (term())
	dim (integer() default: -1)

Returns
	term()

 all_gatherv(ref, input_, args, opts \\ [])

 @spec all_gatherv(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.all_gatherv.
Parameters
	input_ (term())
	dim (integer() default: 0)
	sizes (term() default: None)

Returns
	term()

 all_reduce(ref, input_, opts \\ [])

 @spec all_reduce(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

User-facing all-reduce function before we actually call the
all-reduce operation.
We need this because Dynamo does not support passing an arbitrary
object (self in this case) to a custom op. We need to pass the
 group name as a string, and then look up the group coordinator from
 the group name, dispatch the all-reduce operation to the group
 coordinator.
In addition, PyTorch custom ops do not support mutation or returning
a new tensor in the same op. So we always make the all-reduce operation
out-of-place.
Parameters
	input_ (term())

Returns
	term()

 barrier(ref, opts \\ [])

 @spec barrier(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Barrier synchronization among the group.
NOTE: don't use device_group here! barrier in NCCL is
terrible because it is internally a broadcast operation with
secretly created GPU tensors. It is easy to mess up the current
device. Use the CPU group instead.
Returns
	term()

 broadcast(ref, input_, args, opts \\ [])

 @spec broadcast(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Broadcast the input tensor.
NOTE: src is the local rank of the source rank.
Parameters
	input_ (term())
	src (integer() default: 0)

Returns
	term()

 broadcast_object(ref, args, opts \\ [])

 @spec broadcast_object(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Broadcast the input object.
NOTE: src is the local rank of the source rank.
Parameters
	obj (term() default: None)
	src (integer() default: 0)

Returns
	term()

 broadcast_object_list(ref, obj_list, args, opts \\ [])

 @spec broadcast_object_list(SnakeBridge.Ref.t(), [term()], [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Broadcast the input object list.
NOTE: src is the local rank of the source rank.
Parameters
	obj_list (list(term()))
	src (integer() default: 0)
	group (term() default: None)

Returns
	term()

 broadcast_tensor_dict(ref, args, opts \\ [])

 @spec broadcast_tensor_dict(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Broadcast the input tensor dictionary.
NOTE: src is the local rank of the source rank.
Parameters
	tensor_dict (term() default: None)
	src (integer() default: 0)
	group (term() default: None)
	metadata_group (term() default: None)

Returns
	term()

 combine(ref, hidden_states, args, opts \\ [])

 @spec combine(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.combine.
Parameters
	hidden_states (term())
	is_sequence_parallel (boolean() default: False)

Returns
	term()

 create_mq_broadcaster(ref, args, opts \\ [])

 @spec create_mq_broadcaster(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.create_mq_broadcaster.
Parameters
	writer_rank (term() default: 0)
	external_writer_handle (term() default: None)
	blocking (term() default: True)

Returns
	term()

 create_single_reader_mq_broadcasters(ref, args, opts \\ [])

 @spec create_single_reader_mq_broadcasters(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.create_single_reader_mq_broadcasters.
Parameters
	reader_rank_in_group (term() default: 0)
	blocking (term() default: False)

Returns
	term()

 destroy(ref, opts \\ [])

 @spec destroy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.destroy.
Returns
	term()

 dispatch(ref, hidden_states, router_logits, args, opts \\ [])

 @spec dispatch(SnakeBridge.Ref.t(), term(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.dispatch.
Parameters
	hidden_states (term())
	router_logits (term())
	is_sequence_parallel (boolean() default: False)
	extra_tensors (term() default: None)

Returns
	term()

 first_rank(ref)

 @spec first_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 gather(ref, input_, args, opts \\ [])

 @spec gather(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

NOTE: We assume that the input tensor is on the same device across
all the ranks.
NOTE: dst is the local rank of the destination rank.
Parameters
	input_ (term())
	dst (integer() default: 0)
	dim (integer() default: -1)

Returns
	term()

 graph_capture(ref, args, opts \\ [])

 @spec graph_capture(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.graph_capture.
Parameters
	graph_capture_context (term() default: None)

Returns
	term()

 is_first_rank(ref)

 @spec is_first_rank(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_last_rank(ref)

 @spec is_last_rank(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 last_rank(ref)

 @spec last_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(group_ranks, local_rank, torch_distributed_backend, use_device_communicator, args, opts \\ [])

 @spec new([[integer()]], integer(), term(), boolean(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	group_ranks (list(list(integer())))
	local_rank (integer())
	torch_distributed_backend (term())
	use_device_communicator (boolean())
	use_message_queue_broadcaster (boolean() default: False)
	group_name (term() default: None)

 next_rank(ref)

 @spec next_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 prepare_communication_buffer_for_model(ref, model, opts \\ [])

 @spec prepare_communication_buffer_for_model(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.prepare_communication_buffer_for_model.
Parameters
	model (term())

Returns
	term()

 prev_rank(ref)

 @spec prev_rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 recv(ref, size, dtype, args, opts \\ [])

 @spec recv(SnakeBridge.Ref.t(), term(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Receives a tensor from the source rank.
Parameters
	size (term())
	dtype (term())
	src (term() default: None)

Returns
	term()

 recv_object(ref, src, opts \\ [])

 @spec recv_object(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Receive the input object list from the source rank.
Parameters
	src (integer())

Returns
	term()

 recv_tensor_dict(ref, args, opts \\ [])

 @spec recv_tensor_dict(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Recv the input tensor dictionary.
NOTE: src is the local rank of the source rank.
all_gather_group: The group for the all-gather operation. If provided,
an optimization is enabled where each rank in the group sends a
slice of a tensor and the receiver reconstructs it using an
all-gather, which can improve performance. This is typically the
tensor-parallel group.
all_gather_tensors: A dictionary to specify which tensors should use
the all-gather optimization, which is only effective when
`all_gather_group` is provided. By default, this optimization is
on for any tensor whose size is divisible by the
`all_gather_group`'s world size. However, it should be disabled
for tensors that are not fully replicated across the group (e.g.,
the residual tensor when sequence parallelism is enabled). This
dictionary allows overriding the default behavior on a per-tensor
basis.
Parameters
	src (term() default: None)
	all_gather_group (term() | nil default: None)

	all_gather_tensors (term() default: None)

Returns
	term()

 reduce_scatter(ref, input_, args, opts \\ [])

 @spec reduce_scatter(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.reduce_scatter.
Parameters
	input_ (term())
	dim (integer() default: -1)

Returns
	term()

 reduce_scatterv(ref, input_, args, opts \\ [])

 @spec reduce_scatterv(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method GroupCoordinator.reduce_scatterv.
Parameters
	input_ (term())
	dim (integer() default: -1)
	sizes (term() default: None)

Returns
	term()

 send(ref, tensor, args, opts \\ [])

 @spec send(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Sends a tensor to the destination rank in a blocking way
Parameters
	tensor (term())
	dst (term() default: None)

Returns
	nil

 send_object(ref, obj, dst, opts \\ [])

 @spec send_object(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Send the input object list to the destination rank.
Parameters
	obj (term())
	dst (integer())

Returns
	nil

 send_tensor_dict(ref, tensor_dict, args, opts \\ [])

 @spec send_tensor_dict(
 SnakeBridge.Ref.t(),
 %{optional(String.t()) => term()},
 [term()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Send the input tensor dictionary.
NOTE: dst is the local rank of the source rank.
all_gather_group: The group for the all-gather operation. If provided,
an optimization is enabled where each rank in the group sends a
slice of a tensor and the receiver reconstructs it using an
all-gather, which can improve performance. This is typically the
tensor-parallel group.
all_gather_tensors: A dictionary to specify which tensors should use
the all-gather optimization, which is only effective when
`all_gather_group` is provided. By default, this optimization is
on for any tensor whose size is divisible by the
`all_gather_group`'s world size. However, it should be disabled
for tensors that are not fully replicated across the group (e.g.,
the residual tensor when sequence parallelism is enabled). This
dictionary allows overriding the default behavior on a per-tensor
basis.
Parameters
	tensor_dict (%{optional(String.t()) => term()})
	dst (term() default: None)
	all_gather_group (term() | nil default: None)

	all_gather_tensors (term() default: None)

Returns
	term()

Vllm.Distributed.StatelessProcessGroup

A dataclass to hold a metadata store, and the rank, world_size of the
group. Only use it to communicate metadata between processes.
For data-plane communication, create NCCL-related objects.

 Summary

 Types

 t()

 Functions

 all_gather_obj(ref, obj, opts \\ [])

 All gather an object from all ranks.

 barrier(ref, args, opts \\ [])

 A robust barrier to synchronize all ranks.

 broadcast_obj(ref, obj, src, opts \\ [])

 Broadcast an object from a source rank to all other ranks.

 broadcast_send_counter(ref)

 create(ref, host, port, rank, world_size, args, opts \\ [])

 A replacement for torch.distributed.init_process_group that does not

 data_expiration_seconds(ref)

 expire_data(ref, opts \\ [])

 Expire data that is older than data_expiration_seconds seconds.

 new(rank, world_size, store, socket, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 recv_obj(ref, src, opts \\ [])

 Receive an object from a source rank.

 send_obj(ref, obj, dst, opts \\ [])

 Send an object to a destination rank.

 Types

 t()

 @opaque t()

 Functions

 all_gather_obj(ref, obj, opts \\ [])

 @spec all_gather_obj(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

All gather an object from all ranks.
Parameters
	obj (term())

Returns
	list(term())

 barrier(ref, args, opts \\ [])

 @spec barrier(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

A robust barrier to synchronize all ranks.
Uses a multi-phase approach to ensure all processes reach the barrier
before proceeding:
	Each process signals it has reached the barrier

	Each process signals that it has confirmed the arrival of all other
ranks.

	Rank 0 waits for all other ranks to signal their departure to ensure
that all ranks have departed the barrier first.

Parameters
	timeout - Maximum time in seconds to wait for each phase (in seconds)

Raises
	RuntimeError - If coordination fails or times out

Returns
	term()

 broadcast_obj(ref, obj, src, opts \\ [])

 @spec broadcast_obj(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Broadcast an object from a source rank to all other ranks.
It does not clean up after all ranks have received the object.
Use it for limited times, e.g., for initialization.
Parameters
	obj (term())
	src (integer())

Returns
	term()

 broadcast_send_counter(ref)

 @spec broadcast_send_counter(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create(ref, host, port, rank, world_size, args, opts \\ [])

 @spec create(
 SnakeBridge.Ref.t(),
 String.t(),
 integer(),
 integer(),
 integer(),
 [term()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A replacement for torch.distributed.init_process_group that does not
pollute the global state.
If we have process A and process B called torch.distributed.init_process_group
to form a group, and then we want to form another group with process A, B, C,
D, it is not possible in PyTorch, because process A and process B have already
formed a group, and process C and process D cannot join that group. This
function is a workaround for this issue.
torch.distributed.init_process_group is a global call, while this function
is a stateless call. It will return a StatelessProcessGroup object that can be
used for exchanging metadata. With this function, process A and process B
can call StatelessProcessGroup.create to form a group, and then process A, B,
C, and D can call StatelessProcessGroup.create to form another group.
Parameters
	host (String.t())
	port (integer())
	rank (integer())
	world_size (integer())
	data_expiration_seconds (integer() default: 3600)
	store_timeout (integer() default: 300)

Returns
	term()

 data_expiration_seconds(ref)

 @spec data_expiration_seconds(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 expire_data(ref, opts \\ [])

 @spec expire_data(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Expire data that is older than data_expiration_seconds seconds.
Returns
	term()

 new(rank, world_size, store, socket, args, opts \\ [])

 @spec new(integer(), integer(), term(), term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	rank (integer())
	world_size (integer())
	store (term())
	socket (term())
	data_expiration_seconds (integer() default: 3600)
	send_dst_counter (%{optional(integer()) => integer()} default: <factory>)
	recv_src_counter (%{optional(integer()) => integer()} default: <factory>)
	broadcast_send_counter (integer() default: 0)
	broadcast_recv_src_counter (%{optional(integer()) => integer()} default: <factory>)
	entries (term() default: <factory>)

 recv_obj(ref, src, opts \\ [])

 @spec recv_obj(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Receive an object from a source rank.
Parameters
	src (integer())

Returns
	term()

 send_obj(ref, obj, dst, opts \\ [])

 @spec send_obj(SnakeBridge.Ref.t(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Send an object to a destination rank.
Parameters
	obj (term())
	dst (integer())

Returns
	term()

Vllm.Distributed.TensorMetadata

TensorMetadata(device, dtype, size)

 Summary

 Types

 t()

 Functions

 _asdict(ref, opts \\ [])

 Return a new dict which maps field names to their values.

 _make(ref, iterable, opts \\ [])

 Make a new TensorMetadata object from a sequence or iterable

 _replace(ref, opts \\ [])

 Return a new TensorMetadata object replacing specified fields with new values

 count(ref, value, opts \\ [])

 Return number of occurrences of value.

 device(ref)

 dtype(ref)

 index(ref, value, args, opts \\ [])

 Return first index of value.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 size(ref)

 Types

 t()

 @opaque t()

 Functions

 _asdict(ref, opts \\ [])

 @spec _asdict(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a new dict which maps field names to their values.
Returns
	term()

 _make(ref, iterable, opts \\ [])

 @spec _make(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Make a new TensorMetadata object from a sequence or iterable
Parameters
	iterable (term())

Returns
	term()

 _replace(ref, opts \\ [])

 @spec _replace(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a new TensorMetadata object replacing specified fields with new values
Parameters
	kwds (term())

Returns
	term()

 count(ref, value, opts \\ [])

 @spec count(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return number of occurrences of value.
Parameters
	value (term())

Returns
	term()

 device(ref)

 @spec device(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 dtype(ref)

 @spec dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 index(ref, value, args, opts \\ [])

 @spec index(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return first index of value.
Raises ValueError if the value is not present.
Parameters
	value (term())
	start (term() default: 0)
	stop (term() default: 9223372036854775807)

Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 size(ref)

 @spec size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Engine

Submodule bindings for vllm.engine.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Engine.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Engine.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Engine.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Engine.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Entrypoints

Submodule bindings for vllm.entrypoints.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Entrypoints.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Entrypoints.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Entrypoints.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Entrypoints.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.EnvOverride

Submodule bindings for vllm.env_override.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.EnvOverride.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.EnvOverride.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.EnvOverride.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.EnvOverride.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _patch_get_raw_stream_if_needed(opts \\ [])

 Workaround for TorchInductor autotune get_raw_stream() bug.

 _update_scheduler_patched(self, opts \\ [])

 (Re)initializes the scheduler member. When initializing the scheduler, no CUBIN

 get_graph_partition_signature_patched(self, partitions, skip_cudagraphs, opts \\ [])

 Gets signature for each graph partition, including input nodes, output nodes, and

 init_logger(name, opts \\ [])

 The main purpose of this function is to ensure that loggers are

 is_torch_equal(target, opts \\ [])

 Check if the installed torch version is == the target version.

 logger()

 Instances of the Logger class represent a single logging channel. A

 memory_plan_reuse_patched(self, opts \\ [])

 Python binding for vllm.env_override.memory_plan_reuse_patched.

 should_partition_patched(self, node)

 Return True if we should partition the inductor graph on this node

 should_partition_patched(self, node, opts)

 should_partition_patched(self, node, should_log, opts)

 Functions

 _patch_get_raw_stream_if_needed(opts \\ [])

 @spec _patch_get_raw_stream_if_needed(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Workaround for TorchInductor autotune get_raw_stream() bug.
Returns
	term()

 _update_scheduler_patched(self, opts \\ [])

 @spec _update_scheduler_patched(
 term(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

(Re)initializes the scheduler member. When initializing the scheduler, no CUBIN
files should be generated (to avoid biasing any benchmarks and pessimizing
fusion decisions).
Parameters
	self (term())

Returns
	nil

 get_graph_partition_signature_patched(self, partitions, skip_cudagraphs, opts \\ [])

 @spec get_graph_partition_signature_patched(term(), term(), [boolean()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Gets signature for each graph partition, including input nodes, output nodes, and
whether deallocating an input within graph partition.
Parameters
	self (term())
	partitions (term())
	skip_cudagraphs (list(boolean()))

Returns
	term()

 init_logger(name, opts \\ [])

 @spec init_logger(
 String.t(),
 keyword()
) :: {:ok, Vllm.Logger.VllmLogger.t()} | {:error, Snakepit.Error.t()}

The main purpose of this function is to ensure that loggers are
retrieved in such a way that we can be sure the root vllm logger has
already been configured.
Parameters
	name (String.t())

Returns
	Vllm.Logger.VllmLogger.t()

 is_torch_equal(target, opts \\ [])

 @spec is_torch_equal(
 String.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the installed torch version is == the target version.
Parameters
	target - a version string, like "2.6.0".

Returns
	boolean()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 memory_plan_reuse_patched(self, opts \\ [])

 @spec memory_plan_reuse_patched(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.env_override.memory_plan_reuse_patched.
Parameters
	self (term())

Returns
	term()

 should_partition_patched(self, node)

 @spec should_partition_patched(term(), term()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Return True if we should partition the inductor graph on this node
Parameters
	self (term())
	node (term())
	should_log (boolean() default: False)

Returns
	boolean()

 should_partition_patched(self, node, opts)

 @spec should_partition_patched(term(), term(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

 @spec should_partition_patched(term(), term(), boolean()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

 should_partition_patched(self, node, should_log, opts)

 @spec should_partition_patched(term(), term(), boolean(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Vllm.Envs

Submodule bindings for vllm.envs.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Envs.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Envs.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Envs.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Envs.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __dir__(opts \\ [])

 Python binding for vllm.envs.__dir__.

 __getattr__(name, opts \\ [])

 Gets environment variables lazily.

 _is_envs_cache_enabled(opts \\ [])

 Checked if getattr is wrapped with functools.cache

 cmake_build_type()

 Python binding for vllm.envs.CMAKE_BUILD_TYPE.

 cmake_build_type(opts)

 cmake_build_type(arg1, opts)

 cmake_build_type(arg1, arg2, opts)

 cmake_build_type(arg1, arg2, arg3, opts)

 cmake_build_type(arg1, arg2, arg3, arg4, opts)

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, opts)

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 compile_factors(opts \\ [])

 Return env vars used for torch.compile cache keys.

 cuda_visible_devices()

 Python binding for vllm.envs.CUDA_VISIBLE_DEVICES.

 cuda_visible_devices(opts)

 cuda_visible_devices(arg1, opts)

 cuda_visible_devices(arg1, arg2, opts)

 cuda_visible_devices(arg1, arg2, arg3, opts)

 cuda_visible_devices(arg1, arg2, arg3, arg4, opts)

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, opts)

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 disable_compile_cache(opts \\ [])

 Python binding for vllm.envs.disable_compile_cache.

 disable_envs_cache(opts \\ [])

 Resets the environment variables cache. It could be used to isolate environments

 enable_envs_cache(opts \\ [])

 Enables caching of environment variables. This is useful for performance

 env_list_with_choices(env_name, default, choices)

 Create a lambda that validates environment variable

 env_list_with_choices(env_name, default, choices, opts)

 env_list_with_choices(env_name, default, choices, case_sensitive, opts)

 env_set_with_choices(env_name, default, choices)

 Creates a lambda which that validates environment variable

 env_set_with_choices(env_name, default, choices, opts)

 env_set_with_choices(env_name, default, choices, case_sensitive, opts)

 env_with_choices(env_name, default, choices)

 Create a lambda that validates environment variable against allowed choices

 env_with_choices(env_name, default, choices, opts)

 env_with_choices(env_name, default, choices, case_sensitive, opts)

 environment_variables()

 dict() -> new empty dictionary

 get_default_cache_root(opts \\ [])

 Python binding for vllm.envs.get_default_cache_root.

 get_default_config_root(opts \\ [])

 Python binding for vllm.envs.get_default_config_root.

 get_env_or_set_default()

 Python binding for vllm.envs.get_env_or_set_default.

 get_env_or_set_default(opts)

 get_env_or_set_default(arg1, opts)

 get_env_or_set_default(arg1, arg2, opts)

 get_env_or_set_default(arg1, arg2, arg3, opts)

 get_env_or_set_default(arg1, arg2, arg3, arg4, opts)

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, opts)

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 get_vllm_port(opts \\ [])

 Get the port from VLLM_PORT environment variable.

 is_set(name, opts \\ [])

 Check if an environment variable is explicitly set.

 k_scale_constant()

 int([x]) -> integer

 ld_library_path()

 Python binding for vllm.envs.LD_LIBRARY_PATH.

 ld_library_path(opts)

 ld_library_path(arg1, opts)

 ld_library_path(arg1, arg2, opts)

 ld_library_path(arg1, arg2, arg3, opts)

 ld_library_path(arg1, arg2, arg3, arg4, opts)

 ld_library_path(arg1, arg2, arg3, arg4, arg5, opts)

 ld_library_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 ld_library_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 ld_library_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 local_rank()

 int([x]) -> integer

 logger()

 Instances of the Logger class represent a single logging channel. A

 max_jobs()

 Python binding for vllm.envs.MAX_JOBS.

 max_jobs(opts)

 max_jobs(arg1, opts)

 max_jobs(arg1, arg2, opts)

 max_jobs(arg1, arg2, arg3, opts)

 max_jobs(arg1, arg2, arg3, arg4, opts)

 max_jobs(arg1, arg2, arg3, arg4, arg5, opts)

 max_jobs(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 max_jobs(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 max_jobs(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 maybe_convert_bool(value, opts \\ [])

 Python binding for vllm.envs.maybe_convert_bool.

 maybe_convert_int(value, opts \\ [])

 Python binding for vllm.envs.maybe_convert_int.

 no_color()

 bool(x) -> bool

 nvcc_threads()

 Python binding for vllm.envs.NVCC_THREADS.

 nvcc_threads(opts)

 nvcc_threads(arg1, opts)

 nvcc_threads(arg1, arg2, opts)

 nvcc_threads(arg1, arg2, arg3, opts)

 nvcc_threads(arg1, arg2, arg3, arg4, opts)

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, opts)

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 q_scale_constant()

 int([x]) -> integer

 s3_access_key_id()

 Python binding for vllm.envs.S3_ACCESS_KEY_ID.

 s3_access_key_id(opts)

 s3_access_key_id(arg1, opts)

 s3_access_key_id(arg1, arg2, opts)

 s3_access_key_id(arg1, arg2, arg3, opts)

 s3_access_key_id(arg1, arg2, arg3, arg4, opts)

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, opts)

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 s3_endpoint_url()

 Python binding for vllm.envs.S3_ENDPOINT_URL.

 s3_endpoint_url(opts)

 s3_endpoint_url(arg1, opts)

 s3_endpoint_url(arg1, arg2, opts)

 s3_endpoint_url(arg1, arg2, arg3, opts)

 s3_endpoint_url(arg1, arg2, arg3, arg4, opts)

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, opts)

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 s3_secret_access_key()

 Python binding for vllm.envs.S3_SECRET_ACCESS_KEY.

 s3_secret_access_key(opts)

 s3_secret_access_key(arg1, opts)

 s3_secret_access_key(arg1, arg2, opts)

 s3_secret_access_key(arg1, arg2, arg3, opts)

 s3_secret_access_key(arg1, arg2, arg3, arg4, opts)

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, opts)

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 use_aot_compile(opts \\ [])

 Python binding for vllm.envs.use_aot_compile.

 v_scale_constant()

 int([x]) -> integer

 verbose()

 bool(x) -> bool

 vllm_all2_all_backend()

 Python binding for vllm.envs.VLLM_ALL2ALL_BACKEND.

 vllm_all2_all_backend(opts)

 vllm_all2_all_backend(arg1, opts)

 vllm_all2_all_backend(arg1, arg2, opts)

 vllm_all2_all_backend(arg1, arg2, arg3, opts)

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, opts)

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_allow_chunked_local_attn_with_hybrid_kv_cache()

 bool(x) -> bool

 vllm_allow_insecure_serialization()

 bool(x) -> bool

 vllm_allow_long_max_model_len()

 bool(x) -> bool

 vllm_allow_runtime_lora_updating()

 bool(x) -> bool

 vllm_allreduce_use_symm_mem()

 bool(x) -> bool

 vllm_api_key()

 Python binding for vllm.envs.VLLM_API_KEY.

 vllm_api_key(opts)

 vllm_api_key(arg1, opts)

 vllm_api_key(arg1, arg2, opts)

 vllm_api_key(arg1, arg2, arg3, opts)

 vllm_api_key(arg1, arg2, arg3, arg4, opts)

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_assets_cache()

 str(object='') -> str

 vllm_assets_cache_model_clean()

 bool(x) -> bool

 vllm_audio_fetch_timeout()

 int([x]) -> integer

 vllm_blockscale_fp8_gemm_flashinfer()

 bool(x) -> bool

 vllm_cache_root()

 str(object='') -> str

 vllm_compile_cache_save_format()

 str(object='') -> str

 vllm_compute_nans_in_logits()

 bool(x) -> bool

 vllm_config_root()

 str(object='') -> str

 vllm_configure_logging()

 bool(x) -> bool

 vllm_cpu_kvcache_space()

 Python binding for vllm.envs.VLLM_CPU_KVCACHE_SPACE.

 vllm_cpu_kvcache_space(opts)

 vllm_cpu_kvcache_space(arg1, opts)

 vllm_cpu_kvcache_space(arg1, arg2, opts)

 vllm_cpu_kvcache_space(arg1, arg2, arg3, opts)

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, opts)

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_cpu_num_of_reserved_cpu()

 Python binding for vllm.envs.VLLM_CPU_NUM_OF_RESERVED_CPU.

 vllm_cpu_num_of_reserved_cpu(opts)

 vllm_cpu_num_of_reserved_cpu(arg1, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_cpu_omp_threads_bind()

 str(object='') -> str

 vllm_cpu_sgl_kernel()

 bool(x) -> bool

 vllm_cudart_so_path()

 Python binding for vllm.envs.VLLM_CUDART_SO_PATH.

 vllm_cudart_so_path(opts)

 vllm_cudart_so_path(arg1, opts)

 vllm_cudart_so_path(arg1, arg2, opts)

 vllm_cudart_so_path(arg1, arg2, arg3, opts)

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, opts)

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_custom_scopes_for_profiling()

 bool(x) -> bool

 vllm_dbo_comm_sms()

 int([x]) -> integer

 vllm_debug_dump_path()

 Python binding for vllm.envs.VLLM_DEBUG_DUMP_PATH.

 vllm_debug_dump_path(opts)

 vllm_debug_dump_path(arg1, opts)

 vllm_debug_dump_path(arg1, arg2, opts)

 vllm_debug_dump_path(arg1, arg2, arg3, opts)

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, opts)

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_debug_log_api_server_response()

 bool(x) -> bool

 vllm_debug_mfu_metrics()

 bool(x) -> bool

 vllm_debug_workspace()

 bool(x) -> bool

 vllm_deep_gemm_warmup()

 str(object='') -> str

 vllm_deepep_buffer_size_mb()

 int([x]) -> integer

 vllm_deepep_high_throughput_force_intra_node()

 bool(x) -> bool

 vllm_deepep_low_latency_use_mnnvl()

 bool(x) -> bool

 vllm_deepepll_nvfp4_dispatch()

 bool(x) -> bool

 vllm_disable_compile_cache()

 bool(x) -> bool

 vllm_disable_log_logo()

 Python binding for vllm.envs.VLLM_DISABLE_LOG_LOGO.

 vllm_disable_log_logo(opts)

 vllm_disable_log_logo(arg1, opts)

 vllm_disable_log_logo(arg1, arg2, opts)

 vllm_disable_log_logo(arg1, arg2, arg3, opts)

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, opts)

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_disable_pynccl()

 bool(x) -> bool

 vllm_disable_shared_experts_stream()

 bool(x) -> bool

 vllm_disabled_kernels()

 Built-in mutable sequence.

 vllm_do_not_track()

 bool(x) -> bool

 vllm_docker_build_context()

 bool(x) -> bool

 vllm_dp_master_ip()

 str(object='') -> str

 vllm_dp_master_port()

 int([x]) -> integer

 vllm_dp_rank()

 int([x]) -> integer

 vllm_dp_rank_local()

 int([x]) -> integer

 vllm_dp_size()

 int([x]) -> integer

 vllm_enable_cudagraph_gc()

 bool(x) -> bool

 vllm_enable_fused_moe_activation_chunking()

 bool(x) -> bool

 vllm_enable_inductor_coordinate_descent_tuning()

 bool(x) -> bool

 vllm_enable_inductor_max_autotune()

 bool(x) -> bool

 vllm_enable_moe_dp_chunk()

 bool(x) -> bool

 vllm_enable_responses_api_store()

 bool(x) -> bool

 vllm_enable_v1_multiprocessing()

 bool(x) -> bool

 vllm_engine_iteration_timeout_s()

 int([x]) -> integer

 vllm_engine_ready_timeout_s()

 int([x]) -> integer

 vllm_execute_model_timeout_seconds()

 int([x]) -> integer

 vllm_flashinfer_moe_backend()

 str(object='') -> str

 vllm_flashinfer_workspace_buffer_size()

 int([x]) -> integer

 vllm_float32_matmul_precision()

 str(object='') -> str

 vllm_force_aot_load()

 bool(x) -> bool

 vllm_fused_moe_chunk_size()

 int([x]) -> integer

 vllm_gc_debug()

 str(object='') -> str

 vllm_gpt_oss_harmony_system_instructions()

 bool(x) -> bool

 vllm_gpt_oss_system_tool_mcp_labels()

 set() -> new empty set object

 vllm_has_flashinfer_cubin()

 bool(x) -> bool

 vllm_host_ip()

 str(object='') -> str

 vllm_http_timeout_keep_alive()

 int([x]) -> integer

 vllm_image_fetch_timeout()

 int([x]) -> integer

 vllm_keep_alive_on_engine_death()

 bool(x) -> bool

 vllm_kv_cache_layout()

 Python binding for vllm.envs.VLLM_KV_CACHE_LAYOUT.

 vllm_kv_cache_layout(opts)

 vllm_kv_cache_layout(arg1, opts)

 vllm_kv_cache_layout(arg1, arg2, opts)

 vllm_kv_cache_layout(arg1, arg2, arg3, opts)

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, opts)

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_kv_events_use_int_block_hashes()

 bool(x) -> bool

 vllm_log_batchsize_interval()

 Convert a string or number to a floating point number, if possible.

 vllm_log_model_inspection()

 bool(x) -> bool

 vllm_log_stats_interval()

 Convert a string or number to a floating point number, if possible.

 vllm_logging_color()

 str(object='') -> str

 vllm_logging_config_path()

 Python binding for vllm.envs.VLLM_LOGGING_CONFIG_PATH.

 vllm_logging_config_path(opts)

 vllm_logging_config_path(arg1, opts)

 vllm_logging_config_path(arg1, arg2, opts)

 vllm_logging_config_path(arg1, arg2, arg3, opts)

 vllm_logging_config_path(arg1, arg2, arg3, arg4, opts)

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_logging_level()

 str(object='') -> str

 vllm_logging_prefix()

 str(object='') -> str

 vllm_logging_stream()

 str(object='') -> str

 vllm_loopback_ip()

 str(object='') -> str

 vllm_lora_resolver_cache_dir()

 Python binding for vllm.envs.VLLM_LORA_RESOLVER_CACHE_DIR.

 vllm_lora_resolver_cache_dir(opts)

 vllm_lora_resolver_cache_dir(arg1, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_main_cuda_version()

 str(object='') -> str

 vllm_marlin_input_dtype()

 Python binding for vllm.envs.VLLM_MARLIN_INPUT_DTYPE.

 vllm_marlin_input_dtype(opts)

 vllm_marlin_input_dtype(arg1, opts)

 vllm_marlin_input_dtype(arg1, arg2, opts)

 vllm_marlin_input_dtype(arg1, arg2, arg3, opts)

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, opts)

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_marlin_use_atomic_add()

 bool(x) -> bool

 vllm_max_audio_clip_filesize_mb()

 int([x]) -> integer

 vllm_max_tokens_per_expert_fp4_moe()

 int([x]) -> integer

 vllm_media_connector()

 str(object='') -> str

 vllm_media_loading_thread_count()

 int([x]) -> integer

 vllm_media_url_allow_redirects()

 bool(x) -> bool

 vllm_mla_disable()

 bool(x) -> bool

 vllm_mm_hasher_algorithm()

 Python binding for vllm.envs.VLLM_MM_HASHER_ALGORITHM.

 vllm_mm_hasher_algorithm(opts)

 vllm_mm_hasher_algorithm(arg1, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_model_redirect_path()

 Python binding for vllm.envs.VLLM_MODEL_REDIRECT_PATH.

 vllm_model_redirect_path(opts)

 vllm_model_redirect_path(arg1, opts)

 vllm_model_redirect_path(arg1, arg2, opts)

 vllm_model_redirect_path(arg1, arg2, arg3, opts)

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, opts)

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_moe_dp_chunk_size()

 int([x]) -> integer

 vllm_moe_use_deep_gemm()

 bool(x) -> bool

 vllm_mooncake_abort_request_timeout()

 int([x]) -> integer

 vllm_mooncake_bootstrap_port()

 int([x]) -> integer

 vllm_moriio_connector_read_mode()

 bool(x) -> bool

 vllm_moriio_num_workers()

 int([x]) -> integer

 vllm_moriio_post_batch_size()

 int([x]) -> integer

 vllm_moriio_qp_per_transfer()

 int([x]) -> integer

 vllm_mq_max_chunk_bytes_mb()

 int([x]) -> integer

 vllm_msgpack_zero_copy_threshold()

 int([x]) -> integer

 vllm_mxfp4_use_marlin()

 Python binding for vllm.envs.VLLM_MXFP4_USE_MARLIN.

 vllm_mxfp4_use_marlin(opts)

 vllm_mxfp4_use_marlin(arg1, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_nccl_include_path()

 Python binding for vllm.envs.VLLM_NCCL_INCLUDE_PATH.

 vllm_nccl_include_path(opts)

 vllm_nccl_include_path(arg1, opts)

 vllm_nccl_include_path(arg1, arg2, opts)

 vllm_nccl_include_path(arg1, arg2, arg3, opts)

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, opts)

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_nccl_so_path()

 Python binding for vllm.envs.VLLM_NCCL_SO_PATH.

 vllm_nccl_so_path(opts)

 vllm_nccl_so_path(arg1, opts)

 vllm_nccl_so_path(arg1, arg2, opts)

 vllm_nccl_so_path(arg1, arg2, arg3, opts)

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, opts)

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_nixl_abort_request_timeout()

 int([x]) -> integer

 vllm_nixl_side_channel_host()

 str(object='') -> str

 vllm_nixl_side_channel_port()

 int([x]) -> integer

 vllm_no_usage_stats()

 bool(x) -> bool

 vllm_nvfp4_gemm_backend()

 Python binding for vllm.envs.VLLM_NVFP4_GEMM_BACKEND.

 vllm_nvfp4_gemm_backend(opts)

 vllm_nvfp4_gemm_backend(arg1, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_nvtx_scopes_for_profiling()

 bool(x) -> bool

 vllm_object_storage_shm_buffer_name()

 str(object='') -> str

 vllm_pattern_match_debug()

 Python binding for vllm.envs.VLLM_PATTERN_MATCH_DEBUG.

 vllm_pattern_match_debug(opts)

 vllm_pattern_match_debug(arg1, opts)

 vllm_pattern_match_debug(arg1, arg2, opts)

 vllm_pattern_match_debug(arg1, arg2, arg3, opts)

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, opts)

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_plugins()

 Python binding for vllm.envs.VLLM_PLUGINS.

 vllm_plugins(opts)

 vllm_plugins(arg1, opts)

 vllm_plugins(arg1, arg2, opts)

 vllm_plugins(arg1, arg2, arg3, opts)

 vllm_plugins(arg1, arg2, arg3, arg4, opts)

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_port()

 Python binding for vllm.envs.VLLM_PORT.

 vllm_port(opts)

 vllm_port(arg1, opts)

 vllm_port(arg1, arg2, opts)

 vllm_port(arg1, arg2, arg3, opts)

 vllm_port(arg1, arg2, arg3, arg4, opts)

 vllm_port(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_port(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_port(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_port(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_pp_layer_partition()

 Python binding for vllm.envs.VLLM_PP_LAYER_PARTITION.

 vllm_pp_layer_partition(opts)

 vllm_pp_layer_partition(arg1, opts)

 vllm_pp_layer_partition(arg1, arg2, opts)

 vllm_pp_layer_partition(arg1, arg2, arg3, opts)

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, opts)

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_profiler_delay_iters()

 Python binding for vllm.envs.VLLM_PROFILER_DELAY_ITERS.

 vllm_profiler_delay_iters(opts)

 vllm_profiler_delay_iters(arg1, opts)

 vllm_profiler_delay_iters(arg1, arg2, opts)

 vllm_profiler_delay_iters(arg1, arg2, arg3, opts)

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, opts)

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_profiler_max_iters()

 Python binding for vllm.envs.VLLM_PROFILER_MAX_ITERS.

 vllm_profiler_max_iters(opts)

 vllm_profiler_max_iters(arg1, opts)

 vllm_profiler_max_iters(arg1, arg2, opts)

 vllm_profiler_max_iters(arg1, arg2, arg3, opts)

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, opts)

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_randomize_dp_dummy_inputs()

 bool(x) -> bool

 vllm_ray_bundle_indices()

 str(object='') -> str

 vllm_ray_dp_pack_strategy()

 str(object='') -> str

 vllm_ray_per_worker_gpus()

 Convert a string or number to a floating point number, if possible.

 vllm_ringbuffer_warning_interval()

 int([x]) -> integer

 vllm_rocm_custom_paged_attn()

 bool(x) -> bool

 vllm_rocm_fp8_mfma_page_attn()

 bool(x) -> bool

 vllm_rocm_fp8_padding()

 bool(x) -> bool

 vllm_rocm_moe_padding()

 bool(x) -> bool

 vllm_rocm_quick_reduce_cast_bf16_to_fp16()

 bool(x) -> bool

 vllm_rocm_quick_reduce_max_size_bytes_mb()

 Python binding for vllm.envs.VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB.

 vllm_rocm_quick_reduce_max_size_bytes_mb(opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_rocm_quick_reduce_quantization()

 str(object='') -> str

 vllm_rocm_shuffle_kv_cache_layout()

 Python binding for vllm.envs.VLLM_ROCM_SHUFFLE_KV_CACHE_LAYOUT.

 vllm_rocm_shuffle_kv_cache_layout(opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_rocm_sleep_mem_chunk_size()

 int([x]) -> integer

 vllm_rocm_use_aiter()

 bool(x) -> bool

 vllm_rocm_use_aiter_fp4_asm_gemm()

 bool(x) -> bool

 vllm_rocm_use_aiter_fp4_bmm()

 Python binding for vllm.envs.VLLM_ROCM_USE_AITER_FP4BMM.

 vllm_rocm_use_aiter_fp4_bmm(opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_rocm_use_aiter_fp8_bmm()

 bool(x) -> bool

 vllm_rocm_use_aiter_fusion_shared_experts()

 bool(x) -> bool

 vllm_rocm_use_aiter_linear()

 bool(x) -> bool

 vllm_rocm_use_aiter_mha()

 bool(x) -> bool

 vllm_rocm_use_aiter_mla()

 bool(x) -> bool

 vllm_rocm_use_aiter_moe()

 bool(x) -> bool

 vllm_rocm_use_aiter_paged_attn()

 bool(x) -> bool

 vllm_rocm_use_aiter_rmsnorm()

 bool(x) -> bool

 vllm_rocm_use_aiter_triton_gemm()

 bool(x) -> bool

 vllm_rocm_use_aiter_triton_rope()

 bool(x) -> bool

 vllm_rocm_use_aiter_unified_attention()

 bool(x) -> bool

 vllm_rocm_use_skinny_gemm()

 bool(x) -> bool

 vllm_rpc_base_path()

 str(object='') -> str

 vllm_rpc_timeout()

 int([x]) -> integer

 vllm_server_dev_mode()

 bool(x) -> bool

 vllm_shared_experts_stream_token_threshold()

 int([x]) -> integer

 vllm_skip_p2_p_check()

 bool(x) -> bool

 vllm_skip_precompiled_version_suffix()

 bool(x) -> bool

 vllm_sleep_when_idle()

 bool(x) -> bool

 vllm_target_device()

 str(object='') -> str

 vllm_tool_json_error_automatic_retry()

 bool(x) -> bool

 vllm_tool_parse_regex_timeout_seconds()

 int([x]) -> integer

 vllm_torch_cuda_profile()

 Python binding for vllm.envs.VLLM_TORCH_CUDA_PROFILE.

 vllm_torch_cuda_profile(opts)

 vllm_torch_cuda_profile(arg1, opts)

 vllm_torch_cuda_profile(arg1, arg2, opts)

 vllm_torch_cuda_profile(arg1, arg2, arg3, opts)

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, opts)

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_dir()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_DIR.

 vllm_torch_profiler_dir(opts)

 vllm_torch_profiler_dir(arg1, opts)

 vllm_torch_profiler_dir(arg1, arg2, opts)

 vllm_torch_profiler_dir(arg1, arg2, arg3, opts)

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_disable_async_llm()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM.

 vllm_torch_profiler_disable_async_llm(opts)

 vllm_torch_profiler_disable_async_llm(arg1, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_dump_cuda_time_total()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL.

 vllm_torch_profiler_dump_cuda_time_total(opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_record_shapes()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_RECORD_SHAPES.

 vllm_torch_profiler_record_shapes(opts)

 vllm_torch_profiler_record_shapes(arg1, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_use_gzip()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_USE_GZIP.

 vllm_torch_profiler_use_gzip(opts)

 vllm_torch_profiler_use_gzip(arg1, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_with_flops()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_WITH_FLOPS.

 vllm_torch_profiler_with_flops(opts)

 vllm_torch_profiler_with_flops(arg1, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_with_profile_memory()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY.

 vllm_torch_profiler_with_profile_memory(opts)

 vllm_torch_profiler_with_profile_memory(arg1, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_torch_profiler_with_stack()

 Python binding for vllm.envs.VLLM_TORCH_PROFILER_WITH_STACK.

 vllm_torch_profiler_with_stack(opts)

 vllm_torch_profiler_with_stack(arg1, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_tpu_bucket_padding_gap()

 int([x]) -> integer

 vllm_tpu_most_model_len()

 Python binding for vllm.envs.VLLM_TPU_MOST_MODEL_LEN.

 vllm_tpu_most_model_len(opts)

 vllm_tpu_most_model_len(arg1, opts)

 vllm_tpu_most_model_len(arg1, arg2, opts)

 vllm_tpu_most_model_len(arg1, arg2, arg3, opts)

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, opts)

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_tpu_using_pathways()

 bool(x) -> bool

 vllm_trace_function()

 int([x]) -> integer

 vllm_tuned_config_folder()

 Python binding for vllm.envs.VLLM_TUNED_CONFIG_FOLDER.

 vllm_tuned_config_folder(opts)

 vllm_tuned_config_folder(arg1, opts)

 vllm_tuned_config_folder(arg1, arg2, opts)

 vllm_tuned_config_folder(arg1, arg2, arg3, opts)

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, opts)

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_usage_source()

 str(object='') -> str

 vllm_usage_stats_server()

 str(object='') -> str

 vllm_use_aot_compile()

 bool(x) -> bool

 vllm_use_bytecode_hook()

 bool(x) -> bool

 vllm_use_deep_gemm()

 bool(x) -> bool

 vllm_use_deep_gemm_e8_m0()

 bool(x) -> bool

 vllm_use_deep_gemm_tma_aligned_scales()

 Python binding for vllm.envs.VLLM_USE_DEEP_GEMM_TMA_ALIGNED_SCALES.

 vllm_use_deep_gemm_tma_aligned_scales(opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_use_experimental_parser_context()

 bool(x) -> bool

 vllm_use_fbgemm()

 bool(x) -> bool

 vllm_use_flashinfer_moe_fp4()

 bool(x) -> bool

 vllm_use_flashinfer_moe_fp8()

 bool(x) -> bool

 vllm_use_flashinfer_moe_fp16()

 bool(x) -> bool

 vllm_use_flashinfer_moe_mxfp4_bf16()

 bool(x) -> bool

 vllm_use_flashinfer_moe_mxfp4_mxfp8()

 bool(x) -> bool

 vllm_use_flashinfer_moe_mxfp4_mxfp8_cutlass()

 bool(x) -> bool

 vllm_use_flashinfer_sampler()

 Python binding for vllm.envs.VLLM_USE_FLASHINFER_SAMPLER.

 vllm_use_flashinfer_sampler(opts)

 vllm_use_flashinfer_sampler(arg1, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_use_fused_moe_grouped_topk()

 bool(x) -> bool

 vllm_use_mega_aot_artifact()

 Python binding for vllm.envs.VLLM_USE_MEGA_AOT_ARTIFACT.

 vllm_use_mega_aot_artifact(opts)

 vllm_use_mega_aot_artifact(arg1, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 vllm_use_modelscope()

 bool(x) -> bool

 vllm_use_nccl_symm_mem()

 bool(x) -> bool

 vllm_use_nvfp4_ct_emulations()

 bool(x) -> bool

 vllm_use_precompiled()

 bool(x) -> bool

 vllm_use_ray_compiled_dag_channel_type()

 str(object='') -> str

 vllm_use_ray_compiled_dag_overlap_comm()

 bool(x) -> bool

 vllm_use_ray_wrapped_pp_comm()

 bool(x) -> bool

 vllm_use_standalone_compile()

 bool(x) -> bool

 vllm_use_triton_awq()

 bool(x) -> bool

 vllm_use_v2_model_runner()

 bool(x) -> bool

 vllm_v1_output_proc_chunk_size()

 int([x]) -> integer

 vllm_v1_use_outlines_cache()

 bool(x) -> bool

 vllm_video_fetch_timeout()

 int([x]) -> integer

 vllm_video_loader_backend()

 str(object='') -> str

 vllm_worker_multiproc_method()

 str(object='') -> str

 vllm_xgrammar_cache_mb()

 int([x]) -> integer

 vllm_xla_cache_path()

 str(object='') -> str

 vllm_xla_check_recompilation()

 bool(x) -> bool

 vllm_xla_use_spmd()

 bool(x) -> bool

 Functions

 __dir__(opts \\ [])

 @spec __dir__(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.__dir__.
Returns
	term()

 __getattr__(name, opts \\ [])

 @spec __getattr__(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Gets environment variables lazily.
NOTE: After enable_envs_cache() invocation (which triggered after service
initialization), all environment variables will be cached.
Parameters
	name (String.t())

Returns
	term()

 _is_envs_cache_enabled(opts \\ [])

 @spec _is_envs_cache_enabled(keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Checked if getattr is wrapped with functools.cache
Returns
	boolean()

 cmake_build_type()

 @spec cmake_build_type() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.CMAKE_BUILD_TYPE.
Returns
	term()

 cmake_build_type(opts)

 @spec cmake_build_type(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, opts)

 @spec cmake_build_type(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, opts)

 @spec cmake_build_type(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, arg3, opts)

 @spec cmake_build_type(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, arg3, arg4, opts)

 @spec cmake_build_type(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, opts)

 @spec cmake_build_type(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec cmake_build_type(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec cmake_build_type(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cmake_build_type(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cmake_build_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec cmake_build_type(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 compile_factors(opts \\ [])

 @spec compile_factors(keyword()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Return env vars used for torch.compile cache keys.
Start with every known vLLM env var; drop entries in ignored_factors;
hash everything else. This keeps the cache key aligned across workers.
Returns
	%{optional(String.t()) => term()}

 cuda_visible_devices()

 @spec cuda_visible_devices() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.CUDA_VISIBLE_DEVICES.
Returns
	term()

 cuda_visible_devices(opts)

 @spec cuda_visible_devices(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, opts)

 @spec cuda_visible_devices(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, opts)

 @spec cuda_visible_devices(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, arg3, opts)

 @spec cuda_visible_devices(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, arg3, arg4, opts)

 @spec cuda_visible_devices(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, opts)

 @spec cuda_visible_devices(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec cuda_visible_devices(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec cuda_visible_devices(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec cuda_visible_devices(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda_visible_devices(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec cuda_visible_devices(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_compile_cache(opts \\ [])

 @spec disable_compile_cache(keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.disable_compile_cache.
Returns
	boolean()

 disable_envs_cache(opts \\ [])

 @spec disable_envs_cache(keyword()) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Resets the environment variables cache. It could be used to isolate environments
between unit tests.
Returns
	nil

 enable_envs_cache(opts \\ [])

 @spec enable_envs_cache(keyword()) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Enables caching of environment variables. This is useful for performance
reasons, as it avoids the need to re-evaluate environment variables on
every call.
NOTE: Currently, it's invoked after service initialization to reduce
runtime overhead. This also means that environment variables should NOT
be updated after the service is initialized.
Returns
	nil

 env_list_with_choices(env_name, default, choices)

 @spec env_list_with_choices(String.t(), [String.t()], term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a lambda that validates environment variable
containing comma-separated values against allowed choices
Parameters
	env_name - Name of the environment variable
	default - Default list of values if not set
	choices - List of valid string options or callable that returns list
	case_sensitive - Whether validation should be case sensitive

Returns
	term()

 env_list_with_choices(env_name, default, choices, opts)

 @spec env_list_with_choices(String.t(), [String.t()], term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec env_list_with_choices(String.t(), [String.t()], term(), boolean()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 env_list_with_choices(env_name, default, choices, case_sensitive, opts)

 @spec env_list_with_choices(String.t(), [String.t()], term(), boolean(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 env_set_with_choices(env_name, default, choices)

 @spec env_set_with_choices(String.t(), [String.t()], term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Creates a lambda which that validates environment variable
containing comma-separated values against allowed choices which
returns choices as a set.
Parameters
	env_name (String.t())
	default (list(String.t()))
	choices (term())
	case_sensitive (boolean() default: True)

Returns
	term()

 env_set_with_choices(env_name, default, choices, opts)

 @spec env_set_with_choices(String.t(), [String.t()], term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec env_set_with_choices(String.t(), [String.t()], term(), boolean()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 env_set_with_choices(env_name, default, choices, case_sensitive, opts)

 @spec env_set_with_choices(String.t(), [String.t()], term(), boolean(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 env_with_choices(env_name, default, choices)

 @spec env_with_choices(String.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a lambda that validates environment variable against allowed choices
Parameters
	env_name - Name of the environment variable
	default - Default value if not set (can be None)
	choices - List of valid string options or callable that returns list
	case_sensitive - Whether validation should be case sensitive

Returns
	term()

 env_with_choices(env_name, default, choices, opts)

 @spec env_with_choices(String.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec env_with_choices(String.t(), term(), term(), boolean()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 env_with_choices(env_name, default, choices, case_sensitive, opts)

 @spec env_with_choices(String.t(), term(), term(), boolean(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 environment_variables()

 @spec environment_variables() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 get_default_cache_root(opts \\ [])

 @spec get_default_cache_root(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.get_default_cache_root.
Returns
	term()

 get_default_config_root(opts \\ [])

 @spec get_default_config_root(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.get_default_config_root.
Returns
	term()

 get_env_or_set_default()

 @spec get_env_or_set_default() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.get_env_or_set_default.
Returns
	term()

 get_env_or_set_default(opts)

 @spec get_env_or_set_default(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, opts)

 @spec get_env_or_set_default(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, opts)

 @spec get_env_or_set_default(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, arg3, opts)

 @spec get_env_or_set_default(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, arg3, arg4, opts)

 @spec get_env_or_set_default(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, opts)

 @spec get_env_or_set_default(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec get_env_or_set_default(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec get_env_or_set_default(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec get_env_or_set_default(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 get_env_or_set_default(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec get_env_or_set_default(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 get_vllm_port(opts \\ [])

 @spec get_vllm_port(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Get the port from VLLM_PORT environment variable.
Raises
	ArgumentError - If VLLM_PORT is a URI, suggest k8s service discovery issue.

Returns
	term()

 is_set(name, opts \\ [])

 @spec is_set(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Check if an environment variable is explicitly set.
Parameters
	name (String.t())

Returns
	term()

 k_scale_constant()

 @spec k_scale_constant() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 ld_library_path()

 @spec ld_library_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.LD_LIBRARY_PATH.
Returns
	term()

 ld_library_path(opts)

 @spec ld_library_path(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, opts)

 @spec ld_library_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, opts)

 @spec ld_library_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, arg3, opts)

 @spec ld_library_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, arg3, arg4, opts)

 @spec ld_library_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec ld_library_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec ld_library_path(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec ld_library_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec ld_library_path(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ld_library_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec ld_library_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 local_rank()

 @spec local_rank() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 max_jobs()

 @spec max_jobs() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.MAX_JOBS.
Returns
	term()

 max_jobs(opts)

 @spec max_jobs(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, opts)

 @spec max_jobs(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, opts)

 @spec max_jobs(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, arg3, opts)

 @spec max_jobs(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, arg3, arg4, opts)

 @spec max_jobs(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, arg3, arg4, arg5, opts)

 @spec max_jobs(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec max_jobs(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec max_jobs(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec max_jobs(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_jobs(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec max_jobs(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 maybe_convert_bool(value, opts \\ [])

 @spec maybe_convert_bool(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.maybe_convert_bool.
Parameters
	value (term())

Returns
	term()

 maybe_convert_int(value, opts \\ [])

 @spec maybe_convert_int(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.maybe_convert_int.
Parameters
	value (term())

Returns
	term()

 no_color()

 @spec no_color() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 nvcc_threads()

 @spec nvcc_threads() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.NVCC_THREADS.
Returns
	term()

 nvcc_threads(opts)

 @spec nvcc_threads(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, opts)

 @spec nvcc_threads(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, opts)

 @spec nvcc_threads(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, arg3, opts)

 @spec nvcc_threads(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, arg3, arg4, opts)

 @spec nvcc_threads(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, opts)

 @spec nvcc_threads(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec nvcc_threads(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec nvcc_threads(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec nvcc_threads(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 nvcc_threads(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec nvcc_threads(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 q_scale_constant()

 @spec q_scale_constant() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 s3_access_key_id()

 @spec s3_access_key_id() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.S3_ACCESS_KEY_ID.
Returns
	term()

 s3_access_key_id(opts)

 @spec s3_access_key_id(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, opts)

 @spec s3_access_key_id(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, opts)

 @spec s3_access_key_id(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, arg3, opts)

 @spec s3_access_key_id(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, arg3, arg4, opts)

 @spec s3_access_key_id(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, opts)

 @spec s3_access_key_id(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec s3_access_key_id(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec s3_access_key_id(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_access_key_id(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_access_key_id(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec s3_access_key_id(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url()

 @spec s3_endpoint_url() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.S3_ENDPOINT_URL.
Returns
	term()

 s3_endpoint_url(opts)

 @spec s3_endpoint_url(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, opts)

 @spec s3_endpoint_url(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, opts)

 @spec s3_endpoint_url(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, arg3, opts)

 @spec s3_endpoint_url(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, arg3, arg4, opts)

 @spec s3_endpoint_url(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, opts)

 @spec s3_endpoint_url(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec s3_endpoint_url(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec s3_endpoint_url(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_endpoint_url(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_endpoint_url(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec s3_endpoint_url(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key()

 @spec s3_secret_access_key() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.S3_SECRET_ACCESS_KEY.
Returns
	term()

 s3_secret_access_key(opts)

 @spec s3_secret_access_key(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, opts)

 @spec s3_secret_access_key(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, opts)

 @spec s3_secret_access_key(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, arg3, opts)

 @spec s3_secret_access_key(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, arg3, arg4, opts)

 @spec s3_secret_access_key(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, opts)

 @spec s3_secret_access_key(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec s3_secret_access_key(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec s3_secret_access_key(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec s3_secret_access_key(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 s3_secret_access_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec s3_secret_access_key(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 use_aot_compile(opts \\ [])

 @spec use_aot_compile(keyword()) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.use_aot_compile.
Returns
	boolean()

 v_scale_constant()

 @spec v_scale_constant() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 verbose()

 @spec verbose() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_all2_all_backend()

 @spec vllm_all2_all_backend() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_ALL2ALL_BACKEND.
Returns
	term()

 vllm_all2_all_backend(opts)

 @spec vllm_all2_all_backend(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, opts)

 @spec vllm_all2_all_backend(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, opts)

 @spec vllm_all2_all_backend(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, arg3, opts)

 @spec vllm_all2_all_backend(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, opts)

 @spec vllm_all2_all_backend(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_all2_all_backend(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_all2_all_backend(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_all2_all_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_all2_all_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_all2_all_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_all2_all_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_allow_chunked_local_attn_with_hybrid_kv_cache()

 @spec vllm_allow_chunked_local_attn_with_hybrid_kv_cache() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_allow_insecure_serialization()

 @spec vllm_allow_insecure_serialization() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_allow_long_max_model_len()

 @spec vllm_allow_long_max_model_len() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_allow_runtime_lora_updating()

 @spec vllm_allow_runtime_lora_updating() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_allreduce_use_symm_mem()

 @spec vllm_allreduce_use_symm_mem() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_api_key()

 @spec vllm_api_key() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_API_KEY.
Returns
	term()

 vllm_api_key(opts)

 @spec vllm_api_key(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, opts)

 @spec vllm_api_key(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, opts)

 @spec vllm_api_key(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, arg3, opts)

 @spec vllm_api_key(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, arg3, arg4, opts)

 @spec vllm_api_key(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_api_key(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_api_key(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_api_key(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_api_key(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_api_key(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_api_key(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_assets_cache()

 @spec vllm_assets_cache() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_assets_cache_model_clean()

 @spec vllm_assets_cache_model_clean() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_audio_fetch_timeout()

 @spec vllm_audio_fetch_timeout() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_blockscale_fp8_gemm_flashinfer()

 @spec vllm_blockscale_fp8_gemm_flashinfer() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_cache_root()

 @spec vllm_cache_root() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_compile_cache_save_format()

 @spec vllm_compile_cache_save_format() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_compute_nans_in_logits()

 @spec vllm_compute_nans_in_logits() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_config_root()

 @spec vllm_config_root() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_configure_logging()

 @spec vllm_configure_logging() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_cpu_kvcache_space()

 @spec vllm_cpu_kvcache_space() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_CPU_KVCACHE_SPACE.
Returns
	term()

 vllm_cpu_kvcache_space(opts)

 @spec vllm_cpu_kvcache_space(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, opts)

 @spec vllm_cpu_kvcache_space(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, opts)

 @spec vllm_cpu_kvcache_space(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, arg3, opts)

 @spec vllm_cpu_kvcache_space(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, opts)

 @spec vllm_cpu_kvcache_space(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_cpu_kvcache_space(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_cpu_kvcache_space(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_cpu_kvcache_space(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_kvcache_space(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_kvcache_space(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_cpu_kvcache_space(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu()

 @spec vllm_cpu_num_of_reserved_cpu() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_CPU_NUM_OF_RESERVED_CPU.
Returns
	term()

 vllm_cpu_num_of_reserved_cpu(opts)

 @spec vllm_cpu_num_of_reserved_cpu(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, opts)

 @spec vllm_cpu_num_of_reserved_cpu(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, opts)

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, opts)

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, opts)

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_cpu_num_of_reserved_cpu(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_cpu_num_of_reserved_cpu(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cpu_num_of_reserved_cpu(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_num_of_reserved_cpu(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_cpu_num_of_reserved_cpu(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cpu_omp_threads_bind()

 @spec vllm_cpu_omp_threads_bind() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_cpu_sgl_kernel()

 @spec vllm_cpu_sgl_kernel() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_cudart_so_path()

 @spec vllm_cudart_so_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_CUDART_SO_PATH.
Returns
	term()

 vllm_cudart_so_path(opts)

 @spec vllm_cudart_so_path(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, opts)

 @spec vllm_cudart_so_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, opts)

 @spec vllm_cudart_so_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, arg3, opts)

 @spec vllm_cudart_so_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, opts)

 @spec vllm_cudart_so_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_cudart_so_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_cudart_so_path(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_cudart_so_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_cudart_so_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_cudart_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_cudart_so_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_custom_scopes_for_profiling()

 @spec vllm_custom_scopes_for_profiling() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_dbo_comm_sms()

 @spec vllm_dbo_comm_sms() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_debug_dump_path()

 @spec vllm_debug_dump_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_DEBUG_DUMP_PATH.
Returns
	term()

 vllm_debug_dump_path(opts)

 @spec vllm_debug_dump_path(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, opts)

 @spec vllm_debug_dump_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, opts)

 @spec vllm_debug_dump_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, arg3, opts)

 @spec vllm_debug_dump_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, opts)

 @spec vllm_debug_dump_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_debug_dump_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_debug_dump_path(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_debug_dump_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_debug_dump_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_dump_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_debug_dump_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_debug_log_api_server_response()

 @spec vllm_debug_log_api_server_response() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_debug_mfu_metrics()

 @spec vllm_debug_mfu_metrics() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_debug_workspace()

 @spec vllm_debug_workspace() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_deep_gemm_warmup()

 @spec vllm_deep_gemm_warmup() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_deepep_buffer_size_mb()

 @spec vllm_deepep_buffer_size_mb() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_deepep_high_throughput_force_intra_node()

 @spec vllm_deepep_high_throughput_force_intra_node() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_deepep_low_latency_use_mnnvl()

 @spec vllm_deepep_low_latency_use_mnnvl() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_deepepll_nvfp4_dispatch()

 @spec vllm_deepepll_nvfp4_dispatch() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_disable_compile_cache()

 @spec vllm_disable_compile_cache() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_disable_log_logo()

 @spec vllm_disable_log_logo() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_DISABLE_LOG_LOGO.
Returns
	term()

 vllm_disable_log_logo(opts)

 @spec vllm_disable_log_logo(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, opts)

 @spec vllm_disable_log_logo(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, opts)

 @spec vllm_disable_log_logo(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, arg3, opts)

 @spec vllm_disable_log_logo(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, opts)

 @spec vllm_disable_log_logo(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_disable_log_logo(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_disable_log_logo(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_disable_log_logo(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_disable_log_logo(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_log_logo(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_disable_log_logo(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_disable_pynccl()

 @spec vllm_disable_pynccl() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_disable_shared_experts_stream()

 @spec vllm_disable_shared_experts_stream() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_disabled_kernels()

 @spec vllm_disabled_kernels() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 vllm_do_not_track()

 @spec vllm_do_not_track() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_docker_build_context()

 @spec vllm_docker_build_context() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_dp_master_ip()

 @spec vllm_dp_master_ip() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_dp_master_port()

 @spec vllm_dp_master_port() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_dp_rank()

 @spec vllm_dp_rank() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_dp_rank_local()

 @spec vllm_dp_rank_local() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_dp_size()

 @spec vllm_dp_size() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_enable_cudagraph_gc()

 @spec vllm_enable_cudagraph_gc() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_enable_fused_moe_activation_chunking()

 @spec vllm_enable_fused_moe_activation_chunking() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_enable_inductor_coordinate_descent_tuning()

 @spec vllm_enable_inductor_coordinate_descent_tuning() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_enable_inductor_max_autotune()

 @spec vllm_enable_inductor_max_autotune() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_enable_moe_dp_chunk()

 @spec vllm_enable_moe_dp_chunk() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_enable_responses_api_store()

 @spec vllm_enable_responses_api_store() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_enable_v1_multiprocessing()

 @spec vllm_enable_v1_multiprocessing() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_engine_iteration_timeout_s()

 @spec vllm_engine_iteration_timeout_s() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_engine_ready_timeout_s()

 @spec vllm_engine_ready_timeout_s() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_execute_model_timeout_seconds()

 @spec vllm_execute_model_timeout_seconds() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_flashinfer_moe_backend()

 @spec vllm_flashinfer_moe_backend() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_flashinfer_workspace_buffer_size()

 @spec vllm_flashinfer_workspace_buffer_size() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_float32_matmul_precision()

 @spec vllm_float32_matmul_precision() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_force_aot_load()

 @spec vllm_force_aot_load() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_fused_moe_chunk_size()

 @spec vllm_fused_moe_chunk_size() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_gc_debug()

 @spec vllm_gc_debug() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_gpt_oss_harmony_system_instructions()

 @spec vllm_gpt_oss_harmony_system_instructions() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_gpt_oss_system_tool_mcp_labels()

 @spec vllm_gpt_oss_system_tool_mcp_labels() ::
 {:ok, MapSet.t(term())} | {:error, Snakepit.Error.t()}

set() -> new empty set object
set(iterable) -> new set object
Build an unordered collection of unique elements.
Returns
	MapSet.t(term())

 vllm_has_flashinfer_cubin()

 @spec vllm_has_flashinfer_cubin() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_host_ip()

 @spec vllm_host_ip() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_http_timeout_keep_alive()

 @spec vllm_http_timeout_keep_alive() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_image_fetch_timeout()

 @spec vllm_image_fetch_timeout() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_keep_alive_on_engine_death()

 @spec vllm_keep_alive_on_engine_death() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_kv_cache_layout()

 @spec vllm_kv_cache_layout() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_KV_CACHE_LAYOUT.
Returns
	term()

 vllm_kv_cache_layout(opts)

 @spec vllm_kv_cache_layout(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, opts)

 @spec vllm_kv_cache_layout(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, opts)

 @spec vllm_kv_cache_layout(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, arg3, opts)

 @spec vllm_kv_cache_layout(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, opts)

 @spec vllm_kv_cache_layout(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_kv_cache_layout(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_kv_cache_layout(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_kv_events_use_int_block_hashes()

 @spec vllm_kv_events_use_int_block_hashes() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_log_batchsize_interval()

 @spec vllm_log_batchsize_interval() :: {:ok, float()} | {:error, Snakepit.Error.t()}

Convert a string or number to a floating point number, if possible.
Returns
	float()

 vllm_log_model_inspection()

 @spec vllm_log_model_inspection() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_log_stats_interval()

 @spec vllm_log_stats_interval() :: {:ok, float()} | {:error, Snakepit.Error.t()}

Convert a string or number to a floating point number, if possible.
Returns
	float()

 vllm_logging_color()

 @spec vllm_logging_color() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_logging_config_path()

 @spec vllm_logging_config_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_LOGGING_CONFIG_PATH.
Returns
	term()

 vllm_logging_config_path(opts)

 @spec vllm_logging_config_path(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, opts)

 @spec vllm_logging_config_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, opts)

 @spec vllm_logging_config_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, arg3, opts)

 @spec vllm_logging_config_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, arg3, arg4, opts)

 @spec vllm_logging_config_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_logging_config_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_logging_config_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_logging_config_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_logging_config_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_config_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_logging_config_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_logging_level()

 @spec vllm_logging_level() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_logging_prefix()

 @spec vllm_logging_prefix() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_logging_stream()

 @spec vllm_logging_stream() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_loopback_ip()

 @spec vllm_loopback_ip() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_lora_resolver_cache_dir()

 @spec vllm_lora_resolver_cache_dir() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_LORA_RESOLVER_CACHE_DIR.
Returns
	term()

 vllm_lora_resolver_cache_dir(opts)

 @spec vllm_lora_resolver_cache_dir(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, opts)

 @spec vllm_lora_resolver_cache_dir(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, opts)

 @spec vllm_lora_resolver_cache_dir(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, opts)

 @spec vllm_lora_resolver_cache_dir(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, opts)

 @spec vllm_lora_resolver_cache_dir(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_lora_resolver_cache_dir(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_lora_resolver_cache_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_lora_resolver_cache_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_lora_resolver_cache_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_lora_resolver_cache_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_lora_resolver_cache_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_main_cuda_version()

 @spec vllm_main_cuda_version() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_marlin_input_dtype()

 @spec vllm_marlin_input_dtype() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_MARLIN_INPUT_DTYPE.
Returns
	term()

 vllm_marlin_input_dtype(opts)

 @spec vllm_marlin_input_dtype(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, opts)

 @spec vllm_marlin_input_dtype(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, opts)

 @spec vllm_marlin_input_dtype(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, arg3, opts)

 @spec vllm_marlin_input_dtype(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, opts)

 @spec vllm_marlin_input_dtype(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_marlin_input_dtype(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_marlin_input_dtype(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_marlin_input_dtype(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_marlin_input_dtype(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_input_dtype(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_marlin_input_dtype(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_marlin_use_atomic_add()

 @spec vllm_marlin_use_atomic_add() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_max_audio_clip_filesize_mb()

 @spec vllm_max_audio_clip_filesize_mb() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_max_tokens_per_expert_fp4_moe()

 @spec vllm_max_tokens_per_expert_fp4_moe() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_media_connector()

 @spec vllm_media_connector() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_media_loading_thread_count()

 @spec vllm_media_loading_thread_count() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_media_url_allow_redirects()

 @spec vllm_media_url_allow_redirects() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_mla_disable()

 @spec vllm_mla_disable() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_mm_hasher_algorithm()

 @spec vllm_mm_hasher_algorithm() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_MM_HASHER_ALGORITHM.
Returns
	term()

 vllm_mm_hasher_algorithm(opts)

 @spec vllm_mm_hasher_algorithm(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, opts)

 @spec vllm_mm_hasher_algorithm(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, opts)

 @spec vllm_mm_hasher_algorithm(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, opts)

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, opts)

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_mm_hasher_algorithm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_mm_hasher_algorithm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mm_hasher_algorithm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mm_hasher_algorithm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_mm_hasher_algorithm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path()

 @spec vllm_model_redirect_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_MODEL_REDIRECT_PATH.
Returns
	term()

 vllm_model_redirect_path(opts)

 @spec vllm_model_redirect_path(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, opts)

 @spec vllm_model_redirect_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, opts)

 @spec vllm_model_redirect_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, arg3, opts)

 @spec vllm_model_redirect_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, opts)

 @spec vllm_model_redirect_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_model_redirect_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_model_redirect_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_model_redirect_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_model_redirect_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_model_redirect_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_model_redirect_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_moe_dp_chunk_size()

 @spec vllm_moe_dp_chunk_size() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_moe_use_deep_gemm()

 @spec vllm_moe_use_deep_gemm() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_mooncake_abort_request_timeout()

 @spec vllm_mooncake_abort_request_timeout() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_mooncake_bootstrap_port()

 @spec vllm_mooncake_bootstrap_port() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_moriio_connector_read_mode()

 @spec vllm_moriio_connector_read_mode() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_moriio_num_workers()

 @spec vllm_moriio_num_workers() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_moriio_post_batch_size()

 @spec vllm_moriio_post_batch_size() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_moriio_qp_per_transfer()

 @spec vllm_moriio_qp_per_transfer() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_mq_max_chunk_bytes_mb()

 @spec vllm_mq_max_chunk_bytes_mb() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_msgpack_zero_copy_threshold()

 @spec vllm_msgpack_zero_copy_threshold() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_mxfp4_use_marlin()

 @spec vllm_mxfp4_use_marlin() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_MXFP4_USE_MARLIN.
Returns
	term()

 vllm_mxfp4_use_marlin(opts)

 @spec vllm_mxfp4_use_marlin(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, opts)

 @spec vllm_mxfp4_use_marlin(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, opts)

 @spec vllm_mxfp4_use_marlin(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, opts)

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, opts)

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_mxfp4_use_marlin(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_mxfp4_use_marlin(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_mxfp4_use_marlin(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_mxfp4_use_marlin(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path()

 @spec vllm_nccl_include_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_NCCL_INCLUDE_PATH.
Returns
	term()

 vllm_nccl_include_path(opts)

 @spec vllm_nccl_include_path(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, opts)

 @spec vllm_nccl_include_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, opts)

 @spec vllm_nccl_include_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, arg3, opts)

 @spec vllm_nccl_include_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, opts)

 @spec vllm_nccl_include_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_nccl_include_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_nccl_include_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_nccl_include_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_include_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_include_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_nccl_include_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path()

 @spec vllm_nccl_so_path() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_NCCL_SO_PATH.
Returns
	term()

 vllm_nccl_so_path(opts)

 @spec vllm_nccl_so_path(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, opts)

 @spec vllm_nccl_so_path(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, opts)

 @spec vllm_nccl_so_path(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, arg3, opts)

 @spec vllm_nccl_so_path(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, opts)

 @spec vllm_nccl_so_path(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_nccl_so_path(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_nccl_so_path(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_nccl_so_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nccl_so_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nccl_so_path(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_nccl_so_path(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nixl_abort_request_timeout()

 @spec vllm_nixl_abort_request_timeout() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_nixl_side_channel_host()

 @spec vllm_nixl_side_channel_host() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_nixl_side_channel_port()

 @spec vllm_nixl_side_channel_port() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_no_usage_stats()

 @spec vllm_no_usage_stats() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_nvfp4_gemm_backend()

 @spec vllm_nvfp4_gemm_backend() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_NVFP4_GEMM_BACKEND.
Returns
	term()

 vllm_nvfp4_gemm_backend(opts)

 @spec vllm_nvfp4_gemm_backend(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, opts)

 @spec vllm_nvfp4_gemm_backend(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, opts)

 @spec vllm_nvfp4_gemm_backend(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, opts)

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, opts)

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_nvfp4_gemm_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_nvfp4_gemm_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_nvfp4_gemm_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvfp4_gemm_backend(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_nvfp4_gemm_backend(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_nvtx_scopes_for_profiling()

 @spec vllm_nvtx_scopes_for_profiling() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_object_storage_shm_buffer_name()

 @spec vllm_object_storage_shm_buffer_name() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_pattern_match_debug()

 @spec vllm_pattern_match_debug() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_PATTERN_MATCH_DEBUG.
Returns
	term()

 vllm_pattern_match_debug(opts)

 @spec vllm_pattern_match_debug(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, opts)

 @spec vllm_pattern_match_debug(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, opts)

 @spec vllm_pattern_match_debug(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, arg3, opts)

 @spec vllm_pattern_match_debug(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, opts)

 @spec vllm_pattern_match_debug(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_pattern_match_debug(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_pattern_match_debug(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_pattern_match_debug(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pattern_match_debug(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pattern_match_debug(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_pattern_match_debug(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins()

 @spec vllm_plugins() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_PLUGINS.
Returns
	term()

 vllm_plugins(opts)

 @spec vllm_plugins(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, opts)

 @spec vllm_plugins(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, opts)

 @spec vllm_plugins(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, arg3, opts)

 @spec vllm_plugins(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, arg3, arg4, opts)

 @spec vllm_plugins(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_plugins(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_plugins(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_plugins(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_plugins(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_plugins(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_plugins(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port()

 @spec vllm_port() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_PORT.
Returns
	term()

 vllm_port(opts)

 @spec vllm_port(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, opts)

 @spec vllm_port(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, opts)

 @spec vllm_port(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, arg3, opts)

 @spec vllm_port(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, arg3, arg4, opts)

 @spec vllm_port(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_port(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_port(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_port(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_port(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_port(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_port(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition()

 @spec vllm_pp_layer_partition() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_PP_LAYER_PARTITION.
Returns
	term()

 vllm_pp_layer_partition(opts)

 @spec vllm_pp_layer_partition(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, opts)

 @spec vllm_pp_layer_partition(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, opts)

 @spec vllm_pp_layer_partition(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, arg3, opts)

 @spec vllm_pp_layer_partition(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, opts)

 @spec vllm_pp_layer_partition(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_pp_layer_partition(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_pp_layer_partition(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_pp_layer_partition(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_pp_layer_partition(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_pp_layer_partition(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_pp_layer_partition(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters()

 @spec vllm_profiler_delay_iters() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_PROFILER_DELAY_ITERS.
Returns
	term()

 vllm_profiler_delay_iters(opts)

 @spec vllm_profiler_delay_iters(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, opts)

 @spec vllm_profiler_delay_iters(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, opts)

 @spec vllm_profiler_delay_iters(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, arg3, opts)

 @spec vllm_profiler_delay_iters(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, opts)

 @spec vllm_profiler_delay_iters(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_profiler_delay_iters(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_profiler_delay_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_profiler_delay_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_delay_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_delay_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_profiler_delay_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters()

 @spec vllm_profiler_max_iters() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_PROFILER_MAX_ITERS.
Returns
	term()

 vllm_profiler_max_iters(opts)

 @spec vllm_profiler_max_iters(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, opts)

 @spec vllm_profiler_max_iters(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, opts)

 @spec vllm_profiler_max_iters(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, arg3, opts)

 @spec vllm_profiler_max_iters(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, opts)

 @spec vllm_profiler_max_iters(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_profiler_max_iters(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_profiler_max_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_profiler_max_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_profiler_max_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_profiler_max_iters(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_profiler_max_iters(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_randomize_dp_dummy_inputs()

 @spec vllm_randomize_dp_dummy_inputs() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_ray_bundle_indices()

 @spec vllm_ray_bundle_indices() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_ray_dp_pack_strategy()

 @spec vllm_ray_dp_pack_strategy() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_ray_per_worker_gpus()

 @spec vllm_ray_per_worker_gpus() :: {:ok, float()} | {:error, Snakepit.Error.t()}

Convert a string or number to a floating point number, if possible.
Returns
	float()

 vllm_ringbuffer_warning_interval()

 @spec vllm_ringbuffer_warning_interval() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_rocm_custom_paged_attn()

 @spec vllm_rocm_custom_paged_attn() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_fp8_mfma_page_attn()

 @spec vllm_rocm_fp8_mfma_page_attn() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_fp8_padding()

 @spec vllm_rocm_fp8_padding() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_moe_padding()

 @spec vllm_rocm_moe_padding() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_quick_reduce_cast_bf16_to_fp16()

 @spec vllm_rocm_quick_reduce_cast_bf16_to_fp16() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_quick_reduce_max_size_bytes_mb()

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB.
Returns
	term()

 vllm_rocm_quick_reduce_max_size_bytes_mb(opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_max_size_bytes_mb(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_rocm_quick_reduce_max_size_bytes_mb(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_quick_reduce_quantization()

 @spec vllm_rocm_quick_reduce_quantization() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_rocm_shuffle_kv_cache_layout()

 @spec vllm_rocm_shuffle_kv_cache_layout() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_ROCM_SHUFFLE_KV_CACHE_LAYOUT.
Returns
	term()

 vllm_rocm_shuffle_kv_cache_layout(opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_shuffle_kv_cache_layout(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_rocm_shuffle_kv_cache_layout(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_sleep_mem_chunk_size()

 @spec vllm_rocm_sleep_mem_chunk_size() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_rocm_use_aiter()

 @spec vllm_rocm_use_aiter() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_fp4_asm_gemm()

 @spec vllm_rocm_use_aiter_fp4_asm_gemm() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_fp4_bmm()

 @spec vllm_rocm_use_aiter_fp4_bmm() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_ROCM_USE_AITER_FP4BMM.
Returns
	term()

 vllm_rocm_use_aiter_fp4_bmm(opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_rocm_use_aiter_fp4_bmm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp4_bmm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_rocm_use_aiter_fp4_bmm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_rocm_use_aiter_fp8_bmm()

 @spec vllm_rocm_use_aiter_fp8_bmm() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_fusion_shared_experts()

 @spec vllm_rocm_use_aiter_fusion_shared_experts() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_linear()

 @spec vllm_rocm_use_aiter_linear() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_mha()

 @spec vllm_rocm_use_aiter_mha() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_mla()

 @spec vllm_rocm_use_aiter_mla() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_moe()

 @spec vllm_rocm_use_aiter_moe() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_paged_attn()

 @spec vllm_rocm_use_aiter_paged_attn() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_rmsnorm()

 @spec vllm_rocm_use_aiter_rmsnorm() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_triton_gemm()

 @spec vllm_rocm_use_aiter_triton_gemm() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_triton_rope()

 @spec vllm_rocm_use_aiter_triton_rope() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_aiter_unified_attention()

 @spec vllm_rocm_use_aiter_unified_attention() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rocm_use_skinny_gemm()

 @spec vllm_rocm_use_skinny_gemm() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_rpc_base_path()

 @spec vllm_rpc_base_path() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_rpc_timeout()

 @spec vllm_rpc_timeout() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_server_dev_mode()

 @spec vllm_server_dev_mode() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_shared_experts_stream_token_threshold()

 @spec vllm_shared_experts_stream_token_threshold() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_skip_p2_p_check()

 @spec vllm_skip_p2_p_check() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_skip_precompiled_version_suffix()

 @spec vllm_skip_precompiled_version_suffix() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_sleep_when_idle()

 @spec vllm_sleep_when_idle() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_target_device()

 @spec vllm_target_device() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_tool_json_error_automatic_retry()

 @spec vllm_tool_json_error_automatic_retry() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_tool_parse_regex_timeout_seconds()

 @spec vllm_tool_parse_regex_timeout_seconds() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_torch_cuda_profile()

 @spec vllm_torch_cuda_profile() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_CUDA_PROFILE.
Returns
	term()

 vllm_torch_cuda_profile(opts)

 @spec vllm_torch_cuda_profile(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, opts)

 @spec vllm_torch_cuda_profile(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, opts)

 @spec vllm_torch_cuda_profile(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, arg3, opts)

 @spec vllm_torch_cuda_profile(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_cuda_profile(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_cuda_profile(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_cuda_profile(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_cuda_profile(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_cuda_profile(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_cuda_profile(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_cuda_profile(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir()

 @spec vllm_torch_profiler_dir() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_DIR.
Returns
	term()

 vllm_torch_profiler_dir(opts)

 @spec vllm_torch_profiler_dir(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, opts)

 @spec vllm_torch_profiler_dir(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, opts)

 @spec vllm_torch_profiler_dir(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_dir(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_dir(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_dir(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dir(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_dir(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm()

 @spec vllm_torch_profiler_disable_async_llm() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM.
Returns
	term()

 vllm_torch_profiler_disable_async_llm(opts)

 @spec vllm_torch_profiler_disable_async_llm(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, opts)

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, opts)

 @spec vllm_torch_profiler_disable_async_llm(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_disable_async_llm(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_disable_async_llm(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_disable_async_llm(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_disable_async_llm(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total()

 @spec vllm_torch_profiler_dump_cuda_time_total() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL.
Returns
	term()

 vllm_torch_profiler_dump_cuda_time_total(opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_dump_cuda_time_total(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_dump_cuda_time_total(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes()

 @spec vllm_torch_profiler_record_shapes() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_RECORD_SHAPES.
Returns
	term()

 vllm_torch_profiler_record_shapes(opts)

 @spec vllm_torch_profiler_record_shapes(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, opts)

 @spec vllm_torch_profiler_record_shapes(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, opts)

 @spec vllm_torch_profiler_record_shapes(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_record_shapes(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_record_shapes(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_record_shapes(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_record_shapes(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip()

 @spec vllm_torch_profiler_use_gzip() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_USE_GZIP.
Returns
	term()

 vllm_torch_profiler_use_gzip(opts)

 @spec vllm_torch_profiler_use_gzip(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, opts)

 @spec vllm_torch_profiler_use_gzip(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, opts)

 @spec vllm_torch_profiler_use_gzip(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_use_gzip(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_use_gzip(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_use_gzip(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_use_gzip(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_use_gzip(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_use_gzip(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_use_gzip(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_use_gzip(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops()

 @spec vllm_torch_profiler_with_flops() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_WITH_FLOPS.
Returns
	term()

 vllm_torch_profiler_with_flops(opts)

 @spec vllm_torch_profiler_with_flops(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, opts)

 @spec vllm_torch_profiler_with_flops(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, opts)

 @spec vllm_torch_profiler_with_flops(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_with_flops(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_with_flops(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_with_flops(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_with_flops(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_with_flops(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_flops(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_flops(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_with_flops(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory()

 @spec vllm_torch_profiler_with_profile_memory() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY.
Returns
	term()

 vllm_torch_profiler_with_profile_memory(opts)

 @spec vllm_torch_profiler_with_profile_memory(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, opts)

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, opts)

 @spec vllm_torch_profiler_with_profile_memory(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_with_profile_memory(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_profile_memory(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_with_profile_memory(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack()

 @spec vllm_torch_profiler_with_stack() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TORCH_PROFILER_WITH_STACK.
Returns
	term()

 vllm_torch_profiler_with_stack(opts)

 @spec vllm_torch_profiler_with_stack(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, opts)

 @spec vllm_torch_profiler_with_stack(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, opts)

 @spec vllm_torch_profiler_with_stack(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, opts)

 @spec vllm_torch_profiler_with_stack(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, opts)

 @spec vllm_torch_profiler_with_stack(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_torch_profiler_with_stack(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_torch_profiler_with_stack(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_torch_profiler_with_stack(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_torch_profiler_with_stack(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_torch_profiler_with_stack(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_torch_profiler_with_stack(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_bucket_padding_gap()

 @spec vllm_tpu_bucket_padding_gap() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_tpu_most_model_len()

 @spec vllm_tpu_most_model_len() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TPU_MOST_MODEL_LEN.
Returns
	term()

 vllm_tpu_most_model_len(opts)

 @spec vllm_tpu_most_model_len(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, opts)

 @spec vllm_tpu_most_model_len(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, opts)

 @spec vllm_tpu_most_model_len(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, arg3, opts)

 @spec vllm_tpu_most_model_len(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, opts)

 @spec vllm_tpu_most_model_len(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_tpu_most_model_len(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_tpu_most_model_len(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_tpu_most_model_len(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tpu_most_model_len(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_most_model_len(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_tpu_most_model_len(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tpu_using_pathways()

 @spec vllm_tpu_using_pathways() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_trace_function()

 @spec vllm_trace_function() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_tuned_config_folder()

 @spec vllm_tuned_config_folder() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_TUNED_CONFIG_FOLDER.
Returns
	term()

 vllm_tuned_config_folder(opts)

 @spec vllm_tuned_config_folder(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, opts)

 @spec vllm_tuned_config_folder(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, opts)

 @spec vllm_tuned_config_folder(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, arg3, opts)

 @spec vllm_tuned_config_folder(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, opts)

 @spec vllm_tuned_config_folder(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_tuned_config_folder(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_tuned_config_folder(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_tuned_config_folder(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_tuned_config_folder(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_tuned_config_folder(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_tuned_config_folder(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_usage_source()

 @spec vllm_usage_source() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_usage_stats_server()

 @spec vllm_usage_stats_server() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_use_aot_compile()

 @spec vllm_use_aot_compile() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_bytecode_hook()

 @spec vllm_use_bytecode_hook() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_deep_gemm()

 @spec vllm_use_deep_gemm() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_deep_gemm_e8_m0()

 @spec vllm_use_deep_gemm_e8_m0() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_deep_gemm_tma_aligned_scales()

 @spec vllm_use_deep_gemm_tma_aligned_scales() ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_USE_DEEP_GEMM_TMA_ALIGNED_SCALES.
Returns
	term()

 vllm_use_deep_gemm_tma_aligned_scales(opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_deep_gemm_tma_aligned_scales(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_use_deep_gemm_tma_aligned_scales(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_experimental_parser_context()

 @spec vllm_use_experimental_parser_context() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_fbgemm()

 @spec vllm_use_fbgemm() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_moe_fp4()

 @spec vllm_use_flashinfer_moe_fp4() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_moe_fp8()

 @spec vllm_use_flashinfer_moe_fp8() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_moe_fp16()

 @spec vllm_use_flashinfer_moe_fp16() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_moe_mxfp4_bf16()

 @spec vllm_use_flashinfer_moe_mxfp4_bf16() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_moe_mxfp4_mxfp8()

 @spec vllm_use_flashinfer_moe_mxfp4_mxfp8() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_moe_mxfp4_mxfp8_cutlass()

 @spec vllm_use_flashinfer_moe_mxfp4_mxfp8_cutlass() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_flashinfer_sampler()

 @spec vllm_use_flashinfer_sampler() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_USE_FLASHINFER_SAMPLER.
Returns
	term()

 vllm_use_flashinfer_sampler(opts)

 @spec vllm_use_flashinfer_sampler(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, opts)

 @spec vllm_use_flashinfer_sampler(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, opts)

 @spec vllm_use_flashinfer_sampler(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, opts)

 @spec vllm_use_flashinfer_sampler(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, opts)

 @spec vllm_use_flashinfer_sampler(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_use_flashinfer_sampler(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_use_flashinfer_sampler(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_use_flashinfer_sampler(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_flashinfer_sampler(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_flashinfer_sampler(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_use_flashinfer_sampler(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_fused_moe_grouped_topk()

 @spec vllm_use_fused_moe_grouped_topk() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_mega_aot_artifact()

 @spec vllm_use_mega_aot_artifact() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.envs.VLLM_USE_MEGA_AOT_ARTIFACT.
Returns
	term()

 vllm_use_mega_aot_artifact(opts)

 @spec vllm_use_mega_aot_artifact(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, opts)

 @spec vllm_use_mega_aot_artifact(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, opts)

 @spec vllm_use_mega_aot_artifact(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, opts)

 @spec vllm_use_mega_aot_artifact(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, opts)

 @spec vllm_use_mega_aot_artifact(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, opts)

 @spec vllm_use_mega_aot_artifact(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec vllm_use_mega_aot_artifact(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec vllm_use_mega_aot_artifact(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec vllm_use_mega_aot_artifact(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_mega_aot_artifact(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec vllm_use_mega_aot_artifact(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 vllm_use_modelscope()

 @spec vllm_use_modelscope() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_nccl_symm_mem()

 @spec vllm_use_nccl_symm_mem() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_nvfp4_ct_emulations()

 @spec vllm_use_nvfp4_ct_emulations() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_precompiled()

 @spec vllm_use_precompiled() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_ray_compiled_dag_channel_type()

 @spec vllm_use_ray_compiled_dag_channel_type() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_use_ray_compiled_dag_overlap_comm()

 @spec vllm_use_ray_compiled_dag_overlap_comm() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_ray_wrapped_pp_comm()

 @spec vllm_use_ray_wrapped_pp_comm() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_standalone_compile()

 @spec vllm_use_standalone_compile() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_triton_awq()

 @spec vllm_use_triton_awq() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_use_v2_model_runner()

 @spec vllm_use_v2_model_runner() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_v1_output_proc_chunk_size()

 @spec vllm_v1_output_proc_chunk_size() ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_v1_use_outlines_cache()

 @spec vllm_v1_use_outlines_cache() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_video_fetch_timeout()

 @spec vllm_video_fetch_timeout() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_video_loader_backend()

 @spec vllm_video_loader_backend() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_worker_multiproc_method()

 @spec vllm_worker_multiproc_method() ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_xgrammar_cache_mb()

 @spec vllm_xgrammar_cache_mb() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 vllm_xla_cache_path()

 @spec vllm_xla_cache_path() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 vllm_xla_check_recompilation()

 @spec vllm_xla_check_recompilation() ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 vllm_xla_use_spmd()

 @spec vllm_xla_use_spmd() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

Vllm.Exceptions

Custom exceptions for vLLM.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Exceptions.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Exceptions.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Exceptions.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Exceptions.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Exceptions.VLLMValidationError

vLLM-specific validation error for request validation failures.
Parameters
	message - The error message describing the validation failure.
	parameter - Optional parameter name that failed validation.
	value - Optional value that was rejected during validation.

 Summary

 Types

 t()

 Functions

 add_note(ref)

 Exception.add_note(note) --

 add_note(ref, opts)

 add_note(ref, arg1, opts)

 add_note(ref, arg1, arg2, opts)

 add_note(ref, arg1, arg2, arg3, opts)

 add_note(ref, arg1, arg2, arg3, arg4, opts)

 add_note(ref, arg1, arg2, arg3, arg4, arg5, opts)

 add_note(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 add_note(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 add_note(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 args(ref)

 new(message, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 with_traceback(ref)

 Exception.with_traceback(tb) --

 with_traceback(ref, opts)

 with_traceback(ref, arg1, opts)

 with_traceback(ref, arg1, arg2, opts)

 with_traceback(ref, arg1, arg2, arg3, opts)

 with_traceback(ref, arg1, arg2, arg3, arg4, opts)

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, opts)

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 add_note(ref)

 @spec add_note(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Exception.add_note(note) --
add a note to the exception
Returns
	term()

 add_note(ref, opts)

 @spec add_note(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, opts)

 @spec add_note(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, opts)

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, arg3, opts)

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, arg3, arg4, opts)

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec add_note(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec add_note(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec add_note(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 add_note(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec add_note(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 args(ref)

 @spec args(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(message, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	message (String.t())
	parameter (term() keyword-only default: None)
	value (term() keyword-only default: None)

 with_traceback(ref)

 @spec with_traceback(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Exception.with_traceback(tb) --
set self.traceback to tb and return self.
Returns
	term()

 with_traceback(ref, opts)

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, opts)

 @spec with_traceback(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, opts)

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, arg3, opts)

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, arg3, arg4, opts)

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 with_traceback(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec with_traceback(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ForwardContext

ForwardContext(no_compile_layers: dict[str, typing.Any], attn_metadata: dict[str, vllm.v1.attention.backend.AttentionMetadata] | list[dict[str, vllm.v1.attention.backend.AttentionMetadata]], virtual_engine: int, dp_metadata: vllm.forward_context.DPMetadata | None = None, cudagraph_runtime_mode: vllm.config.compilation.CUDAGraphMode = <CUDAGraphMode.NONE: 0>, batch_descriptor: vllm.forward_context.BatchDescriptor | None = None, ubatch_slices: list[vllm.v1.worker.ubatch_utils.UBatchSlice] | None = None, additional_kwargs: dict[str, typing.Any] = <factory>)

 Summary

 Types

 t()

 Functions

 batch_descriptor(ref)

 cudagraph_runtime_mode(ref)

 dp_metadata(ref)

 new(no_compile_layers, attn_metadata, virtual_engine, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 ubatch_slices(ref)

 Types

 t()

 @opaque t()

 Functions

 batch_descriptor(ref)

 @spec batch_descriptor(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 cudagraph_runtime_mode(ref)

 @spec cudagraph_runtime_mode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 dp_metadata(ref)

 @spec dp_metadata(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(no_compile_layers, attn_metadata, virtual_engine, args, opts \\ [])

 @spec new(%{optional(String.t()) => term()}, term(), integer(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	no_compile_layers (%{optional(String.t()) => term()})
	attn_metadata (term())
	virtual_engine (integer())
	dp_metadata (term() default: None)
	cudagraph_runtime_mode (term() default: <CUDAGraphMode.NONE: 0>)
	batch_descriptor (term() default: None)
	ubatch_slices (term() default: None)
	additional_kwargs (%{optional(String.t()) => term()} default: <factory>)

 ubatch_slices(ref)

 @spec ubatch_slices(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ForwardContext.AttentionMetadata

Wrapper for Python class AttentionMetadata.

 Summary

 Types

 t()

 Functions

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

Vllm.ForwardContext.BatchDescriptor

Batch descriptor for cudagraph dispatching. We should keep the num of
items as minimal as possible to properly and uniquely describe the padded
batch for cudagraph.

 Summary

 Types

 t()

 Functions

 _asdict(ref, opts \\ [])

 Return a new dict which maps field names to their values.

 _make(ref, iterable, opts \\ [])

 Make a new BatchDescriptor object from a sequence or iterable

 _replace(ref, opts \\ [])

 Return a new BatchDescriptor object replacing specified fields with new values

 count(ref, value, opts \\ [])

 Return number of occurrences of value.

 has_lora(ref)

 index(ref, value, args, opts \\ [])

 Return first index of value.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 num_reqs(ref)

 num_tokens(ref)

 relax_for_mixed_batch_cudagraphs(ref, opts \\ [])

 Return a relaxed version of current batch descriptor that is still compatible

 uniform(ref)

 Types

 t()

 @opaque t()

 Functions

 _asdict(ref, opts \\ [])

 @spec _asdict(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a new dict which maps field names to their values.
Returns
	term()

 _make(ref, iterable, opts \\ [])

 @spec _make(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Make a new BatchDescriptor object from a sequence or iterable
Parameters
	iterable (term())

Returns
	term()

 _replace(ref, opts \\ [])

 @spec _replace(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a new BatchDescriptor object replacing specified fields with new values
Parameters
	kwds (term())

Returns
	term()

 count(ref, value, opts \\ [])

 @spec count(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return number of occurrences of value.
Parameters
	value (term())

Returns
	term()

 has_lora(ref)

 @spec has_lora(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 index(ref, value, args, opts \\ [])

 @spec index(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return first index of value.
Raises ValueError if the value is not present.
Parameters
	value (term())
	start (term() default: 0)
	stop (term() default: 9223372036854775807)

Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 num_reqs(ref)

 @spec num_reqs(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 num_tokens(ref)

 @spec num_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 relax_for_mixed_batch_cudagraphs(ref, opts \\ [])

 @spec relax_for_mixed_batch_cudagraphs(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, t()} | {:error, Snakepit.Error.t()}

Return a relaxed version of current batch descriptor that is still compatible
with PIECEWISE cudagraphs (or mixed prefill-decode FA cudagraphs).
Returns
	Vllm.ForwardContext.BatchDescriptor.t()

 uniform(ref)

 @spec uniform(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ForwardContext.DPMetadata

DPMetadata(max_tokens_across_dp_cpu: torch.Tensor, num_tokens_across_dp_cpu: torch.Tensor, local_sizes: list[int] | None = None)

 Summary

 Types

 t()

 Functions

 chunked_sizes(ref, sequence_parallel_size, max_chunk_size_per_rank, chunk_idx, opts \\ [])

 Context manager to compute and temporarily set the per-rank local token

 cu_tokens_across_sp(ref, sp_size, opts \\ [])

 Python method DPMetadata.cu_tokens_across_sp.

 get_chunk_sizes_across_dp_rank(ref, opts \\ [])

 Python method DPMetadata.get_chunk_sizes_across_dp_rank.

 local_sizes(ref)

 make(ref, parallel_config, num_tokens, num_tokens_across_dp_cpu, opts \\ [])

 Python method DPMetadata.make.

 new(max_tokens_across_dp_cpu, num_tokens_across_dp_cpu, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 sp_local_sizes(ref, sequence_parallel_size, opts \\ [])

 Context manager for setting self.local_sizes. Same as self.chunked_sizes

 Types

 t()

 @opaque t()

 Functions

 chunked_sizes(ref, sequence_parallel_size, max_chunk_size_per_rank, chunk_idx, opts \\ [])

 @spec chunked_sizes(SnakeBridge.Ref.t(), integer(), integer(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Context manager to compute and temporarily set the per-rank local token
sizes for a specific chunk during chunked forward execution.
This is necessary to ensure each DP (data parallel) rank processes its
designated portion of tokens in lockstep with others, even when the
token counts are uneven or some ranks have completed their input early.
For chunked execution, we break up the total tokens on each rank into
multiple chunks (of at most max_chunk_size_per_rank), and for a given
chunk_idx, this context manager sets self.local_sizes to the number
of tokens to process in that chunk on each rank.
self.local_sizes is only valid inside the context.
Parameters
	sequence_parallel_size - When Attn is TP and MoE layers are EP, we use SP between the layers to avoid redundant ops. We need this value to compute the chunked sizes.
	max_chunk_size_per_rank - The max number of tokens each rank is allowed to process in this chunk.
	chunk_idx - The index of the chunk to compute sizes for.

Returns
	term()

 cu_tokens_across_sp(ref, sp_size, opts \\ [])

 @spec cu_tokens_across_sp(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DPMetadata.cu_tokens_across_sp.
Parameters
	sp_size (integer())

Returns
	term()

 get_chunk_sizes_across_dp_rank(ref, opts \\ [])

 @spec get_chunk_sizes_across_dp_rank(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method DPMetadata.get_chunk_sizes_across_dp_rank.
Returns
	term()

 local_sizes(ref)

 @spec local_sizes(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 make(ref, parallel_config, num_tokens, num_tokens_across_dp_cpu, opts \\ [])

 @spec make(SnakeBridge.Ref.t(), term(), integer(), term(), keyword()) ::
 {:ok, t()} | {:error, Snakepit.Error.t()}

Python method DPMetadata.make.
Parameters
	parallel_config (term())
	num_tokens (integer())
	num_tokens_across_dp_cpu (term())

Returns
	Vllm.ForwardContext.DPMetadata.t()

 new(max_tokens_across_dp_cpu, num_tokens_across_dp_cpu, args, opts \\ [])

 @spec new(term(), term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	max_tokens_across_dp_cpu (term())
	num_tokens_across_dp_cpu (term())
	local_sizes (term() default: None)

 sp_local_sizes(ref, sequence_parallel_size, opts \\ [])

 @spec sp_local_sizes(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Context manager for setting self.local_sizes. Same as self.chunked_sizes
but without any chunking.
Parameters
	sequence_parallel_size (integer())

Returns
	term()

Vllm.ForwardContext.Module

Submodule bindings for vllm.forward_context.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ForwardContext.Module.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ForwardContext.Module.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ForwardContext.Module.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ForwardContext.Module.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _compute_chunked_local_num_tokens(num_tokens_across_dp_cpu, sequence_parallel_size, max_num_tokens, chunk_idx, opts \\ [])

 Python binding for vllm.forward_context._compute_chunked_local_num_tokens.

 _compute_sp_num_tokens(num_tokens_across_dp_cpu, sequence_parallel_size, opts \\ [])

 Python binding for vllm.forward_context._compute_sp_num_tokens.

 _forward_context()

 Python binding for vllm.forward_context._forward_context.

 batchsize_forward_time()

 defaultdict(default_factory=None, /, [...]) --> dict with default factory

 batchsize_logging_interval()

 Convert a string or number to a floating point number, if possible.

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config)

 Coordinates amongst all DP ranks to determine if and how the full batch

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, opts)

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, opts)

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, uniform_decode, opts)

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, uniform_decode, num_scheduled_tokens_per_request, opts)

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, uniform_decode, num_scheduled_tokens_per_request, cudagraph_mode, opts)

 create_forward_context(attn_metadata, vllm_config)

 Python binding for vllm.forward_context.create_forward_context.

 create_forward_context(attn_metadata, vllm_config, opts)

 create_forward_context(attn_metadata, vllm_config, virtual_engine, opts)

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, opts)

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, opts)

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, batch_descriptor, opts)

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, batch_descriptor, ubatch_slices, opts)

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, batch_descriptor, ubatch_slices, additional_kwargs, opts)

 current_platform()

 Python module attribute vllm.forward_context.current_platform.

 forward_start_time()

 int([x]) -> integer

 get_forward_context(opts \\ [])

 Get the current forward context.

 init_logger(name, opts \\ [])

 The main purpose of this function is to ensure that loggers are

 is_forward_context_available(opts \\ [])

 Python binding for vllm.forward_context.is_forward_context_available.

 last_logging_time()

 int([x]) -> integer

 logger()

 Instances of the Logger class represent a single logging channel. A

 override_forward_context(forward_context, opts \\ [])

 A context manager that overrides the current forward context.

 set_forward_context(attn_metadata, vllm_config)

 A context manager that stores the current forward context,

 set_forward_context(attn_metadata, vllm_config, opts)

 set_forward_context(attn_metadata, vllm_config, virtual_engine, opts)

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, opts)

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, opts)

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, cudagraph_runtime_mode, opts)

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, cudagraph_runtime_mode, batch_descriptor, opts)

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, cudagraph_runtime_mode, batch_descriptor, ubatch_slices, opts)

 track_batchsize()

 bool(x) -> bool

 u_batch_slices(opts \\ [])

 Built-in mutable sequence.

 Functions

 _compute_chunked_local_num_tokens(num_tokens_across_dp_cpu, sequence_parallel_size, max_num_tokens, chunk_idx, opts \\ [])

 @spec _compute_chunked_local_num_tokens(
 term(),
 integer(),
 integer(),
 integer(),
 keyword()
) ::
 {:ok, [integer()]} | {:error, Snakepit.Error.t()}

Python binding for vllm.forward_context._compute_chunked_local_num_tokens.
Parameters
	num_tokens_across_dp_cpu (term())
	sequence_parallel_size (integer())
	max_num_tokens (integer())
	chunk_idx (integer())

Returns
	list(integer())

 _compute_sp_num_tokens(num_tokens_across_dp_cpu, sequence_parallel_size, opts \\ [])

 @spec _compute_sp_num_tokens(term(), integer(), keyword()) ::
 {:ok, [integer()]} | {:error, Snakepit.Error.t()}

Python binding for vllm.forward_context._compute_sp_num_tokens.
Parameters
	num_tokens_across_dp_cpu (term())
	sequence_parallel_size (integer())

Returns
	list(integer())

 _forward_context()

 @spec _forward_context() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.forward_context._forward_context.
Returns
	term()

 batchsize_forward_time()

 @spec batchsize_forward_time() :: {:ok, term()} | {:error, Snakepit.Error.t()}

defaultdict(default_factory=None, /, [...]) --> dict with default factory
The default factory is called without arguments to produce
a new value when a key is not present, in getitem only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments.
Returns
	term()

 batchsize_logging_interval()

 @spec batchsize_logging_interval() :: {:ok, float()} | {:error, Snakepit.Error.t()}

Convert a string or number to a floating point number, if possible.
Returns
	float()

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config)

 @spec coordinate_batch_across_dp(integer(), boolean(), boolean(), term()) ::
 {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

Coordinates amongst all DP ranks to determine if and how the full batch
should be split into microbatches.
Parameters
	num_tokens_unpadded - Number of tokens without accounting for padding
	allow_microbatching - If microbatching should be attempted
	allow_dp_padding - If all DP ranks should be padded up to the same value
	parallel_config - The parallel config
	num_tokens_padded - Number of tokens including any non-DP padding (CUDA graphs, TP, etc)
	uniform_decode - Only used if allow_microbatching is True. True if the batch only contains single token decodes
	num_scheduled_tokens_per_request - Only used if allow_microbatching is True. The number of tokens per request.
	cudagraph_mode - The cudagraph mode for this rank (0=NONE, 1=PIECEWISE, 2=FULL)

Returns
	{boolean(), term(), integer()}

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, opts)

 @spec coordinate_batch_across_dp(integer(), boolean(), boolean(), term(), keyword()) ::
 {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 @spec coordinate_batch_across_dp(integer(), boolean(), boolean(), term(), term()) ::
 {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, opts)

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 keyword()
) ::
 {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 term()
) ::
 {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, uniform_decode, opts)

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, uniform_decode, num_scheduled_tokens_per_request, opts)

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 term(),
 term(),
 integer()
) :: {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 coordinate_batch_across_dp(num_tokens_unpadded, allow_microbatching, allow_dp_padding, parallel_config, num_tokens_padded, uniform_decode, num_scheduled_tokens_per_request, cudagraph_mode, opts)

 @spec coordinate_batch_across_dp(
 integer(),
 boolean(),
 boolean(),
 term(),
 term(),
 term(),
 term(),
 integer(),
 keyword()
) :: {:ok, {boolean(), term(), integer()}} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config)

 @spec create_forward_context(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.forward_context.create_forward_context.
Parameters
	attn_metadata (term())
	vllm_config (term())
	virtual_engine (integer() default: 0)
	dp_metadata (term() default: None)
	cudagraph_runtime_mode (term() default: <CUDAGraphMode.NONE: 0>)
	batch_descriptor (term() default: None)
	ubatch_slices (term() default: None)
	additional_kwargs (term() default: None)

Returns
	term()

 create_forward_context(attn_metadata, vllm_config, opts)

 @spec create_forward_context(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec create_forward_context(term(), term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config, virtual_engine, opts)

 @spec create_forward_context(term(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec create_forward_context(term(), term(), integer(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, opts)

 @spec create_forward_context(term(), term(), integer(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec create_forward_context(term(), term(), integer(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, opts)

 @spec create_forward_context(term(), term(), integer(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec create_forward_context(term(), term(), integer(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, batch_descriptor, opts)

 @spec create_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec create_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, batch_descriptor, ubatch_slices, opts)

 @spec create_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec create_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 create_forward_context(attn_metadata, vllm_config, virtual_engine, dp_metadata, cudagraph_runtime_mode, batch_descriptor, ubatch_slices, additional_kwargs, opts)

 @spec create_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 current_platform()

 @spec current_platform() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python module attribute vllm.forward_context.current_platform.
Returns
	term()

 forward_start_time()

 @spec forward_start_time() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 get_forward_context(opts \\ [])

 @spec get_forward_context(keyword()) ::
 {:ok, Vllm.ForwardContext.t()} | {:error, Snakepit.Error.t()}

Get the current forward context.
Returns
	Vllm.ForwardContext.t()

 init_logger(name, opts \\ [])

 @spec init_logger(
 String.t(),
 keyword()
) :: {:ok, Vllm.Logger.VllmLogger.t()} | {:error, Snakepit.Error.t()}

The main purpose of this function is to ensure that loggers are
retrieved in such a way that we can be sure the root vllm logger has
already been configured.
Parameters
	name (String.t())

Returns
	Vllm.Logger.VllmLogger.t()

 is_forward_context_available(opts \\ [])

 @spec is_forward_context_available(keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.forward_context.is_forward_context_available.
Returns
	boolean()

 last_logging_time()

 @spec last_logging_time() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 override_forward_context(forward_context, opts \\ [])

 @spec override_forward_context(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A context manager that overrides the current forward context.
This is used to override the forward context for a specific
forward pass.
Parameters
	forward_context (term())

Returns
	term()

 set_forward_context(attn_metadata, vllm_config)

 @spec set_forward_context(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

A context manager that stores the current forward context,
can be attention metadata, etc.
Here we can inject common logic for every model forward pass.
Parameters
	attn_metadata (term())
	vllm_config (term())
	virtual_engine (integer() default: 0)
	num_tokens (term() default: None)
	num_tokens_across_dp (term() default: None)
	cudagraph_runtime_mode (term() default: <CUDAGraphMode.NONE: 0>)
	batch_descriptor (term() default: None)
	ubatch_slices (term() default: None)

Returns
	term()

 set_forward_context(attn_metadata, vllm_config, opts)

 @spec set_forward_context(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_forward_context(term(), term(), integer()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_forward_context(attn_metadata, vllm_config, virtual_engine, opts)

 @spec set_forward_context(term(), term(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_forward_context(term(), term(), integer(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, opts)

 @spec set_forward_context(term(), term(), integer(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_forward_context(term(), term(), integer(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, opts)

 @spec set_forward_context(term(), term(), integer(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_forward_context(term(), term(), integer(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, cudagraph_runtime_mode, opts)

 @spec set_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_forward_context(term(), term(), integer(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, cudagraph_runtime_mode, batch_descriptor, opts)

 @spec set_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec set_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 set_forward_context(attn_metadata, vllm_config, virtual_engine, num_tokens, num_tokens_across_dp, cudagraph_runtime_mode, batch_descriptor, ubatch_slices, opts)

 @spec set_forward_context(
 term(),
 term(),
 integer(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 track_batchsize()

 @spec track_batchsize() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 u_batch_slices(opts \\ [])

 @spec u_batch_slices(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

Vllm.Grpc

vLLM gRPC protocol definitions.
This module contains the protocol buffer definitions for vLLM's gRPC API.
The protobuf files are compiled into Python code using grpcio-tools.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Grpc.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Grpc.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Grpc.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Grpc.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

Vllm.Inputs

Submodule bindings for vllm.inputs.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Inputs.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Inputs.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Inputs.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Inputs.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt)

 Python binding for vllm.inputs.build_explicit_enc_dec_prompt.

 build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt, opts)

 build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt, mm_processor_kwargs, opts)

 decoder_only_inputs()

 Represent a PEP 604 union type

 embeds_inputs(prompt_embeds)

 Construct [EmbedsInputs][vllm.inputs.data.EmbedsInputs] from optional

 embeds_inputs(prompt_embeds, opts)

 embeds_inputs(prompt_embeds, cache_salt, opts)

 processor_inputs()

 Represent a PEP 604 union type

 prompt_type()

 Represent a PEP 604 union type

 singleton_inputs()

 Represent a PEP 604 union type

 singleton_prompt()

 Represent a PEP 604 union type

 to_enc_dec_tuple_list(enc_dec_prompts, opts \\ [])

 Python binding for vllm.inputs.to_enc_dec_tuple_list.

 token_inputs(prompt_token_ids)

 Construct [TokenInputs][vllm.inputs.data.TokenInputs] from optional

 token_inputs(prompt_token_ids, opts)

 token_inputs(prompt_token_ids, cache_salt, opts)

 zip_enc_dec_prompts(enc_prompts, dec_prompts)

 Zip encoder and decoder prompts together into a list of

 zip_enc_dec_prompts(enc_prompts, dec_prompts, opts)

 zip_enc_dec_prompts(enc_prompts, dec_prompts, mm_processor_kwargs, opts)

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt)

 @spec build_explicit_enc_dec_prompt(term(), term() | nil) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.inputs.build_explicit_enc_dec_prompt.
Parameters
	encoder_prompt (term())
	decoder_prompt (term() | nil)

	mm_processor_kwargs (term() default: None)

Returns
	term()

 build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt, opts)

 @spec build_explicit_enc_dec_prompt(term(), term() | nil, keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec build_explicit_enc_dec_prompt(term(), term() | nil, term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt, mm_processor_kwargs, opts)

 @spec build_explicit_enc_dec_prompt(term(), term() | nil, term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 decoder_only_inputs()

 @spec decoder_only_inputs() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

 embeds_inputs(prompt_embeds)

 @spec embeds_inputs(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Construct [EmbedsInputs][vllm.inputs.data.EmbedsInputs] from optional
values.
Parameters
	prompt_embeds (term())
	cache_salt (term() default: None)

Returns
	term()

 embeds_inputs(prompt_embeds, opts)

 @spec embeds_inputs(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec embeds_inputs(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 embeds_inputs(prompt_embeds, cache_salt, opts)

 @spec embeds_inputs(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 processor_inputs()

 @spec processor_inputs() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

 prompt_type()

 @spec prompt_type() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

 singleton_inputs()

 @spec singleton_inputs() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

 singleton_prompt()

 @spec singleton_prompt() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

 to_enc_dec_tuple_list(enc_dec_prompts, opts \\ [])

 @spec to_enc_dec_tuple_list(
 term(),
 keyword()
) :: {:ok, [{term(), term() | nil}]} | {:error, Snakepit.Error.t()}

Python binding for vllm.inputs.to_enc_dec_tuple_list.
Parameters
	enc_dec_prompts (term())

Returns
	list({term(), term() | nil})

 token_inputs(prompt_token_ids)

 @spec token_inputs([integer()]) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Construct [TokenInputs][vllm.inputs.data.TokenInputs] from optional
values.
Parameters
	prompt_token_ids (list(integer()))
	cache_salt (term() default: None)

Returns
	term()

 token_inputs(prompt_token_ids, opts)

 @spec token_inputs(
 [integer()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec token_inputs([integer()], term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 token_inputs(prompt_token_ids, cache_salt, opts)

 @spec token_inputs([integer()], term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 zip_enc_dec_prompts(enc_prompts, dec_prompts)

 @spec zip_enc_dec_prompts(term(), term()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Zip encoder and decoder prompts together into a list of
[ExplicitEncoderDecoderPrompt][vllm.inputs.data.ExplicitEncoderDecoderPrompt]
instances.
mm_processor_kwargs may also be provided; if a dict is passed, the same
dictionary will be used for every encoder/decoder prompt. If an iterable is
provided, it will be zipped with the encoder/decoder prompts.
Parameters
	enc_prompts (term())
	dec_prompts (term())
	mm_processor_kwargs (term() default: None)

Returns
	list(term())

 zip_enc_dec_prompts(enc_prompts, dec_prompts, opts)

 @spec zip_enc_dec_prompts(term(), term(), keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

 @spec zip_enc_dec_prompts(term(), term(), term()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

 zip_enc_dec_prompts(enc_prompts, dec_prompts, mm_processor_kwargs, opts)

 @spec zip_enc_dec_prompts(term(), term(), term(), keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Vllm.Inputs.DataPrompt

Represents generic inputs handled by IO processor plugins.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.EmbedsInputs

Represents embeddings-based inputs.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.EmbedsPrompt

Schema for a prompt provided via token embeddings.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.EncoderDecoderInputs

The inputs in [LLMEngine][vllm.engine.llm_engine.LLMEngine] before they
are passed to the model executor.
This specifies the required data for encoder-decoder models.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.ExplicitEncoderDecoderPrompt

Represents an encoder/decoder model input prompt,
comprising an explicit encoder prompt and a decoder prompt.
The encoder and decoder prompts, respectively, may be formatted
according to any of the
[SingletonPrompt][vllm.inputs.data.SingletonPrompt] schemas,
and are not required to have the same schema.
Only the encoder prompt may have multi-modal data. mm_processor_kwargs
should be at the top-level, and should not be set in the encoder/decoder
prompts, since they are agnostic to the encoder/decoder.
Note that an
[ExplicitEncoderDecoderPrompt][vllm.inputs.data.ExplicitEncoderDecoderPrompt]
may not be used as an input to a decoder-only model,
and that the encoder_prompt and decoder_prompt
fields of this data structure themselves must be
[SingletonPrompt][vllm.inputs.data.SingletonPrompt] instances.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.TextPrompt

Schema for a text prompt.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.TokenInputs

Represents token-based inputs.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Inputs.TokensPrompt

Schema for a tokenized prompt.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.LLM

An LLM for generating texts from given prompts and sampling parameters.
This class includes a tokenizer, a language model (possibly distributed
across multiple GPUs), and GPU memory space allocated for intermediate
states (aka KV cache). Given a batch of prompts and sampling parameters,
this class generates texts from the model, using an intelligent batching
mechanism and efficient memory management.
Parameters
	model - The name or path of a HuggingFace Transformers model.
	tokenizer - The name or path of a HuggingFace Transformers tokenizer.
	tokenizer_mode - The tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer.
	skip_tokenizer_init - If true, skip initialization of tokenizer and detokenizer. Expect valid prompt_token_ids and None for prompt from the input.
	trust_remote_code - Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
	allowed_local_media_path - Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
	allowed_media_domains - If set, only media URLs that belong to this domain can be used for multi-modal inputs.
	tensor_parallel_size - The number of GPUs to use for distributed execution with tensor parallelism.
	dtype - The data type for the model weights and activations. Currently, we support float32, float16, and bfloat16. If auto, we use the dtype attribute of the Transformers model's config. However, if the dtype in the config is float32, we will use float16 instead.
	quantization - The method used to quantize the model weights. Currently, we support "awq", "gptq", and "fp8" (experimental). If None, we first check the quantization_config attribute in the model config file. If that is None, we assume the model weights are not quantized and use dtype to determine the data type of the weights.
	revision - The specific model version to use. It can be a branch name, a tag name, or a commit id.
	tokenizer_revision - The specific tokenizer version to use. It can be a branch name, a tag name, or a commit id.
	seed - The seed to initialize the random number generator for sampling.
	gpu_memory_utilization - The ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache. Higher values will increase the KV cache size and thus improve the model's throughput. However, if the value is too high, it may cause out-of- memory (OOM) errors.
	kv_cache_memory_bytes - Size of KV Cache per GPU in bytes. By default, this is set to None and vllm can automatically infer the kv cache size based on gpu_memory_utilization. However, users may want to manually specify the kv cache memory size. kv_cache_memory_bytes allows more fine-grain control of how much memory gets used when compared with using gpu_memory_utilization. Note that kv_cache_memory_bytes (when not-None) ignores gpu_memory_utilization
	swap_space - The size (GiB) of CPU memory per GPU to use as swap space. This can be used for temporarily storing the states of the requests when their best_of sampling parameters are larger than 1. If all requests will have best_of=1, you can safely set this to 0. Noting that best_of is only supported in V0. Otherwise, too small values may cause out-of-memory (OOM) errors.
	cpu_offload_gb - The size (GiB) of CPU memory to use for offloading the model weights. This virtually increases the GPU memory space you can use to hold the model weights, at the cost of CPU-GPU data transfer for every forward pass.
	enforce_eager - Whether to enforce eager execution. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid.
	enable_return_routed_experts - Whether to return routed experts.
	disable_custom_all_reduce - See [ParallelConfig][vllm.config.ParallelConfig].
	hf_token - The token to use as HTTP bearer authorization for remote files . If True, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
	hf_overrides - If a dictionary, contains arguments to be forwarded to the HuggingFace config. If a callable, it is called to update the HuggingFace config.
	mm_processor_kwargs - Arguments to be forwarded to the model's processor for multi-modal data, e.g., image processor. Overrides for the multi-modal processor obtained from AutoProcessor.from_pretrained. The available overrides depend on the model that is being run. For example, for Phi-3-Vision: {"num_crops": 4}.
	pooler_config - Initialize non-default pooling config for the pooling model. e.g. PoolerConfig(seq_pooling_type="MEAN", normalize=False).
	compilation_config - Either an integer or a dictionary. If it is an integer, it is used as the mode of compilation optimization. If it is a dictionary, it can specify the full compilation configuration.
	attention_config - Configuration for attention mechanisms. Can be a dictionary or an AttentionConfig instance. If a dictionary, it will be converted to an AttentionConfig. Allows specifying the attention backend and other attention-related settings. **kwargs: Arguments for [EngineArgs][vllm.EngineArgs].

Notes
This class is intended to be used for offline inference. For online
serving, use the [AsyncLLMEngine][vllm.AsyncLLMEngine] class instead.

 Summary

 Types

 t()

 Functions

 _add_request(ref, prompt, params, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _cross_encoding_score(ref, tokenizer, data_1, data_2, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _embedding_score(ref, tokenizer, text_1, text_2, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _get_beam_search_lora_requests(ref, lora_request, prompts, opts \\ [])

 Get the optional lora request corresponding to each prompt.

 _get_modality_specific_lora_reqs(ref, prompts, lora_request, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _process_inputs(ref, request_id, engine_prompt, params, opts \\ [])

 Use the Processor to process inputs for LLMEngine.

 _resolve_single_prompt_mm_lora(ref, prompt, lora_request, default_mm_loras, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _run_engine(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _validate_and_add_requests(ref, prompts, params, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _validate_mm_data_and_uuids(ref, multi_modal_data, multi_modal_uuids, opts \\ [])

 Validate that if any multi-modal data is skipped (i.e. None),

 apply_model(ref, func, opts \\ [])

 Run a function directly on the model inside each worker,

 beam_search(ref, prompts, params, args, opts \\ [])

 Generate sequences using beam search.

 chat(ref, messages, args, opts \\ [])

 Generate responses for a chat conversation.

 classify(ref, prompts, opts \\ [])

 Generate class logits for each prompt.

 collective_rpc(ref, method, args, opts \\ [])

 Execute an RPC call on all workers.

 embed(ref, prompts, opts \\ [])

 Generate an embedding vector for each prompt.

 encode(ref, prompts, args, opts \\ [])

 Apply pooling to the hidden states corresponding to the input

 generate(ref, prompts, args, opts \\ [])

 Generates the completions for the input prompts.

 get_default_sampling_params(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 get_metrics(ref, opts \\ [])

 Return a snapshot of aggregated metrics from Prometheus.

 get_tokenizer(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 new(model, opts \\ [])

 LLM constructor.

 preprocess_chat(ref, messages, args, opts \\ [])

 Generate prompt for a chat conversation. The pre-processed

 reset_mm_cache(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 reset_prefix_cache(ref, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 reward(ref, prompts, opts \\ [])

 Generate rewards for each prompt.

 score(ref, data_1, data_2, opts \\ [])

 Generate similarity scores for all pairs <text,text_pair> or

 sleep(ref, args, opts \\ [])

 Put the engine to sleep. The engine should not process any requests.

 start_profile(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 stop_profile(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 wake_up(ref, args, opts \\ [])

 Wake up the engine from sleep mode. See the [sleep][vllm.LLM.sleep]

 Types

 t()

 @opaque t()

 Functions

 _add_request(ref, prompt, params, args, opts \\ [])

 @spec _add_request(SnakeBridge.Ref.t(), term(), term(), [term()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	prompt (term())
	params (term())
	lora_request (term() default: None)
	priority (integer() default: 0)
	tokenization_kwargs (term() default: None)

Returns
	String.t()

 _cross_encoding_score(ref, tokenizer, data_1, data_2, args, opts \\ [])

 @spec _cross_encoding_score(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 [term()],
 keyword()
) ::
 {:ok, [Vllm.Outputs.ScoringRequestOutput.t()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	tokenizer (term())
	data_1 (term())
	data_2 (term())
	truncate_prompt_tokens (term() default: None)
	use_tqdm (term() default: True)
	pooling_params (term() default: None)
	lora_request (term() default: None)
	tokenization_kwargs (term() default: None)
	score_template (term() default: None)

Returns
	list(Vllm.Outputs.ScoringRequestOutput.t())

 _embedding_score(ref, tokenizer, text_1, text_2, args, opts \\ [])

 @spec _embedding_score(
 SnakeBridge.Ref.t(),
 term(),
 [term()],
 [term()],
 [term()],
 keyword()
) ::
 {:ok, [Vllm.Outputs.ScoringRequestOutput.t()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	tokenizer (term())
	text_1 (list(term()))
	text_2 (list(term()))
	truncate_prompt_tokens (term() default: None)
	use_tqdm (term() default: True)
	pooling_params (term() default: None)
	lora_request (term() default: None)
	tokenization_kwargs (term() default: None)

Returns
	list(Vllm.Outputs.ScoringRequestOutput.t())

 _get_beam_search_lora_requests(ref, lora_request, prompts, opts \\ [])

 @spec _get_beam_search_lora_requests(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Get the optional lora request corresponding to each prompt.
Parameters
	lora_request (term())
	prompts (list(term()))

Returns
	list(term())

 _get_modality_specific_lora_reqs(ref, prompts, lora_request, opts \\ [])

 @spec _get_modality_specific_lora_reqs(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	prompts (term())
	lora_request (term())

Returns
	term()

 _process_inputs(ref, request_id, engine_prompt, params, opts \\ [])

 @spec _process_inputs(SnakeBridge.Ref.t(), String.t(), term(), term(), keyword()) ::
 {:ok, {term(), %{optional(String.t()) => term()}}}
 | {:error, Snakepit.Error.t()}

Use the Processor to process inputs for LLMEngine.
Parameters
	request_id (String.t())
	engine_prompt (term())
	params (term())
	lora_request (term() keyword-only, required)
	priority (integer() keyword-only, required)
	tokenization_kwargs (term() keyword-only default: None)

Returns
	{term(), %{optional(String.t()) => term()}}

 _resolve_single_prompt_mm_lora(ref, prompt, lora_request, default_mm_loras, opts \\ [])

 @spec _resolve_single_prompt_mm_lora(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	prompt (term())
	lora_request (term())
	default_mm_loras (term())

Returns
	term()

 _run_engine(ref, opts \\ [])

 @spec _run_engine(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	use_tqdm (term() keyword-only default: True)

Returns
	list(term())

 _validate_and_add_requests(ref, prompts, params, opts \\ [])

 @spec _validate_and_add_requests(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	prompts (term())
	params (term())
	use_tqdm (term() keyword-only default: True)
	lora_request (term() keyword-only, required)
	priority (term() keyword-only default: None)
	tokenization_kwargs (term() keyword-only default: None)

Returns
	nil

 _validate_mm_data_and_uuids(ref, multi_modal_data, multi_modal_uuids, opts \\ [])

 @spec _validate_mm_data_and_uuids(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Validate that if any multi-modal data is skipped (i.e. None),
then its corresponding UUID must be set.
Parameters
	multi_modal_data (term())
	multi_modal_uuids (term())

Returns
	term()

 apply_model(ref, func, opts \\ [])

 @spec apply_model(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Run a function directly on the model inside each worker,
returning the result for each of them.
!!! warning
To reduce the overhead of data transfer, avoid returning large
arrays or tensors from this method. If you must return them,
make sure you move them to CPU first to avoid taking up additional
VRAM!
Parameters
	func (term())

Returns
	list(term())

 beam_search(ref, prompts, params, args, opts \\ [])

 @spec beam_search(
 SnakeBridge.Ref.t(),
 [term()],
 Vllm.SamplingParams.BeamSearchParams.t(),
 [term()],
 keyword()
) ::
 {:ok, [Vllm.BeamSearch.BeamSearchOutput.t()]} | {:error, Snakepit.Error.t()}

Generate sequences using beam search.
Parameters
	prompts - A list of prompts. Each prompt can be a string or a list of token IDs.
	params - The beam search parameters.
	lora_request - LoRA request to use for generation, if any.
	use_tqdm - Whether to use tqdm to display the progress bar.
	concurrency_limit - The maximum number of concurrent requests. If None, the number of concurrent requests is unlimited.

Returns
	list(Vllm.BeamSearch.BeamSearchOutput.t())

 chat(ref, messages, args, opts \\ [])

 @spec chat(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [Vllm.Outputs.RequestOutput.t()]} | {:error, Snakepit.Error.t()}

Generate responses for a chat conversation.
The chat conversation is converted into a text prompt using the
tokenizer and calls the [generate][vllm.LLM.generate] method to generate
the responses.
Multi-modal inputs can be passed in the same way you would pass them
to the OpenAI API.
Parameters
	messages - A list of conversations or a single conversation.
	sampling_params - The sampling parameters for text generation. If None, we use the default sampling parameters. When it is a single value, it is applied to every prompt. When it is a list, the list must have the same length as the prompts and it is paired one by one with the prompt.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.
	chat_template - The template to use for structuring the chat. If not provided, the model's default chat template will be used.
	chat_template_content_format - The format to render message content.
	Example - "Who are you?" - "openai" will render the content as a list of dictionaries, similar to OpenAI schema.
	Example - [{"type": "text", "text": "Who are you?"}]
	add_generation_prompt - If True, adds a generation template to each message.
	continue_final_message - If True, continues the final message in the conversation instead of starting a new one. Cannot be True if add_generation_prompt is also True.
	chat_template_kwargs - Additional kwargs to pass to the chat template.
	mm_processor_kwargs - Multimodal processor kwarg overrides for this chat request. Only used for offline requests.

Returns
	list(Vllm.Outputs.RequestOutput.t())

 classify(ref, prompts, opts \\ [])

 @spec classify(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, [Vllm.Outputs.ClassificationRequestOutput.t()]}
 | {:error, Snakepit.Error.t()}

Generate class logits for each prompt.
This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Parameters
	prompts - The prompts to the LLM. You may pass a sequence of prompts for batch inference. See [PromptType][vllm.inputs.PromptType] for more details about the format of each prompt.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.
	pooling_params - The pooling parameters for pooling. If None, we use the default pooling parameters.

Returns
	list(Vllm.Outputs.ClassificationRequestOutput.t())

 collective_rpc(ref, method, args, opts \\ [])

 @spec collective_rpc(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Execute an RPC call on all workers.
Parameters
	method - Name of the worker method to execute, or a callable that is serialized and sent to all workers to execute.
	timeout - Maximum time in seconds to wait for execution. Raises a [TimeoutError][] on timeout. None means wait indefinitely.
	args - Positional arguments to pass to the worker method.
	kwargs - Keyword arguments to pass to the worker method.

Notes
It is recommended to use this API to only pass control messages,
and set up data-plane communication to pass data.
Returns
	list(term())

 embed(ref, prompts, opts \\ [])

 @spec embed(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, [Vllm.Outputs.EmbeddingRequestOutput.t()]}
 | {:error, Snakepit.Error.t()}

Generate an embedding vector for each prompt.
This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Parameters
	prompts - The prompts to the LLM. You may pass a sequence of prompts for batch inference. See [PromptType][vllm.inputs.PromptType] for more details about the format of each prompt.
	pooling_params - The pooling parameters for pooling. If None, we use the default pooling parameters.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.

Returns
	list(Vllm.Outputs.EmbeddingRequestOutput.t())

 encode(ref, prompts, args, opts \\ [])

 @spec encode(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [Vllm.Outputs.PoolingRequestOutput.t()]} | {:error, Snakepit.Error.t()}

Apply pooling to the hidden states corresponding to the input
prompts.
This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Parameters
	prompts - The prompts to the LLM. You may pass a sequence of prompts for batch inference. See [PromptType][vllm.inputs.PromptType] for more details about the format of each prompt.
	pooling_params - The pooling parameters for pooling. If None, we use the default pooling parameters.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.
	pooling_task - Override the pooling task to use.
	tokenization_kwargs - overrides tokenization_kwargs set in pooling_params

Notes
Using prompts and prompt_token_ids as keyword parameters is
considered legacy and may be deprecated in the future. You should
instead pass them via the `inputs` parameter.
Returns
	list(Vllm.Outputs.PoolingRequestOutput.t())

 generate(ref, prompts, args, opts \\ [])

 @spec generate(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [Vllm.Outputs.RequestOutput.t()]} | {:error, Snakepit.Error.t()}

Generates the completions for the input prompts.
This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Parameters
	prompts - The prompts to the LLM. You may pass a sequence of prompts for batch inference. See [PromptType][vllm.inputs.PromptType] for more details about the format of each prompt.
	sampling_params - The sampling parameters for text generation. If None, we use the default sampling parameters. When it is a single value, it is applied to every prompt. When it is a list, the list must have the same length as the prompts and it is paired one by one with the prompt.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.
	priority - The priority of the requests, if any. Only applicable when priority scheduling policy is enabled. If provided, must be a list of integers matching the length of prompts, where each priority value corresponds to the prompt at the same index.

Notes
Using prompts and prompt_token_ids as keyword parameters is
considered legacy and may be deprecated in the future. You should
instead pass them via the `inputs` parameter.
Returns
	list(Vllm.Outputs.RequestOutput.t())

 get_default_sampling_params(ref, opts \\ [])

 @spec get_default_sampling_params(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, Vllm.SamplingParamsClass.t()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	Vllm.SamplingParamsClass.t()

 get_metrics(ref, opts \\ [])

 @spec get_metrics(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Return a snapshot of aggregated metrics from Prometheus.
Notes
This method is only available with the V1 LLM engine.
Returns
	list(term())

 get_tokenizer(ref, opts \\ [])

 @spec get_tokenizer(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	term()

 new(model, opts \\ [])

 @spec new(
 String.t(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

LLM constructor.
Parameters
	model (String.t())
	runner (term() keyword-only default: 'auto')
	convert (term() keyword-only default: 'auto')
	tokenizer (term() keyword-only default: None)
	tokenizer_mode (term() | String.t() keyword-only default: 'auto')

	skip_tokenizer_init (boolean() keyword-only default: False)
	trust_remote_code (boolean() keyword-only default: False)
	allowed_local_media_path (String.t() keyword-only default: '')
	allowed_media_domains (term() keyword-only default: None)
	tensor_parallel_size (integer() keyword-only default: 1)
	dtype (term() keyword-only default: 'auto')
	quantization (term() | nil keyword-only default: None)

	revision (term() keyword-only default: None)
	tokenizer_revision (term() keyword-only default: None)
	seed (integer() keyword-only default: 0)
	gpu_memory_utilization (float() keyword-only default: 0.9)
	swap_space (float() keyword-only default: 4)
	cpu_offload_gb (float() keyword-only default: 0)
	enforce_eager (boolean() keyword-only default: False)
	enable_return_routed_experts (boolean() keyword-only default: False)
	disable_custom_all_reduce (boolean() keyword-only default: False)
	hf_token (term() keyword-only default: None)
	hf_overrides (term() keyword-only default: None)
	mm_processor_kwargs (term() keyword-only default: None)
	pooler_config (term() keyword-only default: None)
	structured_outputs_config (term() keyword-only default: None)
	profiler_config (term() keyword-only default: None)
	attention_config (term() keyword-only default: None)
	kv_cache_memory_bytes (term() keyword-only default: None)
	compilation_config (term() keyword-only default: None)
	logits_processors (term() keyword-only default: None)
	kwargs (term())

 preprocess_chat(ref, messages, args, opts \\ [])

 @spec preprocess_chat(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Generate prompt for a chat conversation. The pre-processed
prompt can then be used as input for the other LLM methods.
Refer to chat for a complete description of the arguments.
Parameters
	messages (term())
	chat_template (term() default: None)
	chat_template_content_format (term() default: 'auto')
	add_generation_prompt (boolean() default: True)
	continue_final_message (boolean() default: False)
	tools (term() default: None)
	chat_template_kwargs (term() default: None)
	mm_processor_kwargs (term() default: None)

Returns
	list(term())

 reset_mm_cache(ref, opts \\ [])

 @spec reset_mm_cache(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	nil

 reset_prefix_cache(ref, args, opts \\ [])

 @spec reset_prefix_cache(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	reset_running_requests (boolean() default: False)
	reset_connector (boolean() default: False)

Returns
	boolean()

 reward(ref, prompts, opts \\ [])

 @spec reward(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, [Vllm.Outputs.PoolingRequestOutput.t()]} | {:error, Snakepit.Error.t()}

Generate rewards for each prompt.
Parameters
	prompts - The prompts to the LLM. You may pass a sequence of prompts for batch inference. See [PromptType][vllm.inputs.PromptType] for more details about the format of each prompt.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.
	pooling_params - The pooling parameters for pooling. If None, we use the default pooling parameters.

Returns
	list(Vllm.Outputs.PoolingRequestOutput.t())

 score(ref, data_1, data_2, opts \\ [])

 @spec score(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, [Vllm.Outputs.ScoringRequestOutput.t()]} | {:error, Snakepit.Error.t()}

Generate similarity scores for all pairs <text,text_pair> or
<multi-modal data, multi-modal data pair>.
The inputs can be 1 -> 1, 1 -> N or N -> N.
In the 1 - N case the data_1 input will be replicated N
times to pair with the data_2 inputs.
The input pairs are used to build a list of prompts for the
cross encoder model. This class automatically batches the prompts,
considering the memory constraint. For the best performance, put all
of your inputs into a single list and pass it to this method.
Supports both text and multi-modal data (images, etc.) when used with
appropriate multi-modal models. For multi-modal inputs, ensure the
prompt structure matches the model's expected input format.
Parameters
	data_1 - Can be a single prompt, a list of prompts or ScoreMultiModalParam, which can contain either text or multi-modal data. When a list, it must have the same length as the data_2 list.
	data_2 - The data to pair with the query to form the input to the LLM. Can be text or multi-modal data. See [PromptType] [vllm.inputs.PromptType] for more details about the format of each prompt.
	use_tqdm - If True, shows a tqdm progress bar. If a callable (e.g., functools.partial(tqdm, leave=False)), it is used to create the progress bar. If False, no progress bar is created.
	lora_request - LoRA request to use for generation, if any.
	pooling_params - The pooling parameters for pooling. If None, we use the default pooling parameters.
	chat_template - The chat template to use for the scoring. If None, we use the model's default chat template.

Returns
	list(Vllm.Outputs.ScoringRequestOutput.t())

 sleep(ref, args, opts \\ [])

 @spec sleep(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Put the engine to sleep. The engine should not process any requests.
The caller should guarantee that no requests are being processed
during the sleep period, before wake_up is called.
Parameters
	level - The sleep level. Level 1 sleep will offload the model weights and discard the kv cache. The content of kv cache is forgotten. Level 1 sleep is good for sleeping and waking up the engine to run the same model again. The model weights are backed up in CPU memory. Please make sure there's enough CPU memory to store the model weights. Level 2 sleep will discard both the model weights and the kv cache. The content of both the model weights and kv cache is forgotten. Level 2 sleep is good for sleeping and waking up the engine to run a different model or update the model, where previous model weights are not needed. It reduces CPU memory pressure.

Returns
	term()

 start_profile(ref, opts \\ [])

 @spec start_profile(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	nil

 stop_profile(ref, opts \\ [])

 @spec stop_profile(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	nil

 wake_up(ref, args, opts \\ [])

 @spec wake_up(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Wake up the engine from sleep mode. See the [sleep][vllm.LLM.sleep]
method for more details.
Parameters
	tags - An optional list of tags to reallocate the engine memory for specific memory allocations. Values must be in ("weights", "kv_cache"). If None, all memory is reallocated. wake_up should be called with all tags (or None) before the engine is used again.

Returns
	term()

Vllm.LLMEngine

Legacy LLMEngine for backwards compatibility.

 Summary

 Types

 t()

 Functions

 abort_request(ref, request_ids, args, opts \\ [])

 Remove request_ids from EngineCore and Detokenizer.

 add_lora(ref, lora_request, opts \\ [])

 Load a new LoRA adapter into the engine for future requests.

 add_request(ref, request_id, prompt, params, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 apply_model(ref, func, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 collective_rpc(ref, method, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 do_log_stats(ref, opts \\ [])

 Log stats if logging is enabled.

 do_log_stats_with_interval(ref, opts \\ [])

 Log stats when the time interval has passed.

 from_engine_args(ref, engine_args, args, opts \\ [])

 Creates an LLM engine from the engine arguments.

 from_vllm_config(ref, vllm_config, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 get_metrics(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 get_num_unfinished_requests(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 get_supported_tasks(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 get_tokenizer(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 has_unfinished_requests(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 has_unfinished_requests_dp(ref, has_unfinished, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 is_sleeping(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 list_loras(ref, opts \\ [])

 List all registered adapters.

 new(vllm_config, executor_class, log_stats, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pin_lora(ref, lora_id, opts \\ [])

 Prevent an adapter from being evicted.

 remove_lora(ref, lora_id, opts \\ [])

 Remove an already loaded LoRA adapter.

 reset_mm_cache(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 reset_prefix_cache(ref, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 sleep(ref, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 start_profile(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 step(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 stop_profile(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 tokenizer(ref)

 validate_outputs(ref, outputs, output_type, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 wake_up(ref, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 Types

 t()

 @opaque t()

 Functions

 abort_request(ref, request_ids, args, opts \\ [])

 @spec abort_request(SnakeBridge.Ref.t(), [String.t()], [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Remove request_ids from EngineCore and Detokenizer.
Parameters
	request_ids (list(String.t()))
	internal (boolean() default: False)

Returns
	nil

 add_lora(ref, lora_request, opts \\ [])

 @spec add_lora(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Load a new LoRA adapter into the engine for future requests.
Parameters
	lora_request (term())

Returns
	boolean()

 add_request(ref, request_id, prompt, params, args, opts \\ [])

 @spec add_request(
 SnakeBridge.Ref.t(),
 String.t(),
 term(),
 term(),
 [term()],
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	request_id (String.t())
	prompt (term())
	params (term())
	arrival_time (term() default: None)
	lora_request (term() default: None)
	tokenization_kwargs (term() default: None)
	trace_headers (term() default: None)
	priority (integer() default: 0)
	prompt_text (term() default: None)

Returns
	nil

 apply_model(ref, func, opts \\ [])

 @spec apply_model(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	func (term())

Returns
	list(term())

 collective_rpc(ref, method, args, opts \\ [])

 @spec collective_rpc(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	method (term())
	timeout (term() default: None)
	args (tuple() default: ())
	kwargs (term() default: None)

Returns
	list(term())

 do_log_stats(ref, opts \\ [])

 @spec do_log_stats(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Log stats if logging is enabled.
Returns
	nil

 do_log_stats_with_interval(ref, opts \\ [])

 @spec do_log_stats_with_interval(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Log stats when the time interval has passed.
Returns
	nil

 from_engine_args(ref, engine_args, args, opts \\ [])

 @spec from_engine_args(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Creates an LLM engine from the engine arguments.
Parameters
	engine_args (term())
	usage_context (term() default: <UsageContext.ENGINE_CONTEXT: 'ENGINE_CONTEXT'>)
	stat_loggers (term() default: None)
	enable_multiprocessing (boolean() default: False)

Returns
	term()

 from_vllm_config(ref, vllm_config, args, opts \\ [])

 @spec from_vllm_config(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	vllm_config (term())
	usage_context (term() default: <UsageContext.ENGINE_CONTEXT: 'ENGINE_CONTEXT'>)
	stat_loggers (term() default: None)
	disable_log_stats (boolean() default: False)

Returns
	term()

 get_metrics(ref, opts \\ [])

 @spec get_metrics(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	list(term())

 get_num_unfinished_requests(ref, opts \\ [])

 @spec get_num_unfinished_requests(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	integer()

 get_supported_tasks(ref, opts \\ [])

 @spec get_supported_tasks(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, {term(), term()}} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	{term(), term()}

 get_tokenizer(ref, opts \\ [])

 @spec get_tokenizer(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	term()

 has_unfinished_requests(ref, opts \\ [])

 @spec has_unfinished_requests(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	boolean()

 has_unfinished_requests_dp(ref, has_unfinished, opts \\ [])

 @spec has_unfinished_requests_dp(SnakeBridge.Ref.t(), boolean(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	has_unfinished (boolean())

Returns
	boolean()

 is_sleeping(ref, opts \\ [])

 @spec is_sleeping(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	boolean()

 list_loras(ref, opts \\ [])

 @spec list_loras(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, MapSet.t(integer())} | {:error, Snakepit.Error.t()}

List all registered adapters.
Returns
	MapSet.t(integer())

 new(vllm_config, executor_class, log_stats, args, opts \\ [])

 @spec new(term(), term(), boolean(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	vllm_config (term())
	executor_class (term())
	log_stats (boolean())
	aggregate_engine_logging (boolean() default: False)
	usage_context (term() default: <UsageContext.ENGINE_CONTEXT: 'ENGINE_CONTEXT'>)
	stat_loggers (term() default: None)
	mm_registry (term() default: <vllm.multimodal.registry.MultiModalRegistry object at 0x7216fa41b470>)
	use_cached_outputs (boolean() default: False)
	multiprocess_mode (boolean() default: False)

 pin_lora(ref, lora_id, opts \\ [])

 @spec pin_lora(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Prevent an adapter from being evicted.
Parameters
	lora_id (integer())

Returns
	boolean()

 remove_lora(ref, lora_id, opts \\ [])

 @spec remove_lora(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Remove an already loaded LoRA adapter.
Parameters
	lora_id (integer())

Returns
	boolean()

 reset_mm_cache(ref, opts \\ [])

 @spec reset_mm_cache(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	term()

 reset_prefix_cache(ref, args, opts \\ [])

 @spec reset_prefix_cache(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	reset_running_requests (boolean() default: False)
	reset_connector (boolean() default: False)

Returns
	boolean()

 sleep(ref, args, opts \\ [])

 @spec sleep(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	level (integer() default: 1)

Returns
	term()

 start_profile(ref, opts \\ [])

 @spec start_profile(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	term()

 step(ref, opts \\ [])

 @spec step(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	list(term())

 stop_profile(ref, opts \\ [])

 @spec stop_profile(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	term()

 tokenizer(ref)

 @spec tokenizer(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 validate_outputs(ref, outputs, output_type, opts \\ [])

 @spec validate_outputs(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	outputs (term())
	output_type (term())

Returns
	term()

 wake_up(ref, args, opts \\ [])

 @spec wake_up(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	tags (term() default: None)

Returns
	term()

Vllm.Logger

Logging configuration for vLLM.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Logger.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Logger.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Logger.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Logger.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _configure_vllm_root_logger(opts \\ [])

 Logging configuration for vLLM.

 _date_format()

 str(object='') -> str

 _format()

 str(object='') -> str

 _methods_to_patch()

 dict() -> new empty dictionary

 _print_debug_once(logger, msg, opts \\ [])

 Logging configuration for vLLM.

 _print_info_once(logger, msg, opts \\ [])

 Logging configuration for vLLM.

 _print_warning_once(logger, msg, opts \\ [])

 Logging configuration for vLLM.

 _should_log_with_scope(scope, opts \\ [])

 Decide whether to log based on scope

 _trace_calls(log_path, root_dir, frame, event)

 Logging configuration for vLLM.

 _use_color(opts \\ [])

 Logging configuration for vLLM.

 current_formatter_type()

 Python binding for vllm.logger.current_formatter_type.

 current_formatter_type(opts)

 current_formatter_type(arg1, opts)

 current_formatter_type(arg1, arg2, opts)

 current_formatter_type(arg1, arg2, arg3, opts)

 current_formatter_type(arg1, arg2, arg3, arg4, opts)

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, opts)

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 default_logging_config()

 dict() -> new empty dictionary

 enable_trace_function_call(log_file_path)

 Enable tracing of every function call in code under root_dir.

 enable_trace_function_call(log_file_path, opts)

 enable_trace_function_call(log_file_path, root_dir, opts)

 init_logger(name, opts \\ [])

 The main purpose of this function is to ensure that loggers are

 log_scope(opts \\ [])

 Logging configuration for vLLM.

 logger()

 Instances of the Logger class represent a single logging channel. A

 suppress_logging()

 Logging configuration for vLLM.

 suppress_logging(opts)

 suppress_logging(level, opts)

 Functions

 _configure_vllm_root_logger(opts \\ [])

 @spec _configure_vllm_root_logger(keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Returns
	nil

 _date_format()

 @spec _date_format() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 _format()

 @spec _format() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 _methods_to_patch()

 @spec _methods_to_patch() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 _print_debug_once(logger, msg, opts \\ [])

 @spec _print_debug_once(term(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	logger (term())
	msg (String.t())
	args (term())

Returns
	nil

 _print_info_once(logger, msg, opts \\ [])

 @spec _print_info_once(term(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	logger (term())
	msg (String.t())
	args (term())

Returns
	nil

 _print_warning_once(logger, msg, opts \\ [])

 @spec _print_warning_once(term(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	logger (term())
	msg (String.t())
	args (term())

Returns
	nil

 _should_log_with_scope(scope, opts \\ [])

 @spec _should_log_with_scope(
 term(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Decide whether to log based on scope
Parameters
	scope (term())

Returns
	boolean()

 _trace_calls(log_path, root_dir, frame, event)

 @spec _trace_calls(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	log_path (term())
	root_dir (term())
	frame (term())
	event (term())
	arg (term() default: None)

Returns
	term()

 _use_color(opts \\ [])

 @spec _use_color(keyword()) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Returns
	boolean()

 current_formatter_type()

 @spec current_formatter_type() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.logger.current_formatter_type.
Returns
	term()

 current_formatter_type(opts)

 @spec current_formatter_type(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, opts)

 @spec current_formatter_type(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, opts)

 @spec current_formatter_type(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, arg3, opts)

 @spec current_formatter_type(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, arg3, arg4, opts)

 @spec current_formatter_type(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, opts)

 @spec current_formatter_type(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec current_formatter_type(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec current_formatter_type(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec current_formatter_type(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 current_formatter_type(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec current_formatter_type(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 default_logging_config()

 @spec default_logging_config() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 enable_trace_function_call(log_file_path)

 @spec enable_trace_function_call(String.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Enable tracing of every function call in code under root_dir.
This is useful for debugging hangs or crashes.
log_file_path is the path to the log file.
root_dir is the root directory of the code to trace. If None, it is the
vllm root directory.
Note that this call is thread-level, any threads calling this function
will have the trace enabled. Other threads will not be affected.
Parameters
	log_file_path (String.t())
	root_dir (term() default: None)

Returns
	term()

 enable_trace_function_call(log_file_path, opts)

 @spec enable_trace_function_call(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec enable_trace_function_call(String.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 enable_trace_function_call(log_file_path, root_dir, opts)

 @spec enable_trace_function_call(String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 init_logger(name, opts \\ [])

 @spec init_logger(
 String.t(),
 keyword()
) :: {:ok, Vllm.Logger.VllmLogger.t()} | {:error, Snakepit.Error.t()}

The main purpose of this function is to ensure that loggers are
retrieved in such a way that we can be sure the root vllm logger has
already been configured.
Parameters
	name (String.t())

Returns
	Vllm.Logger.VllmLogger.t()

 log_scope(opts \\ [])

 @spec log_scope(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 suppress_logging()

 @spec suppress_logging() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	level (integer() default: 20)

Returns
	term()

 suppress_logging(opts)

 @spec suppress_logging(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec suppress_logging(integer()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 suppress_logging(level, opts)

 @spec suppress_logging(
 integer(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Logger.ColoredFormatter

Wrapper for Python class ColoredFormatter.

 Summary

 Types

 t()

 Functions

 new()

 Constructs ColoredFormatter.

 new(opts)

 new(arg1, opts)

 new(arg1, arg2, opts)

 new(arg1, arg2, arg3, opts)

 new(arg1, arg2, arg3, arg4, opts)

 new(arg1, arg2, arg3, arg4, arg5, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 new()

 @spec new() :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs ColoredFormatter.

 new(opts)

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, opts)

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, opts)

 @spec new(term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, opts)

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, opts)

 @spec new(term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, opts)

 @spec new(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec new(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec new(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec new(term(), term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Vllm.Logger.NewLineFormatter

Wrapper for Python class NewLineFormatter.

 Summary

 Types

 t()

 Functions

 new()

 Constructs NewLineFormatter.

 new(opts)

 new(arg1, opts)

 new(arg1, arg2, opts)

 new(arg1, arg2, arg3, opts)

 new(arg1, arg2, arg3, arg4, opts)

 new(arg1, arg2, arg3, arg4, arg5, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 new()

 @spec new() :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs NewLineFormatter.

 new(opts)

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, opts)

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, opts)

 @spec new(term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, opts)

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, opts)

 @spec new(term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, opts)

 @spec new(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec new(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec new(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec new(term(), term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Vllm.Logger.VllmLogger

Note:
This class is just to provide type information.
We actually patch the methods directly on the [`logging.Logger`][]
instance to avoid conflicting with other libraries such as
`intel_extension_for_pytorch.utils._logger`.

 Summary

 Types

 t()

 Functions

 _log(ref, level, msg, args, extra_args, opts \\ [])

 Low-level logging routine which creates a LogRecord and then calls

 add_filter(ref, filter, opts \\ [])

 Add the specified filter to this handler.

 add_handler(ref, hdlr, opts \\ [])

 Add the specified handler to this logger.

 call_handlers(ref, record, opts \\ [])

 Pass a record to all relevant handlers.

 critical(ref, msg, args, opts \\ [])

 Log 'msg % args' with severity 'CRITICAL'.

 debug(ref, msg, args, opts \\ [])

 Log 'msg % args' with severity 'DEBUG'.

 debug_once(ref, msg, args, opts \\ [])

 As [debug][logging.Logger.debug], but subsequent calls with

 error(ref, msg, args, opts \\ [])

 Log 'msg % args' with severity 'ERROR'.

 exception(ref, msg, args, opts \\ [])

 Convenience method for logging an ERROR with exception information.

 fatal(ref, msg, args, opts \\ [])

 Don't use this method, use critical() instead.

 filter(ref, record, opts \\ [])

 Determine if a record is loggable by consulting all the filters.

 find_caller(ref, args, opts \\ [])

 Find the stack frame of the caller so that we can note the source

 get_child(ref, suffix, opts \\ [])

 Get a logger which is a descendant to this one.

 get_children(ref, opts \\ [])

 Logging configuration for vLLM.

 get_effective_level(ref, opts \\ [])

 Get the effective level for this logger.

 handle(ref, record, opts \\ [])

 Call the handlers for the specified record.

 has_handlers(ref, opts \\ [])

 See if this logger has any handlers configured.

 info(ref, msg, args, opts \\ [])

 Log 'msg % args' with severity 'INFO'.

 info_once(ref, msg, args, opts \\ [])

 As [info][logging.Logger.info], but subsequent calls with

 is_enabled_for(ref, level, opts \\ [])

 Is this logger enabled for level 'level'?

 log(ref, level, msg, args, opts \\ [])

 Log 'msg % args' with the integer severity 'level'.

 make_record(ref, name, level, py_fn, lno, msg, args, exc_info, extra_args, opts \\ [])

 A factory method which can be overridden in subclasses to create

 manager(ref)

 new(name, args, opts \\ [])

 Initialize the logger with a name and an optional level.

 remove_filter(ref, filter, opts \\ [])

 Remove the specified filter from this handler.

 remove_handler(ref, hdlr, opts \\ [])

 Remove the specified handler from this logger.

 root(ref)

 set_level(ref, level, opts \\ [])

 Set the logging level of this logger. level must be an int or a str.

 warn(ref, msg, args, opts \\ [])

 Logging configuration for vLLM.

 warning(ref, msg, args, opts \\ [])

 Log 'msg % args' with severity 'WARNING'.

 warning_once(ref, msg, args, opts \\ [])

 As [warning][logging.Logger.warning], but subsequent calls with

 Types

 t()

 @opaque t()

 Functions

 _log(ref, level, msg, args, extra_args, opts \\ [])

 @spec _log(SnakeBridge.Ref.t(), term(), term(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Low-level logging routine which creates a LogRecord and then calls
all the handlers of this logger to handle the record.
Parameters
	level (term())
	msg (term())
	args (term())
	exc_info (term() default: None)
	extra (term() default: None)
	stack_info (term() default: False)
	stacklevel (term() default: 1)

Returns
	term()

 add_filter(ref, filter, opts \\ [])

 @spec add_filter(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Add the specified filter to this handler.
Parameters
	filter (term())

Returns
	term()

 add_handler(ref, hdlr, opts \\ [])

 @spec add_handler(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Add the specified handler to this logger.
Parameters
	hdlr (term())

Returns
	term()

 call_handlers(ref, record, opts \\ [])

 @spec call_handlers(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Pass a record to all relevant handlers.
Loop through all handlers for this logger and its parents in the
logger hierarchy. If no handler was found, output a one-off error
message to sys.stderr. Stop searching up the hierarchy whenever a
logger with the "propagate" attribute set to zero is found - that
will be the last logger whose handlers are called.
Parameters
	record (term())

Returns
	term()

 critical(ref, msg, args, opts \\ [])

 @spec critical(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Log 'msg % args' with severity 'CRITICAL'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.critical("Houston, we have a %s", "major disaster", exc_info=True)
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 debug(ref, msg, args, opts \\ [])

 @spec debug(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Log 'msg % args' with severity 'DEBUG'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.debug("Houston, we have a %s", "thorny problem", exc_info=True)
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 debug_once(ref, msg, args, opts \\ [])

 @spec debug_once(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

As [debug][logging.Logger.debug], but subsequent calls with
the same message are silently dropped.
Parameters
	msg (String.t())
	args (term())
	scope (term() keyword-only default: 'process')

Returns
	nil

 error(ref, msg, args, opts \\ [])

 @spec error(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Log 'msg % args' with severity 'ERROR'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.error("Houston, we have a %s", "major problem", exc_info=True)
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 exception(ref, msg, args, opts \\ [])

 @spec exception(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Convenience method for logging an ERROR with exception information.
Parameters
	msg (term())
	args (term())
	exc_info (term() keyword-only default: True)
	kwargs (term())

Returns
	term()

 fatal(ref, msg, args, opts \\ [])

 @spec fatal(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Don't use this method, use critical() instead.
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 filter(ref, record, opts \\ [])

 @spec filter(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Determine if a record is loggable by consulting all the filters.
The default is to allow the record to be logged; any filter can veto
this by returning a false value.
If a filter attached to a handler returns a log record instance,
then that instance is used in place of the original log record in
any further processing of the event by that handler.
If a filter returns any other true value, the original log record
is used in any further processing of the event by that handler.
If none of the filters return false values, this method returns
a log record.
If any of the filters return a false value, this method returns
a false value.
.. versionchanged:: 3.2
 Allow filters to be just callables.
.. versionchanged:: 3.12
 Allow filters to return a LogRecord instead of
 modifying it in place.
Parameters
	record (term())

Returns
	term()

 find_caller(ref, args, opts \\ [])

 @spec find_caller(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Find the stack frame of the caller so that we can note the source
file name, line number and function name.
Parameters
	stack_info (term() default: False)
	stacklevel (term() default: 1)

Returns
	term()

 get_child(ref, suffix, opts \\ [])

 @spec get_child(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Get a logger which is a descendant to this one.
This is a convenience method, such that
logging.getLogger('abc').getChild('def.ghi')
is the same as
logging.getLogger('abc.def.ghi')
It's useful, for example, when the parent logger is named using
name rather than a literal string.
Parameters
	suffix (term())

Returns
	term()

 get_children(ref, opts \\ [])

 @spec get_children(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Returns
	term()

 get_effective_level(ref, opts \\ [])

 @spec get_effective_level(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Get the effective level for this logger.
Loop through this logger and its parents in the logger hierarchy,
looking for a non-zero logging level. Return the first one found.
Returns
	term()

 handle(ref, record, opts \\ [])

 @spec handle(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Call the handlers for the specified record.
This method is used for unpickled records received from a socket, as
well as those created locally. Logger-level filtering is applied.
Parameters
	record (term())

Returns
	term()

 has_handlers(ref, opts \\ [])

 @spec has_handlers(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

See if this logger has any handlers configured.
Loop through all handlers for this logger and its parents in the
logger hierarchy. Return True if a handler was found, else False.
Stop searching up the hierarchy whenever a logger with the "propagate"
attribute set to zero is found - that will be the last logger which
is checked for the existence of handlers.
Returns
	term()

 info(ref, msg, args, opts \\ [])

 @spec info(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Log 'msg % args' with severity 'INFO'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.info("Houston, we have a %s", "notable problem", exc_info=True)
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 info_once(ref, msg, args, opts \\ [])

 @spec info_once(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

As [info][logging.Logger.info], but subsequent calls with
the same message are silently dropped.
Parameters
	msg (String.t())
	args (term())
	scope (term() keyword-only default: 'process')

Returns
	nil

 is_enabled_for(ref, level, opts \\ [])

 @spec is_enabled_for(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Is this logger enabled for level 'level'?
Parameters
	level (term())

Returns
	term()

 log(ref, level, msg, args, opts \\ [])

 @spec log(SnakeBridge.Ref.t(), term(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Log 'msg % args' with the integer severity 'level'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.log(level, "We have a %s", "mysterious problem", exc_info=True)
Parameters
	level (term())
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 make_record(ref, name, level, py_fn, lno, msg, args, exc_info, extra_args, opts \\ [])

 @spec make_record(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 [term()],
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A factory method which can be overridden in subclasses to create
specialized LogRecords.
Parameters
	name (term())
	level (term())
	py_fn (term())
	lno (term())
	msg (term())
	args (term())
	exc_info (term())
	func (term() default: None)
	extra (term() default: None)
	sinfo (term() default: None)

Returns
	term()

 manager(ref)

 @spec manager(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(name, args, opts \\ [])

 @spec new(term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize the logger with a name and an optional level.
Parameters
	name (term())
	level (term() default: 0)

 remove_filter(ref, filter, opts \\ [])

 @spec remove_filter(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Remove the specified filter from this handler.
Parameters
	filter (term())

Returns
	term()

 remove_handler(ref, hdlr, opts \\ [])

 @spec remove_handler(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Remove the specified handler from this logger.
Parameters
	hdlr (term())

Returns
	term()

 root(ref)

 @spec root(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 set_level(ref, level, opts \\ [])

 @spec set_level(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Set the logging level of this logger. level must be an int or a str.
Parameters
	level (term())

Returns
	term()

 warn(ref, msg, args, opts \\ [])

 @spec warn(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Logging configuration for vLLM.
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 warning(ref, msg, args, opts \\ [])

 @spec warning(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Log 'msg % args' with severity 'WARNING'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.warning("Houston, we have a %s", "bit of a problem", exc_info=True)
Parameters
	msg (term())
	args (term())
	kwargs (term())

Returns
	term()

 warning_once(ref, msg, args, opts \\ [])

 @spec warning_once(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

As [warning][logging.Logger.warning], but subsequent calls with
the same message are silently dropped.
Parameters
	msg (String.t())
	args (term())
	scope (term() keyword-only default: 'process')

Returns
	nil

Vllm.LoggingUtils

Submodule bindings for vllm.logging_utils.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.LoggingUtils.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.LoggingUtils.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.LoggingUtils.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.LoggingUtils.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 logtime(logger)

 Logs the execution time of the decorated function.

 logtime(logger, opts)

 logtime(logger, msg, opts)

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 logtime(logger)

 @spec logtime(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Logs the execution time of the decorated function.
Always place it beneath other decorators.
Parameters
	logger (term())
	msg (term() default: None)

Returns
	term()

 logtime(logger, opts)

 @spec logtime(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec logtime(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 logtime(logger, msg, opts)

 @spec logtime(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.LoggingUtils.ColoredFormatter

Adds ANSI color codes to log levels for terminal output.
This formatter adds colors by injecting them into the format string for
static elements (timestamp, filename, line number) and modifying the
levelname attribute for dynamic color selection.

 Summary

 Types

 t()

 Functions

 colors(ref)

 converter(ref)

 localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,

 converter(ref, opts)

 converter(ref, arg1, opts)

 converter(ref, arg1, arg2, opts)

 converter(ref, arg1, arg2, arg3, opts)

 converter(ref, arg1, arg2, arg3, arg4, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 default_msec_format(ref)

 default_time_format(ref)

 format(ref, record, opts \\ [])

 Format the specified record as text.

 format_exception(ref, ei, opts \\ [])

 Format and return the specified exception information as a string.

 format_message(ref, record, opts \\ [])

 Python method ColoredFormatter.formatMessage.

 format_stack(ref, stack_info, opts \\ [])

 This method is provided as an extension point for specialized

 format_time(ref, record, args, opts \\ [])

 Return the creation time of the specified LogRecord as formatted text.

 grey(ref)

 new(fmt, args, opts \\ [])

 Initialize the formatter with specified format strings.

 reset(ref)

 uses_time(ref, opts \\ [])

 Check if the format uses the creation time of the record.

 Types

 t()

 @opaque t()

 Functions

 colors(ref)

 @spec colors(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref)

 @spec converter(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
tm_sec,tm_wday,tm_yday,tm_isdst)
Convert seconds since the Epoch to a time tuple expressing local time.
When 'seconds' is not passed in, convert the current time instead.
Returns
	term()

 converter(ref, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 default_msec_format(ref)

 @spec default_msec_format(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 default_time_format(ref)

 @spec default_time_format(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 format(ref, record, opts \\ [])

 @spec format(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Format the specified record as text.
The record's attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.
Parameters
	record (term())

Returns
	term()

 format_exception(ref, ei, opts \\ [])

 @spec format_exception(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Format and return the specified exception information as a string.
This default implementation just uses
traceback.print_exception()
Parameters
	ei (term())

Returns
	term()

 format_message(ref, record, opts \\ [])

 @spec format_message(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ColoredFormatter.formatMessage.
Parameters
	record (term())

Returns
	term()

 format_stack(ref, stack_info, opts \\ [])

 @spec format_stack(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

This method is provided as an extension point for specialized
formatting of stack information.
The input data is a string as returned from a call to
:func:traceback.print_stack, but with the last trailing newline
removed.
The base implementation just returns the value passed in.
Parameters
	stack_info (term())

Returns
	term()

 format_time(ref, record, args, opts \\ [])

 @spec format_time(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the creation time of the specified LogRecord as formatted text.
This method should be called from format() by a formatter which
wants to make use of a formatted time. This method can be overridden
in formatters to provide for any specific requirement, but the
basic behaviour is as follows: if datefmt (a string) is specified,
it is used with time.strftime() to format the creation time of the
record. Otherwise, an ISO8601-like (or RFC 3339-like) format is used.
The resulting string is returned. This function uses a user-configurable
function to convert the creation time to a tuple. By default,
time.localtime() is used; to change this for a particular formatter
instance, set the 'converter' attribute to a function with the same
signature as time.localtime() or time.gmtime(). To change it for all
formatters, for example if you want all logging times to be shown in GMT,
set the 'converter' attribute in the Formatter class.
Parameters
	record (term())
	datefmt (term() default: None)

Returns
	term()

 grey(ref)

 @spec grey(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(fmt, args, opts \\ [])

 @spec new(term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize the formatter with specified format strings.
Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument. If datefmt is omitted, you get an
ISO8601-like (or RFC 3339-like) format.
Use a style parameter of '%', '{' or '$' to specify that you want to
use one of %-formatting, :meth:str.format ({}) formatting or
:class:string.Template formatting in your format string.
.. versionchanged:: 3.2
 Added the style parameter.
Parameters
	fmt (term())
	datefmt (term() default: None)
	style (term() default: '%')

 reset(ref)

 @spec reset(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uses_time(ref, opts \\ [])

 @spec uses_time(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Check if the format uses the creation time of the record.
Returns
	term()

Vllm.LoggingUtils.NewLineFormatter

Adds logging prefix to newlines to align multi-line messages.

 Summary

 Types

 t()

 Functions

 converter(ref)

 localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,

 converter(ref, opts)

 converter(ref, arg1, opts)

 converter(ref, arg1, arg2, opts)

 converter(ref, arg1, arg2, arg3, opts)

 converter(ref, arg1, arg2, arg3, arg4, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 default_msec_format(ref)

 default_time_format(ref)

 format(ref, record, opts \\ [])

 Format the specified record as text.

 format_exception(ref, ei, opts \\ [])

 Format and return the specified exception information as a string.

 format_message(ref, record, opts \\ [])

 Python method NewLineFormatter.formatMessage.

 format_stack(ref, stack_info, opts \\ [])

 This method is provided as an extension point for specialized

 format_time(ref, record, args, opts \\ [])

 Return the creation time of the specified LogRecord as formatted text.

 new(fmt, args, opts \\ [])

 Initialize the formatter with specified format strings.

 uses_time(ref, opts \\ [])

 Check if the format uses the creation time of the record.

 Types

 t()

 @opaque t()

 Functions

 converter(ref)

 @spec converter(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
tm_sec,tm_wday,tm_yday,tm_isdst)
Convert seconds since the Epoch to a time tuple expressing local time.
When 'seconds' is not passed in, convert the current time instead.
Returns
	term()

 converter(ref, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, opts)

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 converter(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec converter(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 default_msec_format(ref)

 @spec default_msec_format(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 default_time_format(ref)

 @spec default_time_format(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 format(ref, record, opts \\ [])

 @spec format(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Format the specified record as text.
The record's attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.
Parameters
	record (term())

Returns
	term()

 format_exception(ref, ei, opts \\ [])

 @spec format_exception(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Format and return the specified exception information as a string.
This default implementation just uses
traceback.print_exception()
Parameters
	ei (term())

Returns
	term()

 format_message(ref, record, opts \\ [])

 @spec format_message(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method NewLineFormatter.formatMessage.
Parameters
	record (term())

Returns
	term()

 format_stack(ref, stack_info, opts \\ [])

 @spec format_stack(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

This method is provided as an extension point for specialized
formatting of stack information.
The input data is a string as returned from a call to
:func:traceback.print_stack, but with the last trailing newline
removed.
The base implementation just returns the value passed in.
Parameters
	stack_info (term())

Returns
	term()

 format_time(ref, record, args, opts \\ [])

 @spec format_time(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the creation time of the specified LogRecord as formatted text.
This method should be called from format() by a formatter which
wants to make use of a formatted time. This method can be overridden
in formatters to provide for any specific requirement, but the
basic behaviour is as follows: if datefmt (a string) is specified,
it is used with time.strftime() to format the creation time of the
record. Otherwise, an ISO8601-like (or RFC 3339-like) format is used.
The resulting string is returned. This function uses a user-configurable
function to convert the creation time to a tuple. By default,
time.localtime() is used; to change this for a particular formatter
instance, set the 'converter' attribute to a function with the same
signature as time.localtime() or time.gmtime(). To change it for all
formatters, for example if you want all logging times to be shown in GMT,
set the 'converter' attribute in the Formatter class.
Parameters
	record (term())
	datefmt (term() default: None)

Returns
	term()

 new(fmt, args, opts \\ [])

 @spec new(term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize the formatter with specified format strings.
Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument. If datefmt is omitted, you get an
ISO8601-like (or RFC 3339-like) format.
Use a style parameter of '%', '{' or '$' to specify that you want to
use one of %-formatting, :meth:str.format ({}) formatting or
:class:string.Template formatting in your format string.
.. versionchanged:: 3.2
 Added the style parameter.
Parameters
	fmt (term())
	datefmt (term() default: None)
	style (term() default: '%')

 uses_time(ref, opts \\ [])

 @spec uses_time(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Check if the format uses the creation time of the record.
Returns
	term()

Vllm.LogitsProcess

Submodule bindings for vllm.logits_process.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.LogitsProcess.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.LogitsProcess.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.LogitsProcess.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.LogitsProcess.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 get_bad_words_logits_processors(bad_words, tokenizer, opts \\ [])

 Python binding for vllm.logits_process.get_bad_words_logits_processors.

 logits_processor()

 Represent a PEP 604 union type

 Functions

 get_bad_words_logits_processors(bad_words, tokenizer, opts \\ [])

 @spec get_bad_words_logits_processors([String.t()], term(), keyword()) ::
 {:ok, [term()]} | {:error, Snakepit.Error.t()}

Python binding for vllm.logits_process.get_bad_words_logits_processors.
Parameters
	bad_words (list(String.t()))
	tokenizer (term())

Returns
	list(term())

 logits_processor()

 @spec logits_processor() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

Vllm.LogitsProcess.NoBadWordsLogitsProcessor

Wrapper for Python class NoBadWordsLogitsProcessor.

 Summary

 Types

 t()

 Functions

 _check_token_ids_bounds(ref, vocab_size, opts \\ [])

 Python method NoBadWordsLogitsProcessor._check_token_ids_bounds.

 _init_word_bias(ref, logits, opts \\ [])

 Python method NoBadWordsLogitsProcessor._init_word_bias.

 new(bad_words_ids, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 _check_token_ids_bounds(ref, vocab_size, opts \\ [])

 @spec _check_token_ids_bounds(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method NoBadWordsLogitsProcessor._check_token_ids_bounds.
Parameters
	vocab_size (integer())

Returns
	nil

 _init_word_bias(ref, logits, opts \\ [])

 @spec _init_word_bias(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method NoBadWordsLogitsProcessor._init_word_bias.
Parameters
	logits (term())

Returns
	nil

 new(bad_words_ids, opts \\ [])

 @spec new(
 [[integer()]],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	bad_words_ids (list(list(integer())))

Vllm.LogitsProcess.TokenizerLike

Base class for protocol classes.
Protocol classes are defined as::
class Proto(Protocol):
 def meth(self) -> int:
 ...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing).
For example::
class C:
 def meth(self) -> int:
 return 0

def func(x: Proto) -> int:
 return x.meth()

func(C()) # Passes static type check
See PEP 544 for details. Protocol classes decorated with
@typing.runtime_checkable act as simple-minded runtime protocols that check
only the presence of given attributes, ignoring their type signatures.
Protocol classes can be generic, they are defined as::
class GenProto[T](Protocol):
 def meth(self) -> T:
 ...

 Summary

 Types

 t()

 Functions

 all_special_ids(ref)

 all_special_tokens(ref)

 apply_chat_template(ref, messages, args, opts \\ [])

 Python method TokenizerLike.apply_chat_template.

 bos_token_id(ref)

 convert_ids_to_tokens(ref, ids, args, opts \\ [])

 Python method TokenizerLike.convert_ids_to_tokens.

 convert_tokens_to_ids(ref, tokens, opts \\ [])

 Python method TokenizerLike.convert_tokens_to_ids.

 convert_tokens_to_string(ref, tokens, opts \\ [])

 Python method TokenizerLike.convert_tokens_to_string.

 decode(ref, ids, args, opts \\ [])

 Python method TokenizerLike.decode.

 encode(ref, text, args, opts \\ [])

 Python method TokenizerLike.encode.

 eos_token_id(ref)

 from_pretrained(ref, path_or_repo_id, args, opts \\ [])

 Python method TokenizerLike.from_pretrained.

 get_added_vocab(ref, opts \\ [])

 Python method TokenizerLike.get_added_vocab.

 get_vocab(ref, opts \\ [])

 Python method TokenizerLike.get_vocab.

 is_fast(ref)

 max_token_id(ref)

 new(args, opts \\ [])

 Constructs TokenizerLike.

 num_special_tokens_to_add(ref, opts \\ [])

 Python method TokenizerLike.num_special_tokens_to_add.

 pad_token_id(ref)

 truncation_side(ref)

 vocab_size(ref)

 Types

 t()

 @opaque t()

 Functions

 all_special_ids(ref)

 @spec all_special_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 all_special_tokens(ref)

 @spec all_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 apply_chat_template(ref, messages, args, opts \\ [])

 @spec apply_chat_template(SnakeBridge.Ref.t(), [term()], [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.apply_chat_template.
Parameters
	messages (list(term()))
	tools (term() default: None)
	kwargs (term())

Returns
	term()

 bos_token_id(ref)

 @spec bos_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 convert_ids_to_tokens(ref, ids, args, opts \\ [])

 @spec convert_ids_to_tokens(SnakeBridge.Ref.t(), [integer()], [term()], keyword()) ::
 {:ok, [String.t()]} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.convert_ids_to_tokens.
Parameters
	ids (list(integer()))
	skip_special_tokens (boolean() default: False)

Returns
	list(String.t())

 convert_tokens_to_ids(ref, tokens, opts \\ [])

 @spec convert_tokens_to_ids(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.convert_tokens_to_ids.
Parameters
	tokens (term())

Returns
	term()

 convert_tokens_to_string(ref, tokens, opts \\ [])

 @spec convert_tokens_to_string(SnakeBridge.Ref.t(), [String.t()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.convert_tokens_to_string.
Parameters
	tokens (list(String.t()))

Returns
	String.t()

 decode(ref, ids, args, opts \\ [])

 @spec decode(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.decode.
Parameters
	ids (term())
	skip_special_tokens (boolean() default: False)

Returns
	String.t()

 encode(ref, text, args, opts \\ [])

 @spec encode(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, [integer()]} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.encode.
Parameters
	text (String.t())
	truncation (term() default: None)
	max_length (term() default: None)
	add_special_tokens (boolean() default: True)

Returns
	list(integer())

 eos_token_id(ref)

 @spec eos_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 from_pretrained(ref, path_or_repo_id, args, opts \\ [])

 @spec from_pretrained(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.from_pretrained.
Parameters
	path_or_repo_id (term())
	args (term())
	trust_remote_code (boolean() keyword-only default: False)
	revision (term() keyword-only default: None)
	download_dir (term() keyword-only default: None)
	kwargs (term())

Returns
	term()

 get_added_vocab(ref, opts \\ [])

 @spec get_added_vocab(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => integer()}} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.get_added_vocab.
Returns
	%{optional(String.t()) => integer()}

 get_vocab(ref, opts \\ [])

 @spec get_vocab(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => integer()}} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.get_vocab.
Returns
	%{optional(String.t()) => integer()}

 is_fast(ref)

 @spec is_fast(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_token_id(ref)

 @spec max_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs TokenizerLike.
Parameters
	args (term())
	kwargs (term())

 num_special_tokens_to_add(ref, opts \\ [])

 @spec num_special_tokens_to_add(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.num_special_tokens_to_add.
Returns
	integer()

 pad_token_id(ref)

 @spec pad_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 truncation_side(ref)

 @spec truncation_side(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vocab_size(ref)

 @spec vocab_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Logprobs

Submodule bindings for vllm.logprobs.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Logprobs.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Logprobs.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Logprobs.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Logprobs.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 append_logprobs_for_next_position(request_logprobs, token_ids, logprobs, decoded_tokens, rank, num_logprobs, opts \\ [])

 Appends logprobs for the next position

 create_prompt_logprobs(flat_logprobs, opts \\ [])

 Creates a container to store prompt logprobs for a request

 create_sample_logprobs(flat_logprobs, opts \\ [])

 Creates a container to store decode logprobs for a request

 logprobs_one_position(opts \\ [])

 dict() -> new empty dictionary

 prompt_logprobs()

 Represent a PEP 604 union type

 sample_logprobs()

 Represent a PEP 604 union type

 Functions

 append_logprobs_for_next_position(request_logprobs, token_ids, logprobs, decoded_tokens, rank, num_logprobs, opts \\ [])

 @spec append_logprobs_for_next_position(
 term(),
 [integer()],
 [float()],
 term(),
 integer(),
 integer(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Appends logprobs for the next position
Parameters
	request_logprobs (term())
	token_ids (list(integer()))
	logprobs (list(float()))
	decoded_tokens (term())
	rank (integer())
	num_logprobs (integer())

Returns
	nil

 create_prompt_logprobs(flat_logprobs, opts \\ [])

 @spec create_prompt_logprobs(
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Creates a container to store prompt logprobs for a request
Parameters
	flat_logprobs (boolean())

Returns
	term()

 create_sample_logprobs(flat_logprobs, opts \\ [])

 @spec create_sample_logprobs(
 boolean(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Creates a container to store decode logprobs for a request
Parameters
	flat_logprobs (boolean())

Returns
	term()

 logprobs_one_position(opts \\ [])

 @spec logprobs_one_position(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 prompt_logprobs()

 @spec prompt_logprobs() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

 sample_logprobs()

 @spec sample_logprobs() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Represent a PEP 604 union type
E.g. for int | str
Returns
	term()

Vllm.Logprobs.FlatLogprobs

Flat logprobs of a request into multiple primitive type lists.
Compared to list[dict[int, Logprob]], this data structure reduced GC
overhead significantly. As it flattened logprob information for
all positions and ranks in to multiple primitive type lists (i.e.
logprobs, token_ids, ranks per token_ids, decoded_tokens).
So regardless of the sequence length and top_logprobs setup,
FlatLogprobs would only introduce a constant amount of objects.
As each position might contains different amount of ranks,
start_indices_per_position would be used to access the logprob ranges
for different positions.
NOTE: To reduce the migration overhead and improve backward compatibility,
we support the key Sequence APIs of list, so it could act as
list[LogprobsOnePosition]

 Summary

 Types

 t()

 Functions

 append(ref, logprobs_one_position, opts \\ [])

 Appends the container with logprobs for the next position

 append_fast(ref, token_ids, logprobs, ranks, decoded_tokens, opts \\ [])

 Appends logprobs for the next position without creating

 clear(ref, opts \\ [])

 S.clear() -> None -- remove all items from S

 count(ref, value, opts \\ [])

 S.count(value) -> integer -- return number of occurrences of value

 extend(ref, logprobs_multi_positions, opts \\ [])

 Extends the container with logprobs for the next multiple positions

 index(ref, value, args, opts \\ [])

 S.index(value, [start, [stop]]) -> integer -- return first index of value.

 insert(ref, item, opts \\ [])

 S.insert(index, value) -- insert value before index

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref, args, opts \\ [])

 S.pop([index]) -> item -- remove and return item at index (default last).

 remove(ref, value, opts \\ [])

 S.remove(value) -- remove first occurrence of value.

 reverse(ref, opts \\ [])

 S.reverse() -- reverse IN PLACE

 Types

 t()

 @opaque t()

 Functions

 append(ref, logprobs_one_position, opts \\ [])

 @spec append(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Appends the container with logprobs for the next position
Parameters
	logprobs_one_position (term())

Returns
	nil

 append_fast(ref, token_ids, logprobs, ranks, decoded_tokens, opts \\ [])

 @spec append_fast(
 SnakeBridge.Ref.t(),
 [integer()],
 [float()],
 term(),
 term(),
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Appends logprobs for the next position without creating
the intermediate logprob dictionary.
Parameters
	token_ids (list(integer()))
	logprobs (list(float()))
	ranks (term())
	decoded_tokens (term())

Returns
	nil

 clear(ref, opts \\ [])

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

S.clear() -> None -- remove all items from S
Returns
	term()

 count(ref, value, opts \\ [])

 @spec count(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

S.count(value) -> integer -- return number of occurrences of value
Parameters
	value (term())

Returns
	term()

 extend(ref, logprobs_multi_positions, opts \\ [])

 @spec extend(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Extends the container with logprobs for the next multiple positions
Parameters
	logprobs_multi_positions (term())

Returns
	nil

 index(ref, value, args, opts \\ [])

 @spec index(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

S.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but
recommended.
Parameters
	value (term())
	start (term() default: 0)
	stop (term() default: None)

Returns
	term()

 insert(ref, item, opts \\ [])

 @spec insert(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

S.insert(index, value) -- insert value before index
Parameters
	item (term())

Returns
	nil

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	start_indices (list(integer()) default: <factory>)
	end_indices (list(integer()) default: <factory>)
	token_ids (list(integer()) default: <factory>)
	logprobs (list(float()) default: <factory>)
	ranks (list(term()) default: <factory>)
	decoded_tokens (list(term()) default: <factory>)

 pop(ref, args, opts \\ [])

 @spec pop(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

S.pop([index]) -> item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
Parameters
	index (term() default: -1)

Returns
	term()

 remove(ref, value, opts \\ [])

 @spec remove(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

S.remove(value) -- remove first occurrence of value.
Raise ValueError if the value is not present.
Parameters
	value (term())

Returns
	term()

 reverse(ref, opts \\ [])

 @spec reverse(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

S.reverse() -- reverse IN PLACE
Returns
	term()

Vllm.Logprobs.Logprob

Infos for supporting OpenAI compatible logprobs and token ranks.
Attributes:
logprob: The logprob of chosen token
rank: The vocab rank of chosen token (>=1)
decoded_token: The decoded chosen token index

 Summary

 Types

 t()

 Functions

 decoded_token(ref)

 new(logprob, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 rank(ref)

 Types

 t()

 @opaque t()

 Functions

 decoded_token(ref)

 @spec decoded_token(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(logprob, args, opts \\ [])

 @spec new(float(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	logprob (float())
	rank (term() default: None)
	decoded_token (term() default: None)

 rank(ref)

 @spec rank(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Lora

Submodule bindings for vllm.lora.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Lora.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Lora.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Lora.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Lora.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.ModelExecutor

Submodule bindings for vllm.model_executor.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ModelExecutor.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ModelExecutor.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ModelExecutor.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ModelExecutor.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

Vllm.ModelExecutor.BasevLLMParameter

Base parameter for vLLM linear layers. Extends the torch.nn.parameter
by taking in a linear weight loader. Will copy the loaded weight
into the parameter when the provided weight loader is called.

 Summary

 Types

 t()

 Functions

 _assert_and_load(ref, loaded_weight, opts \\ [])

 Python method BasevLLMParameter._assert_and_load.

 _is_1d_and_scalar(ref, loaded_weight, opts \\ [])

 Python method BasevLLMParameter._is_1d_and_scalar.

 _shard_id_as_int(ref, shard_id, opts \\ [])

 Python method BasevLLMParameter._shard_id_as_int.

 data(ref)

 device(ref)

 dtype(ref)

 grad(ref)

 grad_fn(ref)

 h(ref)

 imag(ref)

 is_cpu(ref)

 is_cuda(ref)

 is_ipu(ref)

 is_leaf(ref)

 is_maia(ref)

 is_meta(ref)

 is_mkldnn(ref)

 is_mps(ref)

 is_mtia(ref)

 is_nested(ref)

 is_quantized(ref)

 is_sparse(ref)

 is_sparse_csr(ref)

 is_vulkan(ref)

 is_xla(ref)

 is_xpu(ref)

 itemsize(ref)

 layout(ref)

 load_column_parallel_weight(ref, loaded_weight, opts \\ [])

 Python method BasevLLMParameter.load_column_parallel_weight.

 load_merged_column_weight(ref, loaded_weight, opts \\ [])

 Python method BasevLLMParameter.load_merged_column_weight.

 load_qkv_weight(ref, loaded_weight, opts \\ [])

 Python method BasevLLMParameter.load_qkv_weight.

 load_row_parallel_weight(ref, loaded_weight, opts \\ [])

 Python method BasevLLMParameter.load_row_parallel_weight.

 m_h(ref)

 m_t(ref)

 name(ref)

 names(ref)

 nbytes(ref)

 ndim(ref)

 new(data, weight_loader, opts \\ [])

 Initialize the BasevLLMParameter

 output_nr(ref)

 real(ref)

 requires_grad(ref)

 retains_grad(ref)

 shape(ref)

 t(ref)

 volatile(ref)

 weight_loader(ref)

 Types

 t()

 @opaque t()

 Functions

 _assert_and_load(ref, loaded_weight, opts \\ [])

 @spec _assert_and_load(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter._assert_and_load.
Parameters
	loaded_weight (term())

Returns
	term()

 _is_1d_and_scalar(ref, loaded_weight, opts \\ [])

 @spec _is_1d_and_scalar(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter._is_1d_and_scalar.
Parameters
	loaded_weight (term())

Returns
	term()

 _shard_id_as_int(ref, shard_id, opts \\ [])

 @spec _shard_id_as_int(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter._shard_id_as_int.
Parameters
	shard_id (term())

Returns
	integer()

 data(ref)

 @spec data(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 device(ref)

 @spec device(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 dtype(ref)

 @spec dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 grad(ref)

 @spec grad(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 grad_fn(ref)

 @spec grad_fn(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 h(ref)

 @spec h(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 imag(ref)

 @spec imag(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_cpu(ref)

 @spec is_cpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_cuda(ref)

 @spec is_cuda(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_ipu(ref)

 @spec is_ipu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_leaf(ref)

 @spec is_leaf(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_maia(ref)

 @spec is_maia(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_meta(ref)

 @spec is_meta(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mkldnn(ref)

 @spec is_mkldnn(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mps(ref)

 @spec is_mps(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mtia(ref)

 @spec is_mtia(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_nested(ref)

 @spec is_nested(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_quantized(ref)

 @spec is_quantized(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_sparse(ref)

 @spec is_sparse(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_sparse_csr(ref)

 @spec is_sparse_csr(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_vulkan(ref)

 @spec is_vulkan(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_xla(ref)

 @spec is_xla(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_xpu(ref)

 @spec is_xpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 itemsize(ref)

 @spec itemsize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 layout(ref)

 @spec layout(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 load_column_parallel_weight(ref, loaded_weight, opts \\ [])

 @spec load_column_parallel_weight(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter.load_column_parallel_weight.
Parameters
	loaded_weight (term())

Returns
	term()

 load_merged_column_weight(ref, loaded_weight, opts \\ [])

 @spec load_merged_column_weight(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter.load_merged_column_weight.
Parameters
	loaded_weight (term())
	kwargs (term())

Returns
	term()

 load_qkv_weight(ref, loaded_weight, opts \\ [])

 @spec load_qkv_weight(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter.load_qkv_weight.
Parameters
	loaded_weight (term())
	kwargs (term())

Returns
	term()

 load_row_parallel_weight(ref, loaded_weight, opts \\ [])

 @spec load_row_parallel_weight(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method BasevLLMParameter.load_row_parallel_weight.
Parameters
	loaded_weight (term())

Returns
	term()

 m_h(ref)

 @spec m_h(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 m_t(ref)

 @spec m_t(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 names(ref)

 @spec names(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 nbytes(ref)

 @spec nbytes(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ndim(ref)

 @spec ndim(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(data, weight_loader, opts \\ [])

 @spec new(term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize the BasevLLMParameter
Parameters
	data - torch tensor with the parameter data
	weight_loader - weight loader callable

Returns
 a torch.nn.parameter

 output_nr(ref)

 @spec output_nr(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 real(ref)

 @spec real(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 requires_grad(ref)

 @spec requires_grad(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 retains_grad(ref)

 @spec retains_grad(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 shape(ref)

 @spec shape(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 t(ref)

 @spec t(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 volatile(ref)

 @spec volatile(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 weight_loader(ref)

 @spec weight_loader(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ModelExecutor.Models.Adapters

Submodule bindings for vllm.model_executor.models.adapters.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ModelExecutor.Models.Adapters.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ModelExecutor.Models.Adapters.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ModelExecutor.Models.Adapters.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ModelExecutor.Models.Adapters.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.ModelExecutor.Models.Interfaces

Submodule bindings for vllm.model_executor.models.interfaces.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ModelExecutor.Models.Interfaces.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ModelExecutor.Models.Interfaces.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ModelExecutor.Models.Interfaces.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ModelExecutor.Models.Interfaces.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.ModelExecutor.Models.InterfacesBase

Submodule bindings for vllm.model_executor.models.interfaces_base.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ModelExecutor.Models.InterfacesBase.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ModelExecutor.Models.InterfacesBase.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ModelExecutor.Models.InterfacesBase.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ModelExecutor.Models.InterfacesBase.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.ModelExecutor.PackedvLLMParameter

Parameter for model weights which are packed on disk.
Example: GPTQ Marlin weights are int4 or int8, packed into int32.
Extends the ModelWeightParameter to take in the
packed factor, the packed dimension, and optionally, marlin
tile size for marlin kernels. Adjusts the shard_size and
shard_offset for fused linear layers model weight loading
by accounting for packing and optionally, marlin tile size.

 Summary

 Types

 t()

 Functions

 adjust_shard_indexes_for_packing(ref, shard_size, shard_offset, opts \\ [])

 Python method PackedvLLMParameter.adjust_shard_indexes_for_packing.

 bitblas_tile_size(ref)

 data(ref)

 device(ref)

 dtype(ref)

 grad(ref)

 grad_fn(ref)

 h(ref)

 imag(ref)

 input_dim(ref)

 is_cpu(ref)

 is_cuda(ref)

 is_ipu(ref)

 is_leaf(ref)

 is_maia(ref)

 is_meta(ref)

 is_mkldnn(ref)

 is_mps(ref)

 is_mtia(ref)

 is_nested(ref)

 is_quantized(ref)

 is_sparse(ref)

 is_sparse_csr(ref)

 is_vulkan(ref)

 is_xla(ref)

 is_xpu(ref)

 itemsize(ref)

 layout(ref)

 m_h(ref)

 m_t(ref)

 marlin_tile_size(ref)

 name(ref)

 names(ref)

 nbytes(ref)

 ndim(ref)

 new(packed_factor, packed_dim, args, opts \\ [])

 Initialize the BasevLLMParameter

 output_dim(ref)

 output_nr(ref)

 packed_dim(ref)

 packed_factor(ref)

 real(ref)

 requires_grad(ref)

 retains_grad(ref)

 shape(ref)

 t(ref)

 volatile(ref)

 weight_loader(ref)

 Types

 t()

 @opaque t()

 Functions

 adjust_shard_indexes_for_packing(ref, shard_size, shard_offset, opts \\ [])

 @spec adjust_shard_indexes_for_packing(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method PackedvLLMParameter.adjust_shard_indexes_for_packing.
Parameters
	shard_size (term())
	shard_offset (term())

Returns
	term()

 bitblas_tile_size(ref)

 @spec bitblas_tile_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 data(ref)

 @spec data(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 device(ref)

 @spec device(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 dtype(ref)

 @spec dtype(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 grad(ref)

 @spec grad(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 grad_fn(ref)

 @spec grad_fn(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 h(ref)

 @spec h(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 imag(ref)

 @spec imag(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 input_dim(ref)

 @spec input_dim(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_cpu(ref)

 @spec is_cpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_cuda(ref)

 @spec is_cuda(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_ipu(ref)

 @spec is_ipu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_leaf(ref)

 @spec is_leaf(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_maia(ref)

 @spec is_maia(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_meta(ref)

 @spec is_meta(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mkldnn(ref)

 @spec is_mkldnn(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mps(ref)

 @spec is_mps(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_mtia(ref)

 @spec is_mtia(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_nested(ref)

 @spec is_nested(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_quantized(ref)

 @spec is_quantized(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_sparse(ref)

 @spec is_sparse(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_sparse_csr(ref)

 @spec is_sparse_csr(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_vulkan(ref)

 @spec is_vulkan(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_xla(ref)

 @spec is_xla(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_xpu(ref)

 @spec is_xpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 itemsize(ref)

 @spec itemsize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 layout(ref)

 @spec layout(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 m_h(ref)

 @spec m_h(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 m_t(ref)

 @spec m_t(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 marlin_tile_size(ref)

 @spec marlin_tile_size(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 names(ref)

 @spec names(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 nbytes(ref)

 @spec nbytes(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ndim(ref)

 @spec ndim(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(packed_factor, packed_dim, args, opts \\ [])

 @spec new(term(), integer(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize the BasevLLMParameter
Parameters
	data - torch tensor with the parameter data
	weight_loader - weight loader callable

Returns
 a torch.nn.parameter

 output_dim(ref)

 @spec output_dim(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 output_nr(ref)

 @spec output_nr(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 packed_dim(ref)

 @spec packed_dim(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 packed_factor(ref)

 @spec packed_factor(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 real(ref)

 @spec real(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 requires_grad(ref)

 @spec requires_grad(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 retains_grad(ref)

 @spec retains_grad(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 shape(ref)

 @spec shape(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 t(ref)

 @spec t(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 volatile(ref)

 @spec volatile(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 weight_loader(ref)

 @spec weight_loader(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ModelInspection

Model inspection utilities for vLLM.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ModelInspection.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ModelInspection.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ModelInspection.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ModelInspection.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _format_index_ranges(indices, opts \\ [])

 Format indices into range notation (e.g., [0,1,2,4,5,6] -> '0-2, 4-6').

 _format_module_tree(module)

 Format a module tree with indentation, grouping identical layers.

 _get_child_signature(child, opts \\ [])

 Get a signature for a child module to detect duplicates.

 _get_module_info(module, opts \\ [])

 Get info string for a module.

 format_model_inspection(model, opts \\ [])

 Format a model into a transformers-style hierarchical string.

 Functions

 _format_index_ranges(indices, opts \\ [])

 @spec _format_index_ranges(
 [integer()],
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Format indices into range notation (e.g., [0,1,2,4,5,6] -> '0-2, 4-6').
Parameters
	indices (list(integer()))

Returns
	String.t()

 _format_module_tree(module)

 @spec _format_module_tree(term()) ::
 {:ok, [String.t()]} | {:error, Snakepit.Error.t()}

Format a module tree with indentation, grouping identical layers.
Produces output like:
 (layers): ModuleList(
(0-27, 29-47): 47 x LlamaDecoderLayer(
 ...
)
(28, 48): 2 x DifferentDecoderLayer(
 ...
)
)
Parameters
	module (term())
	name (String.t() default: '')
	indent (integer() default: 0)

Returns
	list(String.t())

 _get_child_signature(child, opts \\ [])

 @spec _get_child_signature(
 term(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get a signature for a child module to detect duplicates.
Parameters
	child (term())

Returns
	String.t()

 _get_module_info(module, opts \\ [])

 @spec _get_module_info(
 term(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get info string for a module.
Parameters
	module (term())

Returns
	String.t()

 format_model_inspection(model, opts \\ [])

 @spec format_model_inspection(
 term(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Format a model into a transformers-style hierarchical string.
Parameters
	model (term())

Returns
	String.t()

Vllm.Multimodal

Submodule bindings for vllm.multimodal.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Multimodal.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Multimodal.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Multimodal.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Multimodal.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 batched_tensor_inputs(opts \\ [])

 dict() -> new empty dictionary

 modality_data(opts \\ [])

 Python binding for vllm.multimodal.ModalityData.

 multi_modal_data_dict(opts \\ [])

 A Mapping is a generic container for associating key/value

 multi_modal_placeholder_dict(opts \\ [])

 A Mapping is a generic container for associating key/value

 multi_modal_uuid_dict(opts \\ [])

 A Mapping is a generic container for associating key/value

 multimodal_registry()

 A registry that dispatches data processing according to the model.

 nested_tensors(opts \\ [])

 Python binding for vllm.multimodal.NestedTensors.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 batched_tensor_inputs(opts \\ [])

 @spec batched_tensor_inputs(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 modality_data(opts \\ [])

 @spec modality_data(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.multimodal.ModalityData.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 multi_modal_data_dict(opts \\ [])

 @spec multi_modal_data_dict(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A Mapping is a generic container for associating key/value
pairs.
This class provides concrete generic implementations of all
methods except for getitem, iter, and len.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 multi_modal_placeholder_dict(opts \\ [])

 @spec multi_modal_placeholder_dict(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

A Mapping is a generic container for associating key/value
pairs.
This class provides concrete generic implementations of all
methods except for getitem, iter, and len.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 multi_modal_uuid_dict(opts \\ [])

 @spec multi_modal_uuid_dict(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A Mapping is a generic container for associating key/value
pairs.
This class provides concrete generic implementations of all
methods except for getitem, iter, and len.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 multimodal_registry()

 @spec multimodal_registry() :: {:ok, term()} | {:error, Snakepit.Error.t()}

A registry that dispatches data processing according to the model.
Returns
	term()

 nested_tensors(opts \\ [])

 @spec nested_tensors(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.multimodal.NestedTensors.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

Vllm.Multimodal.Inputs

Submodule bindings for vllm.multimodal.inputs.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Multimodal.Inputs.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Multimodal.Inputs.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Multimodal.Inputs.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Multimodal.Inputs.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 multi_modal_data_dict(opts \\ [])

 A Mapping is a generic container for associating key/value

 nested_tensors(opts \\ [])

 Python binding for vllm.multimodal.inputs.NestedTensors.

 Functions

 multi_modal_data_dict(opts \\ [])

 @spec multi_modal_data_dict(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A Mapping is a generic container for associating key/value
pairs.
This class provides concrete generic implementations of all
methods except for getitem, iter, and len.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 nested_tensors(opts \\ [])

 @spec nested_tensors(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.multimodal.inputs.NestedTensors.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

Vllm.Multimodal.Inputs.MultiModalFieldConfig

MultiModalFieldConfig(field: vllm.multimodal.inputs.BaseMultiModalField, modality: str)

 Summary

 Types

 t()

 Functions

 batched(ref, modality, opts \\ [])

 Defines a field where an element in the batch is obtained by

 build_elems(ref, key, batch, opts \\ [])

 Python method MultiModalFieldConfig.build_elems.

 flat(ref, modality, slices, args, opts \\ [])

 Defines a field where an element in the batch is obtained by

 flat_from_sizes(ref, modality, size_per_item, args, opts \\ [])

 Defines a field where an element in the batch is obtained by

 new(field, modality, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 shared(ref, modality, batch_size, opts \\ [])

 Defines a field where an element in the batch is obtained by

 Types

 t()

 @opaque t()

 Functions

 batched(ref, modality, opts \\ [])

 @spec batched(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Defines a field where an element in the batch is obtained by
indexing into the first dimension of the underlying data.
Parameters
	modality - The modality of the multi-modal item that uses this keyword argument.
	keep_on_cpu - Whether to keep this field on the CPU for the model inputs.

Returns
	term()

 build_elems(ref, key, batch, opts \\ [])

 @spec build_elems(
 SnakeBridge.Ref.t(),
 String.t(),
 (([(([term()] | [term()]) | term()) | {term(), term()}] | [term()]) | term())
 | {term(), term()},
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalFieldConfig.build_elems.
Parameters
	key (String.t())
	batch (((list(((list(term()) | list(term())) | term()) | {term(), term()}) | list(term())) | term())
| {term(), term()})

Returns
	term()

 flat(ref, modality, slices, args, opts \\ [])

 @spec flat(SnakeBridge.Ref.t(), String.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Defines a field where an element in the batch is obtained by
slicing along the first dimension of the underlying data.
Parameters
	modality - The modality of the multi-modal item that uses this keyword argument.
	slices - For each multi-modal item, a slice (dim=0) or a tuple of slices (dim>0) that is used to extract the data corresponding to it.
	dim - The dimension to extract data, default to 0.
	keep_on_cpu - Whether to keep this field on the CPU for the model inputs.

Returns
	term()

 flat_from_sizes(ref, modality, size_per_item, args, opts \\ [])

 @spec flat_from_sizes(SnakeBridge.Ref.t(), String.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Defines a field where an element in the batch is obtained by
slicing along the first dimension of the underlying data.
Parameters
	modality - The modality of the multi-modal item that uses this keyword argument.
	size_per_item - For each multi-modal item, the size of the slice that is used to extract the data corresponding to it.
	dim - The dimension to slice, default to 0.
	keep_on_cpu - Whether to keep this field on the CPU for the model inputs.

Returns
	term()

 new(field, modality, opts \\ [])

 @spec new(term(), String.t(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	field (term())
	modality (String.t())

 shared(ref, modality, batch_size, opts \\ [])

 @spec shared(SnakeBridge.Ref.t(), String.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Defines a field where an element in the batch is obtained by
taking the entirety of the underlying data.
This means that the data is the same for each element in the batch.
Parameters
	modality - The modality of the multi-modal item that uses this keyword argument.
	batch_size - The number of multi-modal items which share this data.
	keep_on_cpu - Whether to keep this field on the CPU for the model inputs.

Returns
	term()

Vllm.Multimodal.Inputs.MultiModalFieldElem

Represents a keyword argument inside a
[MultiModalKwargsItem][vllm.multimodal.inputs.MultiModalKwargsItem].

 Summary

 Types

 t()

 Functions

 new(modality, key, data, field, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(modality, key, data, field, opts \\ [])

 @spec new(
 String.t(),
 String.t(),
 (([(([term()] | [term()]) | term()) | {term(), term()}] | [term()]) | term())
 | {term(), term()},
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	modality (String.t())
	key (String.t())
	data (((list(((list(term()) | list(term())) | term()) | {term(), term()}) | list(term())) | term())
| {term(), term()})

	field (term())

Vllm.Multimodal.Inputs.MultiModalInputs

Represents the outputs of
[BaseMultiModalProcessor][vllm.multimodal.processing.BaseMultiModalProcessor],
ready to be passed to vLLM internals.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Multimodal.Inputs.MultiModalKwargsItem

A collection of
[MultiModalFieldElem][vllm.multimodal.inputs.MultiModalFieldElem]
corresponding to a data item in
[MultiModalDataItems][vllm.multimodal.parse.MultiModalDataItems].

 Summary

 Types

 t()

 Functions

 clear(ref, opts \\ [])

 D.clear() -> None. Remove all items from D.

 copy(ref, opts \\ [])

 Python method MultiModalKwargsItem.copy.

 dummy(ref, modality, args, opts \\ [])

 Convenience class for testing.

 from_elems(ref, elems, opts \\ [])

 Python method MultiModalKwargsItem.from_elems.

 fromkeys(ref, iterable, args, opts \\ [])

 Python method MultiModalKwargsItem.fromkeys.

 get(ref, key, args, opts \\ [])

 D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

 get_data(ref, opts \\ [])

 Python method MultiModalKwargsItem.get_data.

 items(ref, opts \\ [])

 D.items() -> a set-like object providing a view on D's items

 keys(ref, opts \\ [])

 D.keys() -> a set-like object providing a view on D's keys

 modality(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref, key, args, opts \\ [])

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 popitem(ref, opts \\ [])

 D.popitem() -> (k, v), remove and return some (key, value) pair

 setdefault(ref, key, args, opts \\ [])

 D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

 update(ref, args, opts \\ [])

 D.update([E,]**F) -> None. Update D from mapping/iterable E and F.

 values(ref, opts \\ [])

 D.values() -> an object providing a view on D's values

 Types

 t()

 @opaque t()

 Functions

 clear(ref, opts \\ [])

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 copy(ref, opts \\ [])

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItem.copy.
Returns
	term()

 dummy(ref, modality, args, opts \\ [])

 @spec dummy(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Convenience class for testing.
Parameters
	modality (String.t())
	nbytes (integer() default: 1)

Returns
	term()

 from_elems(ref, elems, opts \\ [])

 @spec from_elems(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItem.from_elems.
Parameters
	elems (term())

Returns
	term()

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItem.fromkeys.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 get_data(ref, opts \\ [])

 @spec get_data(
 SnakeBridge.Ref.t(),
 keyword()
) ::
 {:ok,
 %{
 optional(String.t()) =>
 (([(([term()] | [term()]) | term()) | {term(), term()}] | [term()])
 | term())
 | {term(), term()}
 }}
 | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItem.get_data.
Returns
	%{ optional(String.t()) => ((list(((list(term()) | list(term())) | term()) | {term(), term()}) | list(term())) | term()) | {term(), term()} }

 items(ref, opts \\ [])

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 keys(ref, opts \\ [])

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 modality(ref)

 @spec modality(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	data (term() default: {})

 pop(ref, key, args, opts \\ [])

 @spec pop(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
Parameters
	key (term())
	default (term() default: <object object at 0x7d4dbfd781c0>)

Returns
	term()

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.popitem() -> (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref, args, opts \\ [])

 @spec update(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v
Parameters
	other (term() default: ())
	kwds (term())

Returns
	term()

 values(ref, opts \\ [])

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

Vllm.Multimodal.Inputs.MultiModalKwargsItems

A dictionary of
[MultiModalKwargsItem][vllm.multimodal.inputs.MultiModalKwargsItem]s
by modality.

 Summary

 Types

 t()

 Functions

 clear(ref, opts \\ [])

 D.clear() -> None. Remove all items from D.

 copy(ref, opts \\ [])

 Python method MultiModalKwargsItems.copy.

 from_hf_inputs(ref, hf_inputs, config_by_key, opts \\ [])

 Python method MultiModalKwargsItems.from_hf_inputs.

 from_seq(ref, items, opts \\ [])

 Python method MultiModalKwargsItems.from_seq.

 fromkeys(ref, iterable, args, opts \\ [])

 Python method MultiModalKwargsItems.fromkeys.

 get(ref, key, args, opts \\ [])

 D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

 get_data(ref, opts \\ [])

 Construct a dictionary of keyword arguments to pass to the model.

 items(ref, opts \\ [])

 D.items() -> a set-like object providing a view on D's items

 keys(ref, opts \\ [])

 D.keys() -> a set-like object providing a view on D's keys

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref, key, args, opts \\ [])

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 popitem(ref, opts \\ [])

 D.popitem() -> (k, v), remove and return some (key, value) pair

 require_data(ref, opts \\ [])

 Python method MultiModalKwargsItems.require_data.

 setdefault(ref, key, args, opts \\ [])

 D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

 update(ref, args, opts \\ [])

 D.update([E,]**F) -> None. Update D from mapping/iterable E and F.

 values(ref, opts \\ [])

 D.values() -> an object providing a view on D's values

 Types

 t()

 @opaque t()

 Functions

 clear(ref, opts \\ [])

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 copy(ref, opts \\ [])

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.copy.
Returns
	term()

 from_hf_inputs(ref, hf_inputs, config_by_key, opts \\ [])

 @spec from_hf_inputs(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.from_hf_inputs.
Parameters
	hf_inputs (term())
	config_by_key (term())

Returns
	term()

 from_seq(ref, items, opts \\ [])

 @spec from_seq(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.from_seq.
Parameters
	items (term())

Returns
	term()

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.fromkeys.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 get_data(ref, opts \\ [])

 @spec get_data(
 SnakeBridge.Ref.t(),
 keyword()
) ::
 {:ok,
 %{
 optional(String.t()) =>
 (([(([term()] | [term()]) | term()) | {term(), term()}] | [term()])
 | term())
 | {term(), term()}
 }}
 | {:error, Snakepit.Error.t()}

Construct a dictionary of keyword arguments to pass to the model.
Parameters
	device (((term() | String.t()) | integer()) | nil keyword-only default: None)

	pin_memory (boolean() keyword-only default: False)

Returns
	%{ optional(String.t()) => ((list(((list(term()) | list(term())) | term()) | {term(), term()}) | list(term())) | term()) | {term(), term()} }

 items(ref, opts \\ [])

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 keys(ref, opts \\ [])

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	dict (term() default: None)
	kwargs (term())

 pop(ref, key, args, opts \\ [])

 @spec pop(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
Parameters
	key (term())
	default (term() default: <object object at 0x7d4dbfd781c0>)

Returns
	term()

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.popitem() -> (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
Returns
	term()

 require_data(ref, opts \\ [])

 @spec require_data(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.require_data.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref, args, opts \\ [])

 @spec update(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v
Parameters
	other (term() default: ())
	kwds (term())

Returns
	term()

 values(ref, opts \\ [])

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

Vllm.Multimodal.Inputs.PlaceholderRange

Placeholder location information for multi-modal data.

 Summary

 Types

 t()

 Functions

 embeds_cumsum(ref)

 extract_embeds_range(ref, opts \\ [])

 Extract the start and end indices of the embedded region in prompt.

 get_embeds_indices_in_range(ref, start_idx, end_idx, opts \\ [])

 Returns the starting and ending indices of the embeddings of encoder outputs

 get_num_embeds(ref)

 is_embed(ref)

 new(offset, length, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 embeds_cumsum(ref)

 @spec embeds_cumsum(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 extract_embeds_range(ref, opts \\ [])

 @spec extract_embeds_range(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [{integer(), integer()}]} | {:error, Snakepit.Error.t()}

Extract the start and end indices of the embedded region in prompt.
For example, given PlaceholderRange(offset=2, length=5) and
is_embed = [False, True, False, True, True], the output is
[(1 + offset, 1 + offset), (3 + offset, 4 + offset)].
Returns
	list({integer(), integer()})

 get_embeds_indices_in_range(ref, start_idx, end_idx, opts \\ [])

 @spec get_embeds_indices_in_range(
 SnakeBridge.Ref.t(),
 integer(),
 integer(),
 keyword()
) ::
 {:ok, {integer(), integer()}} | {:error, Snakepit.Error.t()}

Returns the starting and ending indices of the embeddings of encoder outputs
in the range of [start_idx, end_idx) in the placeholders.
For example, given:
PlaceholderRange(offset=2, length=5, is_embed=[False, True, False, True, True])
If start_idx=3 and end_idx=5, the output is (1, 3) because we want to get
the second and the third embeddings from the encoder output.
Parameters
	start_idx (integer())
	end_idx (integer())

Returns
	{integer(), integer()}

 get_num_embeds(ref)

 @spec get_num_embeds(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_embed(ref)

 @spec is_embed(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(offset, length, args, opts \\ [])

 @spec new(integer(), integer(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	offset (integer())
	length (integer())
	is_embed (term() | nil default: None)

Vllm.Multimodal.MultiModalDataBuiltins

Type annotations for modality types predefined by vLLM.

 Summary

 Types

 t()

 Functions

 clear(ref)

 D.clear() -> None. Remove all items from D.

 clear(ref, opts)

 clear(ref, arg1, opts)

 clear(ref, arg1, arg2, opts)

 clear(ref, arg1, arg2, arg3, opts)

 clear(ref, arg1, arg2, arg3, arg4, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 copy(ref)

 D.copy() -> a shallow copy of D

 copy(ref, opts)

 copy(ref, arg1, opts)

 copy(ref, arg1, arg2, opts)

 copy(ref, arg1, arg2, arg3, opts)

 copy(ref, arg1, arg2, arg3, arg4, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 fromkeys(ref, iterable, args, opts \\ [])

 Create a new dictionary with keys from iterable and values set to value.

 get(ref, key, args, opts \\ [])

 Return the value for key if key is in the dictionary, else default.

 items(ref)

 D.items() -> a set-like object providing a view on D's items

 items(ref, opts)

 items(ref, arg1, opts)

 items(ref, arg1, arg2, opts)

 items(ref, arg1, arg2, arg3, opts)

 items(ref, arg1, arg2, arg3, arg4, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 keys(ref)

 D.keys() -> a set-like object providing a view on D's keys

 keys(ref, opts)

 keys(ref, arg1, opts)

 keys(ref, arg1, arg2, opts)

 keys(ref, arg1, arg2, arg3, opts)

 keys(ref, arg1, arg2, arg3, arg4, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref)

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 pop(ref, opts)

 pop(ref, arg1, opts)

 pop(ref, arg1, arg2, opts)

 pop(ref, arg1, arg2, arg3, opts)

 pop(ref, arg1, arg2, arg3, arg4, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 popitem(ref, opts \\ [])

 Remove and return a (key, value) pair as a 2-tuple.

 setdefault(ref, key, args, opts \\ [])

 Insert key with a value of default if key is not in the dictionary.

 update(ref)

 D.update([E,]**F) -> None. Update D from dict/iterable E and F.

 update(ref, opts)

 update(ref, arg1, opts)

 update(ref, arg1, arg2, opts)

 update(ref, arg1, arg2, arg3, opts)

 update(ref, arg1, arg2, arg3, arg4, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 values(ref)

 D.values() -> an object providing a view on D's values

 values(ref, opts)

 values(ref, arg1, opts)

 values(ref, arg1, arg2, opts)

 values(ref, arg1, arg2, arg3, opts)

 values(ref, arg1, arg2, arg3, arg4, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 clear(ref)

 @spec clear(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 clear(ref, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clear(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec clear(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref)

 @spec copy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.copy() -> a shallow copy of D
Returns
	term()

 copy(ref, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 copy(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec copy(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a new dictionary with keys from iterable and values set to value.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 items(ref)

 @spec items(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 items(ref, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, opts)

 @spec items(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 items(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec items(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref)

 @spec keys(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 keys(ref, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 keys(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec keys(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 pop(ref)

 @spec pop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise,
raise a KeyError.
Returns
	term()

 pop(ref, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 pop(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec pop(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref)

 @spec update(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
Returns
	term()

 update(ref, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, opts)

 @spec update(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 update(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec update(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref)

 @spec values(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

 values(ref, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, opts)

 @spec values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 values(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec values(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Multimodal.MultiModalHasher

Wrapper for Python class MultiModalHasher.

 Summary

 Types

 t()

 Functions

 hash_kwargs(ref, opts \\ [])

 Python method MultiModalHasher.hash_kwargs.

 iter_item_to_bytes(ref, key, obj, opts \\ [])

 Python method MultiModalHasher.iter_item_to_bytes.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 serialize_item(ref, obj, opts \\ [])

 Python method MultiModalHasher.serialize_item.

 Types

 t()

 @opaque t()

 Functions

 hash_kwargs(ref, opts \\ [])

 @spec hash_kwargs(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method MultiModalHasher.hash_kwargs.
Parameters
	kwargs (term())

Returns
	String.t()

 iter_item_to_bytes(ref, key, obj, opts \\ [])

 @spec iter_item_to_bytes(SnakeBridge.Ref.t(), String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalHasher.iter_item_to_bytes.
Parameters
	key (String.t())
	obj (term())

Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 serialize_item(ref, obj, opts \\ [])

 @spec serialize_item(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalHasher.serialize_item.
Parameters
	obj (term())

Returns
	term()

Vllm.Multimodal.MultiModalKwargsItems

A dictionary of
[MultiModalKwargsItem][vllm.multimodal.inputs.MultiModalKwargsItem]s
by modality.

 Summary

 Types

 t()

 Functions

 clear(ref, opts \\ [])

 D.clear() -> None. Remove all items from D.

 copy(ref, opts \\ [])

 Python method MultiModalKwargsItems.copy.

 from_hf_inputs(ref, hf_inputs, config_by_key, opts \\ [])

 Python method MultiModalKwargsItems.from_hf_inputs.

 from_seq(ref, items, opts \\ [])

 Python method MultiModalKwargsItems.from_seq.

 fromkeys(ref, iterable, args, opts \\ [])

 Python method MultiModalKwargsItems.fromkeys.

 get(ref, key, args, opts \\ [])

 D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

 get_data(ref, opts \\ [])

 Construct a dictionary of keyword arguments to pass to the model.

 items(ref, opts \\ [])

 D.items() -> a set-like object providing a view on D's items

 keys(ref, opts \\ [])

 D.keys() -> a set-like object providing a view on D's keys

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 pop(ref, key, args, opts \\ [])

 D.pop(k[,d]) -> v, remove specified key and return the corresponding value.

 popitem(ref, opts \\ [])

 D.popitem() -> (k, v), remove and return some (key, value) pair

 require_data(ref, opts \\ [])

 Python method MultiModalKwargsItems.require_data.

 setdefault(ref, key, args, opts \\ [])

 D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

 update(ref, args, opts \\ [])

 D.update([E,]**F) -> None. Update D from mapping/iterable E and F.

 values(ref, opts \\ [])

 D.values() -> an object providing a view on D's values

 Types

 t()

 @opaque t()

 Functions

 clear(ref, opts \\ [])

 @spec clear(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.clear() -> None. Remove all items from D.
Returns
	term()

 copy(ref, opts \\ [])

 @spec copy(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.copy.
Returns
	term()

 from_hf_inputs(ref, hf_inputs, config_by_key, opts \\ [])

 @spec from_hf_inputs(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.from_hf_inputs.
Parameters
	hf_inputs (term())
	config_by_key (term())

Returns
	term()

 from_seq(ref, items, opts \\ [])

 @spec from_seq(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.from_seq.
Parameters
	items (term())

Returns
	term()

 fromkeys(ref, iterable, args, opts \\ [])

 @spec fromkeys(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.fromkeys.
Parameters
	iterable (term())
	value (term() default: None)

Returns
	term()

 get(ref, key, args, opts \\ [])

 @spec get(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 get_data(ref, opts \\ [])

 @spec get_data(
 SnakeBridge.Ref.t(),
 keyword()
) ::
 {:ok,
 %{
 optional(String.t()) =>
 (([(([term()] | [term()]) | term()) | {term(), term()}] | [term()])
 | term())
 | {term(), term()}
 }}
 | {:error, Snakepit.Error.t()}

Construct a dictionary of keyword arguments to pass to the model.
Parameters
	device (((term() | String.t()) | integer()) | nil keyword-only default: None)

	pin_memory (boolean() keyword-only default: False)

Returns
	%{ optional(String.t()) => ((list(((list(term()) | list(term())) | term()) | {term(), term()}) | list(term())) | term()) | {term(), term()} }

 items(ref, opts \\ [])

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.items() -> a set-like object providing a view on D's items
Returns
	term()

 keys(ref, opts \\ [])

 @spec keys(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.keys() -> a set-like object providing a view on D's keys
Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	dict (term() default: None)
	kwargs (term())

 pop(ref, key, args, opts \\ [])

 @spec pop(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
Parameters
	key (term())
	default (term() default: <object object at 0x757fadd781c0>)

Returns
	term()

 popitem(ref, opts \\ [])

 @spec popitem(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.popitem() -> (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
Returns
	term()

 require_data(ref, opts \\ [])

 @spec require_data(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalKwargsItems.require_data.
Returns
	term()

 setdefault(ref, key, args, opts \\ [])

 @spec setdefault(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
Parameters
	key (term())
	default (term() default: None)

Returns
	term()

 update(ref, args, opts \\ [])

 @spec update(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v
Parameters
	other (term() default: ())
	kwds (term())

Returns
	term()

 values(ref, opts \\ [])

 @spec values(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

D.values() -> an object providing a view on D's values
Returns
	term()

Vllm.Multimodal.MultiModalRegistry

A registry that dispatches data processing according to the model.

 Summary

 Types

 t()

 Functions

 _create_processing_ctx(ref, model_config, args, opts \\ [])

 Python method MultiModalRegistry._create_processing_ctx.

 _create_processing_info(ref, model_config, args, opts \\ [])

 Python method MultiModalRegistry._create_processing_info.

 _extract_mm_options(ref, model_config, opts \\ [])

 Extract multimodal dummy options from model config.

 _get_model_cls(ref, model_config, opts \\ [])

 Python method MultiModalRegistry._get_model_cls.

 create_processor(ref, model_config, args, opts \\ [])

 Create a multi-modal processor for a specific model and tokenizer.

 get_decoder_dummy_data(ref, model_config, seq_len, args, opts \\ [])

 Create dummy data for profiling the memory usage of a model.

 get_encdec_max_encoder_len(ref, model_config, opts \\ [])

 Get the maximum length of the encoder input for encoder-decoder models.

 get_encoder_dummy_data(ref, model_config, seq_len, args, opts \\ [])

 Create dummy data for profiling the memory usage of a model.

 get_max_tokens_per_item_by_modality(ref, model_config, opts \\ [])

 Get the maximum number of tokens per data item from each modality based

 get_mm_limits_per_prompt(ref, model_config, opts \\ [])

 Get the maximum number of multi-modal input instances for each modality

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 register_processor(ref, processor, opts \\ [])

 Register a multi-modal processor to a model class. The processor

 supports_multimodal_inputs(ref, model_config, opts \\ [])

 Checks if the model supports multimodal inputs.

 Types

 t()

 @opaque t()

 Functions

 _create_processing_ctx(ref, model_config, args, opts \\ [])

 @spec _create_processing_ctx(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalRegistry._create_processing_ctx.
Parameters
	model_config (term())
	observability_config (term() default: None)
	tokenizer (term() default: None)

Returns
	term()

 _create_processing_info(ref, model_config, args, opts \\ [])

 @spec _create_processing_info(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalRegistry._create_processing_info.
Parameters
	model_config (term())
	observability_config (term() default: None)
	tokenizer (term() keyword-only default: None)

Returns
	term()

 _extract_mm_options(ref, model_config, opts \\ [])

 @spec _extract_mm_options(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Extract multimodal dummy options from model config.
Returns None if no configurable options are found, otherwise returns
a mapping of modality names to their dummy options.
Parameters
	model_config (term())

Returns
	term()

 _get_model_cls(ref, model_config, opts \\ [])

 @spec _get_model_cls(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method MultiModalRegistry._get_model_cls.
Parameters
	model_config (term())

Returns
	term()

 create_processor(ref, model_config, args, opts \\ [])

 @spec create_processor(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create a multi-modal processor for a specific model and tokenizer.
Parameters
	model_config (term())
	observability_config (term() default: None)
	tokenizer (term() keyword-only default: None)
	cache (term() keyword-only default: None)

Returns
	term()

 get_decoder_dummy_data(ref, model_config, seq_len, args, opts \\ [])

 @spec get_decoder_dummy_data(
 SnakeBridge.Ref.t(),
 term(),
 integer(),
 [term()],
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create dummy data for profiling the memory usage of a model.
The model is identified by model_config.
Parameters
	model_config (term())
	seq_len (integer())
	mm_counts (term() default: None)
	cache (term() keyword-only default: None)
	observability_config (term() keyword-only default: None)

Returns
	term()

 get_encdec_max_encoder_len(ref, model_config, opts \\ [])

 @spec get_encdec_max_encoder_len(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Get the maximum length of the encoder input for encoder-decoder models.
Parameters
	model_config (term())

Returns
	integer()

 get_encoder_dummy_data(ref, model_config, seq_len, args, opts \\ [])

 @spec get_encoder_dummy_data(
 SnakeBridge.Ref.t(),
 term(),
 integer(),
 [term()],
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Create dummy data for profiling the memory usage of a model.
The model is identified by model_config.
Parameters
	model_config (term())
	seq_len (integer())
	mm_counts (term() default: None)
	cache (term() keyword-only default: None)
	observability_config (term() keyword-only default: None)

Returns
	term()

 get_max_tokens_per_item_by_modality(ref, model_config, opts \\ [])

 @spec get_max_tokens_per_item_by_modality(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Get the maximum number of tokens per data item from each modality based
on underlying model configuration.
Parameters
	model_config (term())
	cache (term() keyword-only default: None)
	profiler_limits (term() keyword-only default: None)
	observability_config (term() keyword-only default: None)

Returns
	term()

 get_mm_limits_per_prompt(ref, model_config, opts \\ [])

 @spec get_mm_limits_per_prompt(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Get the maximum number of multi-modal input instances for each modality
that are allowed per prompt for a model class.
Parameters
	model_config (term())
	cache (term() keyword-only default: None)
	observability_config (term() keyword-only default: None)

Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 register_processor(ref, processor, opts \\ [])

 @spec register_processor(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Register a multi-modal processor to a model class. The processor
is constructed lazily, hence a factory method should be passed.
When the model receives multi-modal data, the provided function is
invoked to transform the data into a dictionary of model inputs.
Parameters
	processor (term())
	info (term() keyword-only, required)
	dummy_inputs (term() keyword-only, required)

Returns
	term()

 supports_multimodal_inputs(ref, model_config, opts \\ [])

 @spec supports_multimodal_inputs(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Checks if the model supports multimodal inputs.
Returns True if the model is multimodal with any non-zero supported
modalities, otherwise returns False, effectively running in
text-only mode.
Parameters
	model_config (term())

Returns
	boolean()

Vllm.Multimodal.Parse

Submodule bindings for vllm.multimodal.parse.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Multimodal.Parse.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Multimodal.Parse.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Multimodal.Parse.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Multimodal.Parse.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Multimodal.Processing

Submodule bindings for vllm.multimodal.processing.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Multimodal.Processing.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Multimodal.Processing.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Multimodal.Processing.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Multimodal.Processing.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Multimodal.Registry

Submodule bindings for vllm.multimodal.registry.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Multimodal.Registry.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Multimodal.Registry.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Multimodal.Registry.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Multimodal.Registry.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Outputs

Submodule bindings for vllm.outputs.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Outputs.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Outputs.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Outputs.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Outputs.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _o()

 Type variable.

 logger()

 Instances of the Logger class represent a single logging channel. A

 stream_finished()

 Python binding for vllm.outputs.STREAM_FINISHED.

 stream_finished(opts)

 stream_finished(arg1, opts)

 stream_finished(arg1, arg2, opts)

 stream_finished(arg1, arg2, arg3, opts)

 stream_finished(arg1, arg2, arg3, arg4, opts)

 stream_finished(arg1, arg2, arg3, arg4, arg5, opts)

 stream_finished(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 stream_finished(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 stream_finished(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Functions

 _o()

 @spec _o() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Type variable.
The preferred way to construct a type variable is via the dedicated
syntax for generic functions, classes, and type aliases::
 class Sequence[T]: # T is a TypeVar
 ...
This syntax can also be used to create bound and constrained type
variables::
 # S is a TypeVar bound to str
 class StrSequence[S: str]:
 ...
 # A is a TypeVar constrained to str or bytes
 class StrOrBytesSequence[A: (str, bytes)]:
 ...
However, if desired, reusable type variables can also be constructed
manually, like so::
 T = TypeVar('T') # Can be anything
 S = TypeVar('S', bound=str) # Can be any subtype of str
 A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type
checkers. They serve as the parameters for generic types as well
as for generic function and type alias definitions.
The variance of type variables is inferred by type checkers when they
are created through the type parameter syntax and when
infer_variance=True is passed. Manually created type variables may
be explicitly marked covariant or contravariant by passing
covariant=True or contravariant=True. By default, manually
created type variables are invariant. See PEP 484 and PEP 695 for more
details.
Returns
	term()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 stream_finished()

 @spec stream_finished() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.outputs.STREAM_FINISHED.
Returns
	term()

 stream_finished(opts)

 @spec stream_finished(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, opts)

 @spec stream_finished(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, opts)

 @spec stream_finished(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, arg3, opts)

 @spec stream_finished(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, arg3, arg4, opts)

 @spec stream_finished(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, arg3, arg4, arg5, opts)

 @spec stream_finished(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec stream_finished(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec stream_finished(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec stream_finished(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stream_finished(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec stream_finished(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Outputs.ClassificationOutput

The output data of one classification output of a request.
Parameters
	probs - The probability vector, which is a list of floats. Its length depends on the number of classes.

 Summary

 Types

 t()

 Functions

 from_base(ref, pooling_output, opts \\ [])

 Python method ClassificationOutput.from_base.

 new(probs, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 num_classes(ref)

 Types

 t()

 @opaque t()

 Functions

 from_base(ref, pooling_output, opts \\ [])

 @spec from_base(SnakeBridge.Ref.t(), Vllm.Outputs.PoolingOutput.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ClassificationOutput.from_base.
Parameters
	pooling_output (Vllm.Outputs.PoolingOutput.t())

Returns
	term()

 new(probs, opts \\ [])

 @spec new(
 [float()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	probs (list(float()))

 num_classes(ref)

 @spec num_classes(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Outputs.ClassificationRequestOutput

The output data of a pooling request to the LLM.
Parameters
	request_id - A unique identifier for the pooling request. (type: String.t())
	outputs - The pooling results for the given input. (type: PoolingOutput)
	prompt_token_ids - A list of token IDs used in the prompt. (type: list(integer()))
	num_cached_tokens - The number of tokens with prefix cache hit.
	finished - A flag indicating whether the pooling is completed. (type: boolean())

 Summary

 Types

 t()

 Functions

 from_base(ref, request_output, opts \\ [])

 Python method ClassificationRequestOutput.from_base.

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 from_base(ref, request_output, opts \\ [])

 @spec from_base(SnakeBridge.Ref.t(), Vllm.Outputs.PoolingRequestOutput.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ClassificationRequestOutput.from_base.
Parameters
	request_output (Vllm.Outputs.PoolingRequestOutput.t())

Returns
	term()

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 @spec new(String.t(), term(), [integer()], integer(), boolean(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	request_id (String.t())
	outputs (term())
	prompt_token_ids (list(integer()))
	num_cached_tokens (integer())
	finished (boolean())

Vllm.Outputs.CompletionOutput

The output data of one completion output of a request.
Parameters
	index - The index of the output in the request.
	text - The generated output text.
	token_ids - The token IDs of the generated output text.
	cumulative_logprob - The cumulative log probability of the generated output text.
	logprobs - The log probabilities of the top probability words at each position if the logprobs are requested.
	finish_reason - The reason why the sequence is finished.
	stop_reason - The stop string or token id that caused the completion to stop, None if the completion finished for some other reason including encountering the EOS token.
	lora_request - The LoRA request that was used to generate the output.

 Summary

 Types

 t()

 Functions

 finish_reason(ref)

 finished(ref, opts \\ [])

 Python method CompletionOutput.finished.

 lora_request(ref)

 new(index, text, token_ids, cumulative_logprob, logprobs, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 routed_experts(ref)

 stop_reason(ref)

 Types

 t()

 @opaque t()

 Functions

 finish_reason(ref)

 @spec finish_reason(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 finished(ref, opts \\ [])

 @spec finished(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method CompletionOutput.finished.
Returns
	boolean()

 lora_request(ref)

 @spec lora_request(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(index, text, token_ids, cumulative_logprob, logprobs, args, opts \\ [])

 @spec new(integer(), String.t(), term(), term(), term(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	index (integer())
	text (String.t())
	token_ids (term())
	cumulative_logprob (term())
	logprobs (term())
	routed_experts (term() default: None)
	finish_reason (term() default: None)
	stop_reason (term() default: None)
	lora_request (term() default: None)

 routed_experts(ref)

 @spec routed_experts(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stop_reason(ref)

 @spec stop_reason(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Outputs.EmbeddingOutput

The output data of one embedding output of a request.
Parameters
	embedding - The embedding vector, which is a list of floats. Its length depends on the hidden dimension of the model.

 Summary

 Types

 t()

 Functions

 from_base(ref, pooling_output, opts \\ [])

 Python method EmbeddingOutput.from_base.

 hidden_size(ref)

 new(embedding, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 from_base(ref, pooling_output, opts \\ [])

 @spec from_base(SnakeBridge.Ref.t(), Vllm.Outputs.PoolingOutput.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method EmbeddingOutput.from_base.
Parameters
	pooling_output (Vllm.Outputs.PoolingOutput.t())

Returns
	term()

 hidden_size(ref)

 @spec hidden_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(embedding, opts \\ [])

 @spec new(
 [float()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	embedding (list(float()))

Vllm.Outputs.EmbeddingRequestOutput

The output data of a pooling request to the LLM.
Parameters
	request_id - A unique identifier for the pooling request. (type: String.t())
	outputs - The pooling results for the given input. (type: PoolingOutput)
	prompt_token_ids - A list of token IDs used in the prompt. (type: list(integer()))
	num_cached_tokens - The number of tokens with prefix cache hit.
	finished - A flag indicating whether the pooling is completed. (type: boolean())

 Summary

 Types

 t()

 Functions

 from_base(ref, request_output, opts \\ [])

 Python method EmbeddingRequestOutput.from_base.

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 from_base(ref, request_output, opts \\ [])

 @spec from_base(SnakeBridge.Ref.t(), Vllm.Outputs.PoolingRequestOutput.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method EmbeddingRequestOutput.from_base.
Parameters
	request_output (Vllm.Outputs.PoolingRequestOutput.t())

Returns
	term()

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 @spec new(String.t(), term(), [integer()], integer(), boolean(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	request_id (String.t())
	outputs (term())
	prompt_token_ids (list(integer()))
	num_cached_tokens (integer())
	finished (boolean())

Vllm.Outputs.PoolingOutput

The output data of one pooling output of a request.
Parameters
	data - The extracted hidden states.

 Summary

 Types

 t()

 Functions

 new(data, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(data, opts \\ [])

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	data (term())

Vllm.Outputs.PoolingRequestOutput

The output data of a pooling request to the LLM.
Parameters
	request_id - A unique identifier for the pooling request. (type: String.t())
	outputs - The pooling results for the given input. (type: PoolingOutput)
	prompt_token_ids - A list of token IDs used in the prompt. (type: list(integer()))
	num_cached_tokens - The number of tokens with prefix cache hit.
	finished - A flag indicating whether the pooling is completed. (type: boolean())

 Summary

 Types

 t()

 Functions

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 @spec new(String.t(), term(), [integer()], integer(), boolean(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	request_id (String.t())
	outputs (term())
	prompt_token_ids (list(integer()))
	num_cached_tokens (integer())
	finished (boolean())

Vllm.Outputs.RequestOutput

The output data of a completion request to the LLM.
Parameters
	request_id - The unique ID of the request.
	prompt - The prompt string of the request. For encoder/decoder models, this is the decoder input prompt.
	prompt_token_ids - The token IDs of the prompt. For encoder/decoder models, this is the decoder input prompt token ids.
	prompt_logprobs - The log probabilities to return per prompt token.
	outputs - The output sequences of the request.
	finished - Whether the whole request is finished.
	metrics - Metrics associated with the request.
	lora_request - The LoRA request that was used to generate the output.
	encoder_prompt - The encoder prompt string of the request. None if decoder-only.
	encoder_prompt_token_ids - The token IDs of the encoder prompt. None if decoder-only.
	num_cached_tokens - The number of tokens with prefix cache hit.
	kv_transfer_params - The params for remote K/V transfer.

 Summary

 Types

 t()

 Functions

 add(ref, next_output, aggregate, opts \\ [])

 Merge subsequent RequestOutput into this one

 new(request_id, prompt, prompt_token_ids, prompt_logprobs, outputs, finished, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 add(ref, next_output, aggregate, opts \\ [])

 @spec add(SnakeBridge.Ref.t(), t(), boolean(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Merge subsequent RequestOutput into this one
Parameters
	next_output (Vllm.Outputs.RequestOutput.t())
	aggregate (boolean())

Returns
	nil

 new(request_id, prompt, prompt_token_ids, prompt_logprobs, outputs, finished, args, opts \\ [])

 @spec new(
 String.t(),
 term(),
 term(),
 term(),
 [Vllm.Outputs.CompletionOutput.t()],
 boolean(),
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	request_id (String.t())
	prompt (term())
	prompt_token_ids (term())
	prompt_logprobs (term())
	outputs (list(Vllm.Outputs.CompletionOutput.t()))
	finished (boolean())
	metrics (term() default: None)
	lora_request (term() default: None)
	encoder_prompt (term() default: None)
	encoder_prompt_token_ids (term() default: None)
	num_cached_tokens (term() default: None)
	multi_modal_placeholders (term() keyword-only default: None)
	kv_transfer_params (term() keyword-only default: None)
	kwargs (term())

Vllm.Outputs.RequestStateStats

Stats that need to be tracked across delta updates.

 Summary

 Types

 t()

 Functions

 arrival_time(ref)

 first_token_latency(ref)

 first_token_ts(ref)

 is_corrupted(ref)

 last_token_ts(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 num_generation_tokens(ref)

 queued_ts(ref)

 scheduled_ts(ref)

 Types

 t()

 @opaque t()

 Functions

 arrival_time(ref)

 @spec arrival_time(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 first_token_latency(ref)

 @spec first_token_latency(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 first_token_ts(ref)

 @spec first_token_ts(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 is_corrupted(ref)

 @spec is_corrupted(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 last_token_ts(ref)

 @spec last_token_ts(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	num_generation_tokens (integer() default: 0)
	arrival_time (float() default: 0.0)
	queued_ts (float() default: 0.0)
	scheduled_ts (float() default: 0.0)
	first_token_ts (float() default: 0.0)
	last_token_ts (float() default: 0.0)
	first_token_latency (float() default: 0.0)
	is_corrupted (boolean() default: False)

 num_generation_tokens(ref)

 @spec num_generation_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 queued_ts(ref)

 @spec queued_ts(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 scheduled_ts(ref)

 @spec scheduled_ts(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Outputs.ScoringOutput

The output data of one scoring output of a request.
Parameters
	score - The similarity score, which is a scalar value.

 Summary

 Types

 t()

 Functions

 from_base(ref, pooling_output, opts \\ [])

 Python method ScoringOutput.from_base.

 new(score, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 from_base(ref, pooling_output, opts \\ [])

 @spec from_base(SnakeBridge.Ref.t(), Vllm.Outputs.PoolingOutput.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ScoringOutput.from_base.
Parameters
	pooling_output (Vllm.Outputs.PoolingOutput.t())

Returns
	term()

 new(score, opts \\ [])

 @spec new(
 float(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	score (float())

Vllm.Outputs.ScoringRequestOutput

The output data of a pooling request to the LLM.
Parameters
	request_id - A unique identifier for the pooling request. (type: String.t())
	outputs - The pooling results for the given input. (type: PoolingOutput)
	prompt_token_ids - A list of token IDs used in the prompt. (type: list(integer()))
	num_cached_tokens - The number of tokens with prefix cache hit.
	finished - A flag indicating whether the pooling is completed. (type: boolean())

 Summary

 Types

 t()

 Functions

 from_base(ref, request_output, opts \\ [])

 Python method ScoringRequestOutput.from_base.

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 from_base(ref, request_output, opts \\ [])

 @spec from_base(SnakeBridge.Ref.t(), Vllm.Outputs.PoolingRequestOutput.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ScoringRequestOutput.from_base.
Parameters
	request_output (Vllm.Outputs.PoolingRequestOutput.t())

Returns
	term()

 new(request_id, outputs, prompt_token_ids, num_cached_tokens, finished, opts \\ [])

 @spec new(String.t(), term(), [integer()], integer(), boolean(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	request_id (String.t())
	outputs (term())
	prompt_token_ids (list(integer()))
	num_cached_tokens (integer())
	finished (boolean())

Vllm.Platforms

Submodule bindings for vllm.platforms.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Platforms.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Platforms.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Platforms.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Platforms.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 __getattr__(name, opts \\ [])

 Python binding for vllm.platforms.__getattr__.

 __setattr__(name, value, opts \\ [])

 Python binding for vllm.platforms.__setattr__.

 _current_platform()

 Python binding for vllm.platforms._current_platform.

 _init_trace()

 str(object='') -> str

 builtin_platform_plugins()

 dict() -> new empty dictionary

 cpu_platform_plugin(opts \\ [])

 Python binding for vllm.platforms.cpu_platform_plugin.

 cuda_platform_plugin(opts \\ [])

 Python binding for vllm.platforms.cuda_platform_plugin.

 current_platform()

 Python module attribute vllm.platforms.current_platform.

 load_plugins_by_group(group, opts \\ [])

 Python binding for vllm.platforms.load_plugins_by_group.

 logger()

 Instances of the Logger class represent a single logging channel. A

 platform_plugins_group()

 str(object='') -> str

 resolve_current_platform_cls_qualname(opts \\ [])

 Python binding for vllm.platforms.resolve_current_platform_cls_qualname.

 resolve_obj_by_qualname(qualname, opts \\ [])

 Resolve an object by its fully-qualified class name.

 rocm_platform_plugin(opts \\ [])

 Python binding for vllm.platforms.rocm_platform_plugin.

 supports_xccl(opts \\ [])

 Python binding for vllm.platforms.supports_xccl.

 tpu_platform_plugin(opts \\ [])

 Python binding for vllm.platforms.tpu_platform_plugin.

 vllm_version_matches_substr(substr, opts \\ [])

 Check to see if the vLLM version matches a substring.

 xpu_platform_plugin(opts \\ [])

 Python binding for vllm.platforms.xpu_platform_plugin.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 __getattr__(name, opts \\ [])

 @spec __getattr__(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.__getattr__.
Parameters
	name (String.t())

Returns
	term()

 __setattr__(name, value, opts \\ [])

 @spec __setattr__(String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.__setattr__.
Parameters
	name (String.t())
	value (term())

Returns
	term()

 _current_platform()

 @spec _current_platform() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms._current_platform.
Returns
	term()

 _init_trace()

 @spec _init_trace() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 builtin_platform_plugins()

 @spec builtin_platform_plugins() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 cpu_platform_plugin(opts \\ [])

 @spec cpu_platform_plugin(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.cpu_platform_plugin.
Returns
	term()

 cuda_platform_plugin(opts \\ [])

 @spec cuda_platform_plugin(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.cuda_platform_plugin.
Returns
	term()

 current_platform()

 @spec current_platform() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python module attribute vllm.platforms.current_platform.
Returns
	term()

 load_plugins_by_group(group, opts \\ [])

 @spec load_plugins_by_group(
 String.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.load_plugins_by_group.
Parameters
	group (String.t())

Returns
	%{optional(String.t()) => term()}

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 platform_plugins_group()

 @spec platform_plugins_group() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 resolve_current_platform_cls_qualname(opts \\ [])

 @spec resolve_current_platform_cls_qualname(keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.resolve_current_platform_cls_qualname.
Returns
	String.t()

 resolve_obj_by_qualname(qualname, opts \\ [])

 @spec resolve_obj_by_qualname(
 String.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Resolve an object by its fully-qualified class name.
Parameters
	qualname (String.t())

Returns
	term()

 rocm_platform_plugin(opts \\ [])

 @spec rocm_platform_plugin(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.rocm_platform_plugin.
Returns
	term()

 supports_xccl(opts \\ [])

 @spec supports_xccl(keyword()) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.supports_xccl.
Returns
	boolean()

 tpu_platform_plugin(opts \\ [])

 @spec tpu_platform_plugin(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.tpu_platform_plugin.
Returns
	term()

 vllm_version_matches_substr(substr, opts \\ [])

 @spec vllm_version_matches_substr(
 String.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check to see if the vLLM version matches a substring.
Parameters
	substr (String.t())

Returns
	boolean()

 xpu_platform_plugin(opts \\ [])

 @spec xpu_platform_plugin(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.platforms.xpu_platform_plugin.
Returns
	term()

Vllm.Platforms.CpuArchEnum

Create a collection of name/value pairs.
Example enumeration:
class Color(Enum):
... RED = 1
... BLUE = 2
... GREEN = 3

Access them by:
	attribute access:
Color.RED
<Color.RED: 1>

	value lookup:
Color(1)
<Color.RED: 1>

	name lookup:
Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:
len(Color)
3

list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.

 Summary

 Types

 t()

 Functions

 arm(ref)

 name(ref)

 new(opts \\ [])

 Constructs CpuArchEnum.

 other(ref)

 powerpc(ref)

 riscv(ref)

 s390_x(ref)

 unknown(ref)

 value(ref)

 x86(ref)

 Types

 t()

 @opaque t()

 Functions

 arm(ref)

 @spec arm(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs CpuArchEnum.

 other(ref)

 @spec other(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 powerpc(ref)

 @spec powerpc(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 riscv(ref)

 @spec riscv(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 s390_x(ref)

 @spec s390_x(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 unknown(ref)

 @spec unknown(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 value(ref)

 @spec value(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 x86(ref)

 @spec x86(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Platforms.Platform

Wrapper for Python class Platform.

 Summary

 Types

 t()

 Functions

 additional_env_vars(ref)

 can_update_inplace(ref, opts \\ [])

 Checks if the platform allows inplace memory updates

 check_and_update_config(ref, vllm_config, opts \\ [])

 Check and update the configuration for the current platform.

 check_if_supports_dtype(ref, dtype, opts \\ [])

 Check if the dtype is supported by the current platform.

 check_max_model_len(ref, max_model_len, opts \\ [])

 Check max_model_len for the current platform.

 device_control_env_var(ref)

 device_id_to_physical_device_id(ref, device_id, opts \\ [])

 Python method Platform.device_id_to_physical_device_id.

 dispatch_key(ref)

 dist_backend(ref)

 fp8_dtype(ref, opts \\ [])

 Returns the preferred FP8 type on the current platform.

 get_attn_backend_cls(ref, selected_backend, attn_selector_config, opts \\ [])

 Get the attention backend class of a device.

 get_compile_backend(ref, opts \\ [])

 Get the custom compile backend for current platform.

 get_cpu_architecture(ref, opts \\ [])

 Determine the CPU architecture of the current system.

 get_current_memory_usage(ref, args, opts \\ [])

 Return the memory usage in bytes.

 get_device_capability(ref, args, opts \\ [])

 Stateless version of [torch.cuda.get_device_capability][].

 get_device_communicator_cls(ref, opts \\ [])

 Get device specific communicator class for distributed communication.

 get_device_name(ref, args, opts \\ [])

 Get the name of a device.

 get_device_total_memory(ref, args, opts \\ [])

 Get the total memory of a device in bytes.

 get_device_uuid(ref, args, opts \\ [])

 Get the uuid of a device, e.g. the PCI bus ID.

 get_global_graph_pool(ref, opts \\ [])

 Return the global graph pool for this platform.

 get_infinity_values(ref, dtype, opts \\ [])

 Return the platform specific values for (-inf, inf)

 get_lora_vocab_padding_size(ref, opts \\ [])

 Returns how much padding the LoRA logits need for kernels

 get_max_output_tokens(ref, prompt_len, opts \\ [])

 Python method Platform.get_max_output_tokens.

 get_nixl_memory_type(ref, opts \\ [])

 Returns the nixl memory type for the current platform.

 get_nixl_supported_devices(ref, opts \\ [])

 Returns a mapping from device_type to a tuple of supported

 get_pass_manager_cls(ref, opts \\ [])

 Get the pass manager class for this platform.

 get_punica_wrapper(ref, opts \\ [])

 Return the punica wrapper for current platform.

 get_static_graph_wrapper_cls(ref, opts \\ [])

 Get static graph wrapper class for static graph.

 get_supported_vit_attn_backends(ref, opts \\ [])

 Python method Platform.get_supported_vit_attn_backends.

 get_vit_attn_backend(ref, head_size, dtype, args, opts \\ [])

 Get the vision attention backend class of a device.

 has_device_capability(ref, capability, args, opts \\ [])

 Test whether this platform is compatible with a device capability.

 import_kernels(ref, opts \\ [])

 Import any platform-specific C kernels.

 inference_mode(ref, opts \\ [])

 A device-specific wrapper of torch.inference_mode.

 is_cpu(ref, opts \\ [])

 Python method Platform.is_cpu.

 is_cuda(ref, opts \\ [])

 Python method Platform.is_cuda.

 is_cuda_alike(ref, opts \\ [])

 Stateless version of [torch.cuda.is_available][].

 is_device_capability(ref, capability, args, opts \\ [])

 Test whether this platform has exactly the specified device capability.

 is_device_capability_family(ref, capability, args, opts \\ [])

 Returns True if the device capability is any <major>.x.

 is_fp8_fnuz(ref, opts \\ [])

 Returns whether the preferred FP8 type is FNUZ on the current platform.

 is_out_of_tree(ref, opts \\ [])

 Python method Platform.is_out_of_tree.

 is_pin_memory_available(ref, opts \\ [])

 Checks whether pin memory is available on the current platform.

 is_rocm(ref, opts \\ [])

 Python method Platform.is_rocm.

 is_sleep_mode_available(ref, opts \\ [])

 Python method Platform.is_sleep_mode_available.

 is_tpu(ref, opts \\ [])

 Python method Platform.is_tpu.

 is_unspecified(ref, opts \\ [])

 Python method Platform.is_unspecified.

 is_xpu(ref, opts \\ [])

 Python method Platform.is_xpu.

 make_synced_weight_loader(ref, original_weight_loader, opts \\ [])

 Wrap the original weight loader to make it synced.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 opaque_attention_op(ref, opts \\ [])

 Returns True if we register attention as one giant opaque custom op

 pass_key(ref)

 pre_register_and_update(ref, args, opts \\ [])

 Do some pre-registration or update action for the current platform.

 ray_device_key(ref)

 seed_everything(ref, args, opts \\ [])

 Set the seed of each random module.

 set_additional_forward_context(ref, args, opts \\ [])

 Set some additional forward context for the current platform if needs.

 set_device(ref, device, opts \\ [])

 Set the device for the current platform.

 simple_compile_backend(ref)

 stateless_init_device_torch_dist_pg(ref, backend, prefix_store, group_rank, group_size, timeout, opts \\ [])

 Init platform-specific torch distributed process group.

 support_hybrid_kv_cache(ref, opts \\ [])

 Returns if the hybrid kv cache is supported by the current platform.

 support_static_graph_mode(ref, opts \\ [])

 Returns if the graph mode is supported by the current platform.

 supported_dtypes(ref)

 supported_quantization(ref)

 supports_fp8(ref, opts \\ [])

 Returns whether the current platform supports FP8 types.

 supports_mx(ref, opts \\ [])

 Returns whether the current platform supports MX types.

 use_all_gather(ref, opts \\ [])

 Whether to use allgather in LogitsProcessor to gather the logits.

 use_custom_allreduce(ref, opts \\ [])

 Returns if custom allreduce is supported on the current platform

 use_sync_weight_loader(ref, opts \\ [])

 Returns if the current platform needs to sync weight loader.

 validate_request(ref, prompt, params, processed_inputs, opts \\ [])

 Raises if this request is unsupported on this platform

 verify_model_arch(ref, model_arch, opts \\ [])

 Verify whether the current platform supports the specified model

 verify_quantization(ref, quant, opts \\ [])

 Verify whether the quantization is supported by the current platform.

 Types

 t()

 @opaque t()

 Functions

 additional_env_vars(ref)

 @spec additional_env_vars(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 can_update_inplace(ref, opts \\ [])

 @spec can_update_inplace(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Checks if the platform allows inplace memory updates
Returns
	boolean()

 check_and_update_config(ref, vllm_config, opts \\ [])

 @spec check_and_update_config(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Check and update the configuration for the current platform.
It can raise an exception if the configuration is not compatible with
the current platform, or it can update the configuration to make it
compatible with the current platform.
The config is passed by reference, so it can be modified in place.
Parameters
	vllm_config (term())

Returns
	nil

 check_if_supports_dtype(ref, dtype, opts \\ [])

 @spec check_if_supports_dtype(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Check if the dtype is supported by the current platform.
Parameters
	dtype (term())

Returns
	term()

 check_max_model_len(ref, max_model_len, opts \\ [])

 @spec check_max_model_len(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Check max_model_len for the current platform.
Parameters
	max_model_len (integer())

Returns
	integer()

 device_control_env_var(ref)

 @spec device_control_env_var(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 device_id_to_physical_device_id(ref, device_id, opts \\ [])

 @spec device_id_to_physical_device_id(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method Platform.device_id_to_physical_device_id.
Parameters
	device_id (integer())

Returns
	term()

 dispatch_key(ref)

 @spec dispatch_key(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 dist_backend(ref)

 @spec dist_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 fp8_dtype(ref, opts \\ [])

 @spec fp8_dtype(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns the preferred FP8 type on the current platform.
See the documentation for is_fp8_fnuz for details.
Returns
	term()

 get_attn_backend_cls(ref, selected_backend, attn_selector_config, opts \\ [])

 @spec get_attn_backend_cls(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get the attention backend class of a device.
Parameters
	selected_backend (term())
	attn_selector_config (term())

Returns
	String.t()

 get_compile_backend(ref, opts \\ [])

 @spec get_compile_backend(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get the custom compile backend for current platform.
Returns
	String.t()

 get_cpu_architecture(ref, opts \\ [])

 @spec get_cpu_architecture(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Determine the CPU architecture of the current system.
Returns CpuArchEnum indicating the architecture type.
Returns
	term()

 get_current_memory_usage(ref, args, opts \\ [])

 @spec get_current_memory_usage(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, float()} | {:error, Snakepit.Error.t()}

Return the memory usage in bytes.
Parameters
	device (((term() | String.t()) | integer()) | nil default: None)

Returns
	float()

 get_device_capability(ref, args, opts \\ [])

 @spec get_device_capability(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Stateless version of [torch.cuda.get_device_capability][].
Parameters
	device_id (integer() default: 0)

Returns
	term()

 get_device_communicator_cls(ref, opts \\ [])

 @spec get_device_communicator_cls(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get device specific communicator class for distributed communication.
Returns
	String.t()

 get_device_name(ref, args, opts \\ [])

 @spec get_device_name(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get the name of a device.
Parameters
	device_id (integer() default: 0)

Returns
	String.t()

 get_device_total_memory(ref, args, opts \\ [])

 @spec get_device_total_memory(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Get the total memory of a device in bytes.
Parameters
	device_id (integer() default: 0)

Returns
	integer()

 get_device_uuid(ref, args, opts \\ [])

 @spec get_device_uuid(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get the uuid of a device, e.g. the PCI bus ID.
Parameters
	device_id (integer() default: 0)

Returns
	String.t()

 get_global_graph_pool(ref, opts \\ [])

 @spec get_global_graph_pool(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return the global graph pool for this platform.
Returns
	term()

 get_infinity_values(ref, dtype, opts \\ [])

 @spec get_infinity_values(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, {float(), float()}} | {:error, Snakepit.Error.t()}

Return the platform specific values for (-inf, inf)
Parameters
	dtype (term())

Returns
	{float(), float()}

 get_lora_vocab_padding_size(ref, opts \\ [])

 @spec get_lora_vocab_padding_size(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Returns how much padding the LoRA logits need for kernels
Returns
	integer()

 get_max_output_tokens(ref, prompt_len, opts \\ [])

 @spec get_max_output_tokens(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method Platform.get_max_output_tokens.
Parameters
	prompt_len (integer())

Returns
	integer()

 get_nixl_memory_type(ref, opts \\ [])

 @spec get_nixl_memory_type(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns the nixl memory type for the current platform.
Returns
	term()

 get_nixl_supported_devices(ref, opts \\ [])

 @spec get_nixl_supported_devices(
 SnakeBridge.Ref.t(),
 keyword()
) ::
 {:ok, %{optional(String.t()) => {String.t(), term()}}}
 | {:error, Snakepit.Error.t()}

Returns a mapping from device_type to a tuple of supported
kv_buffer_device for nixl.
Returns
	%{optional(String.t()) => {String.t(), term()}}

 get_pass_manager_cls(ref, opts \\ [])

 @spec get_pass_manager_cls(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get the pass manager class for this platform.
It will be registered as a custom pass under the current_platform.pass_key.
Returns
	String.t()

 get_punica_wrapper(ref, opts \\ [])

 @spec get_punica_wrapper(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Return the punica wrapper for current platform.
Returns
	String.t()

 get_static_graph_wrapper_cls(ref, opts \\ [])

 @spec get_static_graph_wrapper_cls(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Get static graph wrapper class for static graph.
Returns
	String.t()

 get_supported_vit_attn_backends(ref, opts \\ [])

 @spec get_supported_vit_attn_backends(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Python method Platform.get_supported_vit_attn_backends.
Returns
	list(term())

 get_vit_attn_backend(ref, head_size, dtype, args, opts \\ [])

 @spec get_vit_attn_backend(
 SnakeBridge.Ref.t(),
 integer(),
 term(),
 [term()],
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Get the vision attention backend class of a device.
NOTE: ViT Attention should be checked and override in the platform-specific
implementation. we should not override this in any other places, like
the model_executor/models/<model_name>.py.
We check if the backend is None or not:
1. If not, check if the backend is supported by the platform.
2. If None, continue to the default selection logic.
Parameters
	head_size (integer())
	dtype (term())
	backend (term() | nil default: None)

Returns
	term()

 has_device_capability(ref, capability, args, opts \\ [])

 @spec has_device_capability(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Test whether this platform is compatible with a device capability.
The capability argument can either be:
	A tuple (major, minor).
	An integer <major><minor>. (See
[DeviceCapability.to_int][vllm.platforms.interface.DeviceCapability.to_int])

Parameters
	capability (term())
	device_id (integer() default: 0)

Returns
	boolean()

 import_kernels(ref, opts \\ [])

 @spec import_kernels(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Import any platform-specific C kernels.
Returns
	nil

 inference_mode(ref, opts \\ [])

 @spec inference_mode(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

A device-specific wrapper of torch.inference_mode.
This wrapper is recommended because some hardware backends such as TPU
do not support torch.inference_mode. In such a case, they will fall
back to torch.no_grad by overriding this method.
Returns
	term()

 is_cpu(ref, opts \\ [])

 @spec is_cpu(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_cpu.
Returns
	boolean()

 is_cuda(ref, opts \\ [])

 @spec is_cuda(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_cuda.
Returns
	boolean()

 is_cuda_alike(ref, opts \\ [])

 @spec is_cuda_alike(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Stateless version of [torch.cuda.is_available][].
Returns
	boolean()

 is_device_capability(ref, capability, args, opts \\ [])

 @spec is_device_capability(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Test whether this platform has exactly the specified device capability.
The capability argument can either be:
	A tuple (major, minor).
	An integer <major><minor>. (See
[DeviceCapability.to_int][vllm.platforms.interface.DeviceCapability.to_int])

Parameters
	capability (term())
	device_id (integer() default: 0)

Returns
	boolean()

 is_device_capability_family(ref, capability, args, opts \\ [])

 @spec is_device_capability_family(SnakeBridge.Ref.t(), integer(), [term()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns True if the device capability is any <major>.x.
Mirrors CUDA 13 'family' architecture semantics (e.g. 10.x, 11.x, 12.x).
Parameters
	capability (integer())
	device_id (integer() default: 0)

Returns
	boolean()

 is_fp8_fnuz(ref, opts \\ [])

 @spec is_fp8_fnuz(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns whether the preferred FP8 type is FNUZ on the current platform.
There are two representations of FP8, OCP FP8 and FNUZ FP8.
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
hardware has converged on the OCP FP8 standard.
Returns
	boolean()

 is_out_of_tree(ref, opts \\ [])

 @spec is_out_of_tree(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_out_of_tree.
Returns
	boolean()

 is_pin_memory_available(ref, opts \\ [])

 @spec is_pin_memory_available(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Checks whether pin memory is available on the current platform.
Returns
	boolean()

 is_rocm(ref, opts \\ [])

 @spec is_rocm(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_rocm.
Returns
	boolean()

 is_sleep_mode_available(ref, opts \\ [])

 @spec is_sleep_mode_available(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_sleep_mode_available.
Returns
	boolean()

 is_tpu(ref, opts \\ [])

 @spec is_tpu(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_tpu.
Returns
	boolean()

 is_unspecified(ref, opts \\ [])

 @spec is_unspecified(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_unspecified.
Returns
	boolean()

 is_xpu(ref, opts \\ [])

 @spec is_xpu(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method Platform.is_xpu.
Returns
	boolean()

 make_synced_weight_loader(ref, original_weight_loader, opts \\ [])

 @spec make_synced_weight_loader(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Wrap the original weight loader to make it synced.
Parameters
	original_weight_loader (term())

Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 opaque_attention_op(ref, opts \\ [])

 @spec opaque_attention_op(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns True if we register attention as one giant opaque custom op
on the current platform
Returns
	boolean()

 pass_key(ref)

 @spec pass_key(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 pre_register_and_update(ref, args, opts \\ [])

 @spec pre_register_and_update(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Do some pre-registration or update action for the current platform.
This function is called before global VllmConfig is initialized or cli
arguments are parsed. It's used for out-of-tree platforms to register or
update the configuration.
For example, the out-of-tree quantization config can be imported and
registered here dynamically.
Parameters
	parser (term() default: None)

Returns
	nil

 ray_device_key(ref)

 @spec ray_device_key(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 seed_everything(ref, args, opts \\ [])

 @spec seed_everything(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Set the seed of each random module.
torch.manual_seed will set seed on all devices.
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
Parameters
	seed (term() default: None)

Returns
	nil

 set_additional_forward_context(ref, args, opts \\ [])

 @spec set_additional_forward_context(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Set some additional forward context for the current platform if needs.
Parameters
	args (term())
	kwargs (term())

Returns
	%{optional(String.t()) => term()}

 set_device(ref, device, opts \\ [])

 @spec set_device(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Set the device for the current platform.
Parameters
	device (term())

Returns
	nil

 simple_compile_backend(ref)

 @spec simple_compile_backend(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stateless_init_device_torch_dist_pg(ref, backend, prefix_store, group_rank, group_size, timeout, opts \\ [])

 @spec stateless_init_device_torch_dist_pg(
 SnakeBridge.Ref.t(),
 String.t(),
 term(),
 integer(),
 integer(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Init platform-specific torch distributed process group.
Parameters
	backend (String.t())
	prefix_store (term())
	group_rank (integer())
	group_size (integer())
	timeout (term())

Returns
	term()

 support_hybrid_kv_cache(ref, opts \\ [])

 @spec support_hybrid_kv_cache(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns if the hybrid kv cache is supported by the current platform.
Returns
	boolean()

 support_static_graph_mode(ref, opts \\ [])

 @spec support_static_graph_mode(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns if the graph mode is supported by the current platform.
Returns
	boolean()

 supported_dtypes(ref)

 @spec supported_dtypes(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 supported_quantization(ref)

 @spec supported_quantization(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 supports_fp8(ref, opts \\ [])

 @spec supports_fp8(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns whether the current platform supports FP8 types.
Returns
	boolean()

 supports_mx(ref, opts \\ [])

 @spec supports_mx(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns whether the current platform supports MX types.
Returns
	boolean()

 use_all_gather(ref, opts \\ [])

 @spec use_all_gather(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Whether to use allgather in LogitsProcessor to gather the logits.
Returns
	boolean()

 use_custom_allreduce(ref, opts \\ [])

 @spec use_custom_allreduce(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns if custom allreduce is supported on the current platform
Returns
	boolean()

 use_sync_weight_loader(ref, opts \\ [])

 @spec use_sync_weight_loader(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns if the current platform needs to sync weight loader.
Returns
	boolean()

 validate_request(ref, prompt, params, processed_inputs, opts \\ [])

 @spec validate_request(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Raises if this request is unsupported on this platform
Parameters
	prompt (term())
	params (term())
	processed_inputs (term())

Returns
	nil

 verify_model_arch(ref, model_arch, opts \\ [])

 @spec verify_model_arch(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Verify whether the current platform supports the specified model
architecture.
	This will raise an Error or Warning based on the model support on
the current platform.
	By default all models are considered supported.

Parameters
	model_arch (String.t())

Returns
	nil

 verify_quantization(ref, quant, opts \\ [])

 @spec verify_quantization(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Verify whether the quantization is supported by the current platform.
Parameters
	quant (String.t())

Returns
	nil

Vllm.Platforms.PlatformEnum

Create a collection of name/value pairs.
Example enumeration:
class Color(Enum):
... RED = 1
... BLUE = 2
... GREEN = 3

Access them by:
	attribute access:
Color.RED
<Color.RED: 1>

	value lookup:
Color(1)
<Color.RED: 1>

	name lookup:
Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:
len(Color)
3

list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.

 Summary

 Types

 t()

 Functions

 cpu(ref)

 cuda(ref)

 name(ref)

 new(opts \\ [])

 Constructs PlatformEnum.

 oot(ref)

 rocm(ref)

 tpu(ref)

 unspecified(ref)

 value(ref)

 xpu(ref)

 Types

 t()

 @opaque t()

 Functions

 cpu(ref)

 @spec cpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 cuda(ref)

 @spec cuda(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs PlatformEnum.

 oot(ref)

 @spec oot(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 rocm(ref)

 @spec rocm(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 tpu(ref)

 @spec tpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 unspecified(ref)

 @spec unspecified(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 value(ref)

 @spec value(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 xpu(ref)

 @spec xpu(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Plugins

Submodule bindings for vllm.plugins.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Plugins.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Plugins.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Plugins.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Plugins.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 default_plugins_group()

 str(object='') -> str

 io_processor_plugins_group()

 str(object='') -> str

 load_general_plugins(opts \\ [])

 WARNING: plugins can be loaded for multiple times in different

 load_plugins_by_group(group, opts \\ [])

 Python binding for vllm.plugins.load_plugins_by_group.

 logger()

 Instances of the Logger class represent a single logging channel. A

 platform_plugins_group()

 str(object='') -> str

 plugins_loaded()

 bool(x) -> bool

 stat_logger_plugins_group()

 str(object='') -> str

 Functions

 default_plugins_group()

 @spec default_plugins_group() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 io_processor_plugins_group()

 @spec io_processor_plugins_group() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 load_general_plugins(opts \\ [])

 @spec load_general_plugins(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

WARNING: plugins can be loaded for multiple times in different
processes. They should be designed in a way that they can be loaded
multiple times without causing issues.
Returns
	term()

 load_plugins_by_group(group, opts \\ [])

 @spec load_plugins_by_group(
 String.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => term()}} | {:error, Snakepit.Error.t()}

Python binding for vllm.plugins.load_plugins_by_group.
Parameters
	group (String.t())

Returns
	%{optional(String.t()) => term()}

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 platform_plugins_group()

 @spec platform_plugins_group() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

 plugins_loaded()

 @spec plugins_loaded() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 stat_logger_plugins_group()

 @spec stat_logger_plugins_group() :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

str(object='') -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.str() (if defined)
or repr(object).
encoding defaults to sys.getdefaultencoding().
errors defaults to 'strict'.
Returns
	String.t()

Vllm.PoolingParams

API parameters for pooling models.
Attributes:
truncate_prompt_tokens: Controls prompt truncation.
 Set to -1 to use the model's default truncation size.
 Set to k to keep only the last k tokens (left truncation).
 Set to None to disable truncation.
dimensions: Reduce the dimensions of embeddings
 if model support matryoshka representation.
normalize: Deprecated, please use use_activation instead.
softmax: Deprecated, please use use_activation instead.
activation: Deprecated, please use use_activation instead.
use_activation: Whether to apply activation function to
 the classification outputs.

 Summary

 Types

 t()

 Functions

 _merge_default_parameters(ref, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _set_default_parameters(ref, model_config, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _verify_step_pooling(ref, pooler_config, valid_parameters, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _verify_valid_parameters(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 activation(ref)

 all_parameters(ref)

 clone(ref, opts \\ [])

 Returns a deep copy of the PoolingParams instance.

 dimensions(ref)

 extra_kwargs(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 normalize(ref)

 output_kind(ref)

 requires_token_ids(ref)

 returned_token_ids(ref)

 skip_reading_prefix_cache(ref)

 softmax(ref)

 step_tag_id(ref)

 task(ref)

 truncate_prompt_tokens(ref)

 use_activation(ref)

 valid_parameters(ref)

 verify(ref, task, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 Types

 t()

 @opaque t()

 Functions

 _merge_default_parameters(ref, args, opts \\ [])

 @spec _merge_default_parameters(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	model_config (term() | nil default: None)

Returns
	nil

 _set_default_parameters(ref, model_config, opts \\ [])

 @spec _set_default_parameters(SnakeBridge.Ref.t(), term() | nil, keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	model_config (term() | nil)

Returns
	term()

 _verify_step_pooling(ref, pooler_config, valid_parameters, opts \\ [])

 @spec _verify_step_pooling(SnakeBridge.Ref.t(), term(), [String.t()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	pooler_config (term())
	valid_parameters (list(String.t()))

Returns
	term()

 _verify_valid_parameters(ref, opts \\ [])

 @spec _verify_valid_parameters(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	term()

 activation(ref)

 @spec activation(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 all_parameters(ref)

 @spec all_parameters(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clone(ref, opts \\ [])

 @spec clone(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, Vllm.PoolingParamsClass.t()} | {:error, Snakepit.Error.t()}

Returns a deep copy of the PoolingParams instance.
Returns
	Vllm.PoolingParamsClass.t()

 dimensions(ref)

 @spec dimensions(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 extra_kwargs(ref)

 @spec extra_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 normalize(ref)

 @spec normalize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 output_kind(ref)

 @spec output_kind(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 requires_token_ids(ref)

 @spec requires_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 returned_token_ids(ref)

 @spec returned_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_reading_prefix_cache(ref)

 @spec skip_reading_prefix_cache(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 softmax(ref)

 @spec softmax(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 step_tag_id(ref)

 @spec step_tag_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 task(ref)

 @spec task(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 truncate_prompt_tokens(ref)

 @spec truncate_prompt_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_activation(ref)

 @spec use_activation(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 valid_parameters(ref)

 @spec valid_parameters(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 verify(ref, task, args, opts \\ [])

 @spec verify(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	task (term())
	model_config (term() | nil default: None)

Returns
	nil

Vllm.PoolingParams.Module

Submodule bindings for vllm.pooling_params.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.PoolingParams.Module.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.PoolingParams.Module.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.PoolingParams.Module.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.PoolingParams.Module.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 pooling_task(opts \\ [])

 Python binding for vllm.pooling_params.PoolingTask.

 Functions

 pooling_task(opts \\ [])

 @spec pooling_task(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.pooling_params.PoolingTask.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

Vllm.PoolingParams.RequestOutputKind

Create a collection of name/value pairs.
Example enumeration:
class Color(Enum):
... RED = 1
... BLUE = 2
... GREEN = 3

Access them by:
	attribute access:
Color.RED
<Color.RED: 1>

	value lookup:
Color(1)
<Color.RED: 1>

	name lookup:
Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:
len(Color)
3

list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.

 Summary

 Types

 t()

 Functions

 cumulative(ref)

 delta(ref)

 final_only(ref)

 name(ref)

 new(opts \\ [])

 Constructs RequestOutputKind.

 value(ref)

 Types

 t()

 @opaque t()

 Functions

 cumulative(ref)

 @spec cumulative(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 delta(ref)

 @spec delta(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 final_only(ref)

 @spec final_only(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs RequestOutputKind.

 value(ref)

 @spec value(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.PoolingParamsClass

API parameters for pooling models.
Attributes:
truncate_prompt_tokens: Controls prompt truncation.
 Set to -1 to use the model's default truncation size.
 Set to k to keep only the last k tokens (left truncation).
 Set to None to disable truncation.
dimensions: Reduce the dimensions of embeddings
 if model support matryoshka representation.
normalize: Deprecated, please use use_activation instead.
softmax: Deprecated, please use use_activation instead.
activation: Deprecated, please use use_activation instead.
use_activation: Whether to apply activation function to
 the classification outputs.

 Summary

 Types

 t()

 Functions

 _merge_default_parameters(ref, args, opts \\ [])

 Python method PoolingParams._merge_default_parameters.

 _set_default_parameters(ref, model_config, opts \\ [])

 Python method PoolingParams._set_default_parameters.

 _verify_step_pooling(ref, pooler_config, valid_parameters, opts \\ [])

 Python method PoolingParams._verify_step_pooling.

 _verify_valid_parameters(ref, opts \\ [])

 Python method PoolingParams._verify_valid_parameters.

 activation(ref)

 all_parameters(ref)

 clone(ref, opts \\ [])

 Returns a deep copy of the PoolingParams instance.

 dimensions(ref)

 extra_kwargs(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 normalize(ref)

 output_kind(ref)

 requires_token_ids(ref)

 returned_token_ids(ref)

 skip_reading_prefix_cache(ref)

 softmax(ref)

 step_tag_id(ref)

 task(ref)

 truncate_prompt_tokens(ref)

 use_activation(ref)

 valid_parameters(ref)

 verify(ref, task, args, opts \\ [])

 Python method PoolingParams.verify.

 Types

 t()

 @opaque t()

 Functions

 _merge_default_parameters(ref, args, opts \\ [])

 @spec _merge_default_parameters(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method PoolingParams._merge_default_parameters.
Parameters
	model_config (term() | nil default: None)

Returns
	nil

 _set_default_parameters(ref, model_config, opts \\ [])

 @spec _set_default_parameters(SnakeBridge.Ref.t(), term() | nil, keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method PoolingParams._set_default_parameters.
Parameters
	model_config (term() | nil)

Returns
	term()

 _verify_step_pooling(ref, pooler_config, valid_parameters, opts \\ [])

 @spec _verify_step_pooling(SnakeBridge.Ref.t(), term(), [String.t()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method PoolingParams._verify_step_pooling.
Parameters
	pooler_config (term())
	valid_parameters (list(String.t()))

Returns
	term()

 _verify_valid_parameters(ref, opts \\ [])

 @spec _verify_valid_parameters(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method PoolingParams._verify_valid_parameters.
Returns
	term()

 activation(ref)

 @spec activation(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 all_parameters(ref)

 @spec all_parameters(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clone(ref, opts \\ [])

 @spec clone(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, t()} | {:error, Snakepit.Error.t()}

Returns a deep copy of the PoolingParams instance.
Returns
	Vllm.PoolingParamsClass.t()

 dimensions(ref)

 @spec dimensions(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 extra_kwargs(ref)

 @spec extra_kwargs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 normalize(ref)

 @spec normalize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 output_kind(ref)

 @spec output_kind(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 requires_token_ids(ref)

 @spec requires_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 returned_token_ids(ref)

 @spec returned_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_reading_prefix_cache(ref)

 @spec skip_reading_prefix_cache(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 softmax(ref)

 @spec softmax(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 step_tag_id(ref)

 @spec step_tag_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 task(ref)

 @spec task(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 truncate_prompt_tokens(ref)

 @spec truncate_prompt_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 use_activation(ref)

 @spec use_activation(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 valid_parameters(ref)

 @spec valid_parameters(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 verify(ref, task, args, opts \\ [])

 @spec verify(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python method PoolingParams.verify.
Parameters
	task (term())
	model_config (term() | nil default: None)

Returns
	nil

Vllm.Profiler

Submodule bindings for vllm.profiler.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Profiler.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Profiler.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Profiler.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Profiler.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Ray

Submodule bindings for vllm.ray.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Ray.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Ray.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Ray.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Ray.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Reasoning

Submodule bindings for vllm.reasoning.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Reasoning.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Reasoning.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Reasoning.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Reasoning.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 _reasoning_parsers_to_register()

 dict() -> new empty dictionary

 register_lazy_reasoning_parsers(opts \\ [])

 Python binding for vllm.reasoning.register_lazy_reasoning_parsers.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 _reasoning_parsers_to_register()

 @spec _reasoning_parsers_to_register() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 register_lazy_reasoning_parsers(opts \\ [])

 @spec register_lazy_reasoning_parsers(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.reasoning.register_lazy_reasoning_parsers.
Returns
	term()

Vllm.Reasoning.ReasoningParser

Abstract reasoning parser class that should not be used directly.
Provided and methods should be used in derived classes.
It is used to extract reasoning content from the model output.

 Summary

 Types

 t()

 Functions

 extract_content_ids(ref, input_ids, opts \\ [])

 Extract content token ids from the input_ids.

 extract_reasoning(ref, model_output, request, opts \\ [])

 Extract reasoning content from a complete model-generated string.

 extract_reasoning_streaming(ref, previous_text, current_text, delta_text, previous_token_ids, current_token_ids, delta_token_ids, opts \\ [])

 Instance method that should be implemented for extracting reasoning

 is_reasoning_end(ref, input_ids, opts \\ [])

 Check if the reasoning content ends in the input_ids.

 is_reasoning_end_streaming(ref, input_ids, delta_ids, opts \\ [])

 Check if the reasoning content ends in the input_ids on a

 new(tokenizer, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 prepare_structured_tag(ref, original_tag, tool_server, opts \\ [])

 Instance method that is implemented for preparing the structured tag

 vocab(ref)

 Types

 t()

 @opaque t()

 Functions

 extract_content_ids(ref, input_ids, opts \\ [])

 @spec extract_content_ids(SnakeBridge.Ref.t(), [integer()], keyword()) ::
 {:ok, [integer()]} | {:error, Snakepit.Error.t()}

Extract content token ids from the input_ids.
Parameters:
input_ids: list[int]
The input_ids of the model output.
Parameters
	input_ids (list(integer()))

Returns
	list(integer())

 extract_reasoning(ref, model_output, request, opts \\ [])

 @spec extract_reasoning(SnakeBridge.Ref.t(), String.t(), term(), keyword()) ::
 {:ok, {term(), term()}} | {:error, Snakepit.Error.t()}

Extract reasoning content from a complete model-generated string.
Used for non-streaming responses where we have the entire model response
available before sending to the client.
Parameters:
model_output: str
The model-generated string to extract reasoning content from.
request: ChatCompletionRequest
The request object that was used to generate the model_output.
Parameters
	model_output (String.t())
	request (term())

Returns
	{term(), term()}

 extract_reasoning_streaming(ref, previous_text, current_text, delta_text, previous_token_ids, current_token_ids, delta_token_ids, opts \\ [])

 @spec extract_reasoning_streaming(
 SnakeBridge.Ref.t(),
 String.t(),
 String.t(),
 String.t(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instance method that should be implemented for extracting reasoning
from an incomplete response; for use when handling reasoning calls and
streaming. Has to be an instance method because it requires state -
the current tokens/diffs, but also the information about what has
previously been parsed and extracted (see constructor)
Parameters
	previous_text (String.t())
	current_text (String.t())
	delta_text (String.t())
	previous_token_ids (term())
	current_token_ids (term())
	delta_token_ids (term())

Returns
	term()

 is_reasoning_end(ref, input_ids, opts \\ [])

 @spec is_reasoning_end(SnakeBridge.Ref.t(), [integer()], keyword()) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the reasoning content ends in the input_ids.
It is used in structured engines like xgrammar to check if the
reasoning content ends in the model output.
Parameters:
input_ids: list[int]
The input_ids of the model output.
Parameters
	input_ids (list(integer()))

Returns
	boolean()

 is_reasoning_end_streaming(ref, input_ids, delta_ids, opts \\ [])

 @spec is_reasoning_end_streaming(
 SnakeBridge.Ref.t(),
 [integer()],
 [integer()],
 keyword()
) ::
 {:ok, boolean()} | {:error, Snakepit.Error.t()}

Check if the reasoning content ends in the input_ids on a
decode step.
It is used in structured engines like xgrammar to check if the
reasoning content ends in the model output during a decode step.
input_ids the entire model output and delta_ids are the last few
computed tokens of the model output (like during a decode step).
Parameters:
input_ids: list[int]
The entire model output.
delta_ids: list[int]
The last few computed tokens of the model output at the current decode step.
Parameters
	input_ids (list(integer()))
	delta_ids (list(integer()))

Returns
	boolean()

 new(tokenizer, opts \\ [])

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	tokenizer (term())

 prepare_structured_tag(ref, original_tag, tool_server, opts \\ [])

 @spec prepare_structured_tag(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Instance method that is implemented for preparing the structured tag
Otherwise, None is returned
Parameters
	original_tag (term())
	tool_server (term())

Returns
	term()

 vocab(ref)

 @spec vocab(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Reasoning.ReasoningParserManager

Central registry for ReasoningParser implementations.
Supports two registration modes:
	Eager registration via register_module
	Lazy registration via register_lazy_module

Each reasoning parser must inherit from ReasoningParser.

 Summary

 Types

 t()

 Functions

 _load_lazy_parser(ref, name, opts \\ [])

 Import and register a lazily loaded reasoning parser.

 _register_module(ref, module, args, opts \\ [])

 Register a ReasoningParser class immediately.

 get_reasoning_parser(ref, name, opts \\ [])

 Retrieve a registered or lazily registered ReasoningParser class.

 import_reasoning_parser(ref, plugin_path, opts \\ [])

 Import a user-defined reasoning parser by the path

 lazy_parsers(ref)

 list_registered(ref, opts \\ [])

 Return names of all eagerly and lazily registered reasoning parsers.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 reasoning_parsers(ref)

 register_lazy_module(ref, name, module_path, class_name, opts \\ [])

 Register a lazy module mapping for delayed import.

 register_module(ref, args, opts \\ [])

 Register module with the given name or name list. it can be used as a

 Types

 t()

 @opaque t()

 Functions

 _load_lazy_parser(ref, name, opts \\ [])

 @spec _load_lazy_parser(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Import and register a lazily loaded reasoning parser.
Parameters
	name (String.t())

Returns
	term()

 _register_module(ref, module, args, opts \\ [])

 @spec _register_module(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Register a ReasoningParser class immediately.
Parameters
	module (term())
	module_name (term() default: None)
	force (boolean() default: True)

Returns
	nil

 get_reasoning_parser(ref, name, opts \\ [])

 @spec get_reasoning_parser(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Retrieve a registered or lazily registered ReasoningParser class.
If the parser is lazily registered, it will be imported and cached
on first access.
Raises
	KeyError - if no parser is found under the given name.

Parameters
	name (String.t())

Returns
	term()

 import_reasoning_parser(ref, plugin_path, opts \\ [])

 @spec import_reasoning_parser(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Import a user-defined reasoning parser by the path
of the reasoning parser define file.
Parameters
	plugin_path (String.t())

Returns
	nil

 lazy_parsers(ref)

 @spec lazy_parsers(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 list_registered(ref, opts \\ [])

 @spec list_registered(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [String.t()]} | {:error, Snakepit.Error.t()}

Return names of all eagerly and lazily registered reasoning parsers.
Returns
	list(String.t())

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 reasoning_parsers(ref)

 @spec reasoning_parsers(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 register_lazy_module(ref, name, module_path, class_name, opts \\ [])

 @spec register_lazy_module(
 SnakeBridge.Ref.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Register a lazy module mapping for delayed import.
Examples
ReasoningParserManager.register_lazy_module(
name="qwen3",
module_path="vllm.reasoning.parsers.qwen3_reasoning_parser",
class_name="Qwen3ReasoningParser",
)
Parameters
	name (String.t())
	module_path (String.t())
	class_name (String.t())

Returns
	nil

 register_module(ref, args, opts \\ [])

 @spec register_module(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Register module with the given name or name list. it can be used as a
decoder(with module as None) or normal function(with module as not
None).
Parameters
	name (term() default: None)
	force (boolean() default: True)
	module (term() default: None)

Returns
	term()

Vllm.SamplingParams

Sampling parameters for text generation.
Overall, we follow the sampling parameters from the OpenAI text completion
API (https://platform.openai.com/docs/api-reference/completions/create).
In addition, we support beam search, which is not supported by OpenAI.

 Summary

 Types

 t()

 Functions

 _validate_msgspec(ref, value, opts \\ [])

 Validate and convert input to msgspec.Struct instance.

 _verify_args(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 _verify_greedy_sampling(ref, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 all_stop_token_ids(ref)

 allowed_token_ids(ref)

 bad_words(ref)

 bad_words_token_ids(ref)

 clone(ref, opts \\ [])

 Deep copy, but maybe not the LogitsProcessor objects.

 detokenize(ref)

 extra_args(ref)

 flat_logprobs(ref)

 frequency_penalty(ref)

 from_optional(ref, args, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 ignore_eos(ref)

 include_stop_str_in_output(ref)

 logit_bias(ref)

 logits_processors(ref)

 logprobs(ref)

 max_tokens(ref)

 min_p(ref)

 min_tokens(ref)

 n(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 output_kind(ref)

 output_text_buffer_length(ref)

 presence_penalty(ref)

 prompt_logprobs(ref)

 repetition_penalty(ref)

 sampling_type(ref)

 seed(ref)

 skip_clone(ref)

 skip_reading_prefix_cache(ref)

 skip_special_tokens(ref)

 spaces_between_special_tokens(ref)

 stop(ref)

 stop_token_ids(ref)

 structured_outputs(ref)

 temperature(ref)

 top_k(ref)

 top_p(ref)

 truncate_prompt_tokens(ref)

 update_from_generation_config(ref, generation_config, args, opts \\ [])

 Update if there are non-default values from generation_config

 update_from_tokenizer(ref, tokenizer, opts \\ [])

 vLLM: a high-throughput and memory-efficient inference engine for LLMs

 Types

 t()

 @opaque t()

 Functions

 _validate_msgspec(ref, value, opts \\ [])

 @spec _validate_msgspec(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Validate and convert input to msgspec.Struct instance.
Parameters
	value (term())

Returns
	term()

 _verify_args(ref, opts \\ [])

 @spec _verify_args(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	nil

 _verify_greedy_sampling(ref, opts \\ [])

 @spec _verify_greedy_sampling(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
	nil

 all_stop_token_ids(ref)

 @spec all_stop_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 allowed_token_ids(ref)

 @spec allowed_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 bad_words(ref)

 @spec bad_words(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 bad_words_token_ids(ref)

 @spec bad_words_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clone(ref, opts \\ [])

 @spec clone(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, Vllm.SamplingParamsClass.t()} | {:error, Snakepit.Error.t()}

Deep copy, but maybe not the LogitsProcessor objects.
LogitsProcessor objects may contain an arbitrary, nontrivial amount of
data that is expensive to copy. However, if not copied, the processor
needs to support parallel decoding for multiple sequences
See https://github.com/vllm-project/vllm/issues/3087
If skip_clone is True, uses shallow copy instead of deep copy.
Returns
	Vllm.SamplingParamsClass.t()

 detokenize(ref)

 @spec detokenize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 extra_args(ref)

 @spec extra_args(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 flat_logprobs(ref)

 @spec flat_logprobs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 frequency_penalty(ref)

 @spec frequency_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 from_optional(ref, args, opts \\ [])

 @spec from_optional(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, Vllm.SamplingParamsClass.t()} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	n (term() default: 1)
	presence_penalty (term() default: 0.0)
	frequency_penalty (term() default: 0.0)
	repetition_penalty (term() default: 1.0)
	temperature (term() default: 1.0)
	top_p (term() default: 1.0)
	top_k (integer() default: 0)
	min_p (float() default: 0.0)
	seed (term() default: None)
	stop (term() default: None)
	stop_token_ids (term() default: None)
	bad_words (term() default: None)
	include_stop_str_in_output (boolean() default: False)
	ignore_eos (boolean() default: False)
	max_tokens (term() default: 16)
	min_tokens (integer() default: 0)
	logprobs (term() default: None)
	prompt_logprobs (term() default: None)
	detokenize (boolean() default: True)
	skip_special_tokens (boolean() default: True)
	spaces_between_special_tokens (boolean() default: True)
	logits_processors (term() default: None)
	truncate_prompt_tokens (integer() | nil default: None)

	output_kind (Vllm.SamplingParams.RequestOutputKind.t() default: <RequestOutputKind.CUMULATIVE: 0>)
	structured_outputs (term() default: None)
	logit_bias (term() default: None)
	allowed_token_ids (term() default: None)
	extra_args (term() default: None)
	skip_clone (boolean() default: False)

Returns
	Vllm.SamplingParamsClass.t()

 ignore_eos(ref)

 @spec ignore_eos(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 include_stop_str_in_output(ref)

 @spec include_stop_str_in_output(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logit_bias(ref)

 @spec logit_bias(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 logits_processors(ref)

 @spec logits_processors(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logprobs(ref)

 @spec logprobs(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_tokens(ref)

 @spec max_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 min_p(ref)

 @spec min_p(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 min_tokens(ref)

 @spec min_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 n(ref)

 @spec n(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 output_kind(ref)

 @spec output_kind(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 output_text_buffer_length(ref)

 @spec output_text_buffer_length(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 presence_penalty(ref)

 @spec presence_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 prompt_logprobs(ref)

 @spec prompt_logprobs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 repetition_penalty(ref)

 @spec repetition_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 sampling_type(ref)

 @spec sampling_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 seed(ref)

 @spec seed(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_clone(ref)

 @spec skip_clone(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_reading_prefix_cache(ref)

 @spec skip_reading_prefix_cache(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_special_tokens(ref)

 @spec skip_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 spaces_between_special_tokens(ref)

 @spec spaces_between_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stop(ref)

 @spec stop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 stop_token_ids(ref)

 @spec stop_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 structured_outputs(ref)

 @spec structured_outputs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 temperature(ref)

 @spec temperature(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 top_k(ref)

 @spec top_k(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 top_p(ref)

 @spec top_p(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 truncate_prompt_tokens(ref)

 @spec truncate_prompt_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update_from_generation_config(ref, generation_config, args, opts \\ [])

 @spec update_from_generation_config(
 SnakeBridge.Ref.t(),
 %{optional(String.t()) => term()},
 [term()],
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Update if there are non-default values from generation_config
Parameters
	generation_config (%{optional(String.t()) => term()})
	model_eos_token_id (term() default: None)

Returns
	nil

 update_from_tokenizer(ref, tokenizer, opts \\ [])

 @spec update_from_tokenizer(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
	tokenizer (term())

Returns
	nil

Vllm.SamplingParams.BeamSearchParams

Beam search parameters for text generation.

 Summary

 Types

 t()

 Functions

 beam_width(ref)

 ignore_eos(ref)

 include_stop_str_in_output(ref)

 length_penalty(ref)

 max_tokens(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 temperature(ref)

 Types

 t()

 @opaque t()

 Functions

 beam_width(ref)

 @spec beam_width(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 ignore_eos(ref)

 @spec ignore_eos(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 include_stop_str_in_output(ref)

 @spec include_stop_str_in_output(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 length_penalty(ref)

 @spec length_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 max_tokens(ref)

 @spec max_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 temperature(ref)

 @spec temperature(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.SamplingParams.Module

Sampling parameters for text generation.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.SamplingParams.Module.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.SamplingParams.Module.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.SamplingParams.Module.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.SamplingParams.Module.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _max_temp()

 Convert a string or number to a floating point number, if possible.

 _sampling_eps()

 Convert a string or number to a floating point number, if possible.

 logger()

 Instances of the Logger class represent a single logging channel. A

 Functions

 _max_temp()

 @spec _max_temp() :: {:ok, float()} | {:error, Snakepit.Error.t()}

Convert a string or number to a floating point number, if possible.
Returns
	float()

 _sampling_eps()

 @spec _sampling_eps() :: {:ok, float()} | {:error, Snakepit.Error.t()}

Convert a string or number to a floating point number, if possible.
Returns
	float()

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

Vllm.SamplingParams.PydanticMsgspecMixin

Sampling parameters for text generation.

 Summary

 Types

 t()

 Functions

 _validate_msgspec(ref, value, opts \\ [])

 Validate and convert input to msgspec.Struct instance.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 _validate_msgspec(ref, value, opts \\ [])

 @spec _validate_msgspec(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Validate and convert input to msgspec.Struct instance.
Parameters
	value (term())

Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

Vllm.SamplingParams.RequestOutputKind

Create a collection of name/value pairs.
Example enumeration:
class Color(Enum):
... RED = 1
... BLUE = 2
... GREEN = 3

Access them by:
	attribute access:
Color.RED
<Color.RED: 1>

	value lookup:
Color(1)
<Color.RED: 1>

	name lookup:
Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:
len(Color)
3

list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.

 Summary

 Types

 t()

 Functions

 cumulative(ref)

 delta(ref)

 final_only(ref)

 name(ref)

 new(opts \\ [])

 Constructs RequestOutputKind.

 value(ref)

 Types

 t()

 @opaque t()

 Functions

 cumulative(ref)

 @spec cumulative(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 delta(ref)

 @spec delta(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 final_only(ref)

 @spec final_only(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs RequestOutputKind.

 value(ref)

 @spec value(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.SamplingParams.SamplingType

Enum where members are also (and must be) ints

 Summary

 Types

 t()

 Functions

 as_integer_ratio(ref, opts \\ [])

 Return a pair of integers, whose ratio is equal to the original int.

 bit_count(ref, opts \\ [])

 Number of ones in the binary representation of the absolute value of self.

 bit_length(ref, opts \\ [])

 Number of bits necessary to represent self in binary.

 conjugate(ref)

 Returns self, the complex conjugate of any int.

 conjugate(ref, opts)

 conjugate(ref, arg1, opts)

 conjugate(ref, arg1, arg2, opts)

 conjugate(ref, arg1, arg2, arg3, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 denominator(ref)

 from_bytes(ref, bytes, args, opts \\ [])

 Return the integer represented by the given array of bytes.

 greedy(ref)

 imag(ref)

 is_integer(ref, opts \\ [])

 Returns True. Exists for duck type compatibility with float.is_integer.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 numerator(ref)

 random(ref)

 random_seed(ref)

 real(ref)

 to_bytes(ref, args, opts \\ [])

 Return an array of bytes representing an integer.

 Types

 t()

 @opaque t()

 Functions

 as_integer_ratio(ref, opts \\ [])

 @spec as_integer_ratio(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Return a pair of integers, whose ratio is equal to the original int.
The ratio is in lowest terms and has a positive denominator.
(10).as_integer_ratio()
(10, 1)
(-10).as_integer_ratio()
(-10, 1)
(0).as_integer_ratio()
(0, 1)

Returns
	term()

 bit_count(ref, opts \\ [])

 @spec bit_count(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Number of ones in the binary representation of the absolute value of self.
Also known as the population count.
bin(13)
'0b1101'
(13).bit_count()
3

Returns
	term()

 bit_length(ref, opts \\ [])

 @spec bit_length(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Number of bits necessary to represent self in binary.
bin(37)
'0b100101'
(37).bit_length()
6

Returns
	term()

 conjugate(ref)

 @spec conjugate(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns self, the complex conjugate of any int.
Returns
	term()

 conjugate(ref, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, opts)

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(SnakeBridge.Ref.t(), term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 conjugate(ref, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec conjugate(
 SnakeBridge.Ref.t(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 denominator(ref)

 @spec denominator(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 from_bytes(ref, bytes, args, opts \\ [])

 @spec from_bytes(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return the integer represented by the given array of bytes.
bytes
 Holds the array of bytes to convert. The argument must either
 support the buffer protocol or be an iterable object producing bytes.
 Bytes and bytearray are examples of built-in objects that support the
 buffer protocol.
byteorder
 The byte order used to represent the integer. If byteorder is 'big',
 the most significant byte is at the beginning of the byte array. If
 byteorder is 'little', the most significant byte is at the end of the
 byte array. To request the native byte order of the host system, use
 sys.byteorder as the byte order value. Default is to use 'big'.
signed
 Indicates whether two's complement is used to represent the integer.
Parameters
	bytes (term())
	byteorder (term() default: 'big')
	signed (term() keyword-only default: False)

Returns
	term()

 greedy(ref)

 @spec greedy(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 imag(ref)

 @spec imag(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 is_integer(ref, opts \\ [])

 @spec is_integer(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Returns True. Exists for duck type compatibility with float.is_integer.
Returns
	term()

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwds (term())

 numerator(ref)

 @spec numerator(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 random(ref)

 @spec random(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 random_seed(ref)

 @spec random_seed(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 real(ref)

 @spec real(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 to_bytes(ref, args, opts \\ [])

 @spec to_bytes(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Return an array of bytes representing an integer.
length
 Length of bytes object to use. An OverflowError is raised if the
 integer is not representable with the given number of bytes. Default
 is length 1.
byteorder
 The byte order used to represent the integer. If byteorder is 'big',
 the most significant byte is at the beginning of the byte array. If
 byteorder is 'little', the most significant byte is at the end of the
 byte array. To request the native byte order of the host system, use
 sys.byteorder as the byte order value. Default is to use 'big'.
signed
 Determines whether two's complement is used to represent the integer.
 If signed is False and a negative integer is given, an OverflowError
 is raised.
Parameters
	length (term() default: 1)
	byteorder (term() default: 'big')
	signed (term() keyword-only default: False)

Returns
	term()

Vllm.SamplingParams.StructuredOutputsParams

Sampling parameters for text generation.

 Summary

 Types

 t()

 Functions

 all_constraints_none(ref, opts \\ [])

 Returns True if all structured-output constraint fields are None.

 all_non_structural_tag_constraints_none(ref, opts \\ [])

 Returns True if all structured-output constraint fields are None.

 choice(ref)

 disable_additional_properties(ref)

 disable_any_whitespace(ref)

 disable_fallback(ref)

 grammar(ref)

 json(ref)

 json_object(ref)

 new(dataclass_self__, args, kwargs, opts \\ [])

 Sampling parameters for text generation.

 regex(ref)

 structural_tag(ref)

 whitespace_pattern(ref)

 Types

 t()

 @opaque t()

 Functions

 all_constraints_none(ref, opts \\ [])

 @spec all_constraints_none(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns True if all structured-output constraint fields are None.
Returns
	boolean()

 all_non_structural_tag_constraints_none(ref, opts \\ [])

 @spec all_non_structural_tag_constraints_none(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Returns True if all structured-output constraint fields are None.
Returns
	boolean()

 choice(ref)

 @spec choice(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_additional_properties(ref)

 @spec disable_additional_properties(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_any_whitespace(ref)

 @spec disable_any_whitespace(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 disable_fallback(ref)

 @spec disable_fallback(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 grammar(ref)

 @spec grammar(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 json(ref)

 @spec json(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 json_object(ref)

 @spec json_object(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(dataclass_self__, args, kwargs, opts \\ [])

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	dataclass_self__ (term())
	args (term())
	kwargs (term())

 regex(ref)

 @spec regex(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 structural_tag(ref)

 @spec structural_tag(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 whitespace_pattern(ref)

 @spec whitespace_pattern(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.SamplingParams.TokenizerLike

Base class for protocol classes.
Protocol classes are defined as::
class Proto(Protocol):
 def meth(self) -> int:
 ...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing).
For example::
class C:
 def meth(self) -> int:
 return 0

def func(x: Proto) -> int:
 return x.meth()

func(C()) # Passes static type check
See PEP 544 for details. Protocol classes decorated with
@typing.runtime_checkable act as simple-minded runtime protocols that check
only the presence of given attributes, ignoring their type signatures.
Protocol classes can be generic, they are defined as::
class GenProto[T](Protocol):
 def meth(self) -> T:
 ...

 Summary

 Types

 t()

 Functions

 all_special_ids(ref)

 all_special_tokens(ref)

 apply_chat_template(ref, messages, args, opts \\ [])

 Sampling parameters for text generation.

 bos_token_id(ref)

 convert_ids_to_tokens(ref, ids, args, opts \\ [])

 Sampling parameters for text generation.

 convert_tokens_to_ids(ref, tokens, opts \\ [])

 Sampling parameters for text generation.

 convert_tokens_to_string(ref, tokens, opts \\ [])

 Sampling parameters for text generation.

 decode(ref, ids, args, opts \\ [])

 Sampling parameters for text generation.

 encode(ref, text, args, opts \\ [])

 Sampling parameters for text generation.

 eos_token_id(ref)

 from_pretrained(ref, path_or_repo_id, args, opts \\ [])

 Sampling parameters for text generation.

 get_added_vocab(ref, opts \\ [])

 Sampling parameters for text generation.

 get_vocab(ref, opts \\ [])

 Sampling parameters for text generation.

 is_fast(ref)

 max_token_id(ref)

 new(args, opts \\ [])

 Sampling parameters for text generation.

 num_special_tokens_to_add(ref, opts \\ [])

 Sampling parameters for text generation.

 pad_token_id(ref)

 truncation_side(ref)

 vocab_size(ref)

 Types

 t()

 @opaque t()

 Functions

 all_special_ids(ref)

 @spec all_special_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 all_special_tokens(ref)

 @spec all_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 apply_chat_template(ref, messages, args, opts \\ [])

 @spec apply_chat_template(SnakeBridge.Ref.t(), [term()], [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	messages (list(term()))
	tools (term() default: None)
	kwargs (term())

Returns
	term()

 bos_token_id(ref)

 @spec bos_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 convert_ids_to_tokens(ref, ids, args, opts \\ [])

 @spec convert_ids_to_tokens(SnakeBridge.Ref.t(), [integer()], [term()], keyword()) ::
 {:ok, [String.t()]} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	ids (list(integer()))
	skip_special_tokens (boolean() default: False)

Returns
	list(String.t())

 convert_tokens_to_ids(ref, tokens, opts \\ [])

 @spec convert_tokens_to_ids(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	tokens (term())

Returns
	term()

 convert_tokens_to_string(ref, tokens, opts \\ [])

 @spec convert_tokens_to_string(SnakeBridge.Ref.t(), [String.t()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	tokens (list(String.t()))

Returns
	String.t()

 decode(ref, ids, args, opts \\ [])

 @spec decode(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	ids (term())
	skip_special_tokens (boolean() default: False)

Returns
	String.t()

 encode(ref, text, args, opts \\ [])

 @spec encode(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, [integer()]} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	text (String.t())
	truncation (term() default: None)
	max_length (term() default: None)
	add_special_tokens (boolean() default: True)

Returns
	list(integer())

 eos_token_id(ref)

 @spec eos_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 from_pretrained(ref, path_or_repo_id, args, opts \\ [])

 @spec from_pretrained(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	path_or_repo_id (term())
	args (term())
	trust_remote_code (boolean() keyword-only default: False)
	revision (term() keyword-only default: None)
	download_dir (term() keyword-only default: None)
	kwargs (term())

Returns
	term()

 get_added_vocab(ref, opts \\ [])

 @spec get_added_vocab(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => integer()}} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Returns
	%{optional(String.t()) => integer()}

 get_vocab(ref, opts \\ [])

 @spec get_vocab(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => integer()}} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Returns
	%{optional(String.t()) => integer()}

 is_fast(ref)

 @spec is_fast(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_token_id(ref)

 @spec max_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	args (term())
	kwargs (term())

 num_special_tokens_to_add(ref, opts \\ [])

 @spec num_special_tokens_to_add(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Returns
	integer()

 pad_token_id(ref)

 @spec pad_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 truncation_side(ref)

 @spec truncation_side(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vocab_size(ref)

 @spec vocab_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.SamplingParamsClass

Sampling parameters for text generation.
Overall, we follow the sampling parameters from the OpenAI text completion
API (https://platform.openai.com/docs/api-reference/completions/create).
In addition, we support beam search, which is not supported by OpenAI.

 Summary

 Types

 t()

 Functions

 _validate_msgspec(ref, value, opts \\ [])

 Validate and convert input to msgspec.Struct instance.

 _verify_args(ref, opts \\ [])

 Sampling parameters for text generation.

 _verify_greedy_sampling(ref, opts \\ [])

 Sampling parameters for text generation.

 all_stop_token_ids(ref)

 allowed_token_ids(ref)

 bad_words(ref)

 bad_words_token_ids(ref)

 clone(ref, opts \\ [])

 Deep copy, but maybe not the LogitsProcessor objects.

 detokenize(ref)

 extra_args(ref)

 flat_logprobs(ref)

 frequency_penalty(ref)

 from_optional(ref, args, opts \\ [])

 Sampling parameters for text generation.

 ignore_eos(ref)

 include_stop_str_in_output(ref)

 logit_bias(ref)

 logits_processors(ref)

 logprobs(ref)

 max_tokens(ref)

 min_p(ref)

 min_tokens(ref)

 n(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 output_kind(ref)

 output_text_buffer_length(ref)

 presence_penalty(ref)

 prompt_logprobs(ref)

 repetition_penalty(ref)

 sampling_type(ref)

 seed(ref)

 skip_clone(ref)

 skip_reading_prefix_cache(ref)

 skip_special_tokens(ref)

 spaces_between_special_tokens(ref)

 stop(ref)

 stop_token_ids(ref)

 structured_outputs(ref)

 temperature(ref)

 top_k(ref)

 top_p(ref)

 truncate_prompt_tokens(ref)

 update_from_generation_config(ref, generation_config, args, opts \\ [])

 Update if there are non-default values from generation_config

 update_from_tokenizer(ref, tokenizer, opts \\ [])

 Sampling parameters for text generation.

 Types

 t()

 @opaque t()

 Functions

 _validate_msgspec(ref, value, opts \\ [])

 @spec _validate_msgspec(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Validate and convert input to msgspec.Struct instance.
Parameters
	value (term())

Returns
	term()

 _verify_args(ref, opts \\ [])

 @spec _verify_args(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Returns
	nil

 _verify_greedy_sampling(ref, opts \\ [])

 @spec _verify_greedy_sampling(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Returns
	nil

 all_stop_token_ids(ref)

 @spec all_stop_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 allowed_token_ids(ref)

 @spec allowed_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 bad_words(ref)

 @spec bad_words(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 bad_words_token_ids(ref)

 @spec bad_words_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 clone(ref, opts \\ [])

 @spec clone(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, t()} | {:error, Snakepit.Error.t()}

Deep copy, but maybe not the LogitsProcessor objects.
LogitsProcessor objects may contain an arbitrary, nontrivial amount of
data that is expensive to copy. However, if not copied, the processor
needs to support parallel decoding for multiple sequences
See https://github.com/vllm-project/vllm/issues/3087
If skip_clone is True, uses shallow copy instead of deep copy.
Returns
	Vllm.SamplingParamsClass.t()

 detokenize(ref)

 @spec detokenize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 extra_args(ref)

 @spec extra_args(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 flat_logprobs(ref)

 @spec flat_logprobs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 frequency_penalty(ref)

 @spec frequency_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 from_optional(ref, args, opts \\ [])

 @spec from_optional(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, t()} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	n (term() default: 1)
	presence_penalty (term() default: 0.0)
	frequency_penalty (term() default: 0.0)
	repetition_penalty (term() default: 1.0)
	temperature (term() default: 1.0)
	top_p (term() default: 1.0)
	top_k (integer() default: 0)
	min_p (float() default: 0.0)
	seed (term() default: None)
	stop (term() default: None)
	stop_token_ids (term() default: None)
	bad_words (term() default: None)
	include_stop_str_in_output (boolean() default: False)
	ignore_eos (boolean() default: False)
	max_tokens (term() default: 16)
	min_tokens (integer() default: 0)
	logprobs (term() default: None)
	prompt_logprobs (term() default: None)
	detokenize (boolean() default: True)
	skip_special_tokens (boolean() default: True)
	spaces_between_special_tokens (boolean() default: True)
	logits_processors (term() default: None)
	truncate_prompt_tokens (integer() | nil default: None)

	output_kind (Vllm.SamplingParams.RequestOutputKind.t() default: <RequestOutputKind.CUMULATIVE: 0>)
	structured_outputs (term() default: None)
	logit_bias (term() default: None)
	allowed_token_ids (term() default: None)
	extra_args (term() default: None)
	skip_clone (boolean() default: False)

Returns
	Vllm.SamplingParamsClass.t()

 ignore_eos(ref)

 @spec ignore_eos(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 include_stop_str_in_output(ref)

 @spec include_stop_str_in_output(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logit_bias(ref)

 @spec logit_bias(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 logits_processors(ref)

 @spec logits_processors(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 logprobs(ref)

 @spec logprobs(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_tokens(ref)

 @spec max_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 min_p(ref)

 @spec min_p(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 min_tokens(ref)

 @spec min_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 n(ref)

 @spec n(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 output_kind(ref)

 @spec output_kind(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 output_text_buffer_length(ref)

 @spec output_text_buffer_length(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 presence_penalty(ref)

 @spec presence_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 prompt_logprobs(ref)

 @spec prompt_logprobs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 repetition_penalty(ref)

 @spec repetition_penalty(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 sampling_type(ref)

 @spec sampling_type(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 seed(ref)

 @spec seed(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_clone(ref)

 @spec skip_clone(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_reading_prefix_cache(ref)

 @spec skip_reading_prefix_cache(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 skip_special_tokens(ref)

 @spec skip_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 spaces_between_special_tokens(ref)

 @spec spaces_between_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 stop(ref)

 @spec stop(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 stop_token_ids(ref)

 @spec stop_token_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 structured_outputs(ref)

 @spec structured_outputs(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 temperature(ref)

 @spec temperature(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 top_k(ref)

 @spec top_k(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 top_p(ref)

 @spec top_p(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 truncate_prompt_tokens(ref)

 @spec truncate_prompt_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 update_from_generation_config(ref, generation_config, args, opts \\ [])

 @spec update_from_generation_config(
 SnakeBridge.Ref.t(),
 %{optional(String.t()) => term()},
 [term()],
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Update if there are non-default values from generation_config
Parameters
	generation_config (%{optional(String.t()) => term()})
	model_eos_token_id (term() default: None)

Returns
	nil

 update_from_tokenizer(ref, tokenizer, opts \\ [])

 @spec update_from_tokenizer(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Sampling parameters for text generation.
Parameters
	tokenizer (term())

Returns
	nil

Vllm.ScalarType

ScalarType can represent a wide range of floating point and integer
types, in particular it can be used to represent sub-byte data types
(something that torch.dtype currently does not support). It is also
capable of representing types with a bias, i.e.:
 stored_value = value + bias,
this is useful for quantized types (e.g. standard GPTQ 4bit uses a bias
of 8). The implementation for this class can be found in
csrc/core/scalar_type.hpp, these type signatures should be kept in sync
with that file.

 Summary

 Types

 t()

 Functions

 _floating_point_max(ref, opts \\ [])

 Python method ScalarType._floating_point_max.

 _floating_point_max_int(ref, opts \\ [])

 Python method ScalarType._floating_point_max_int.

 _raw_max(ref, opts \\ [])

 Python method ScalarType._raw_max.

 _raw_min(ref, opts \\ [])

 Python method ScalarType._raw_min.

 float_(ref, exponent, mantissa, finite_values_only, nan_repr, opts \\ [])

 Create a non-standard floating point type

 float_ieee754(ref, exponent, mantissa, opts \\ [])

 Create a standard floating point type

 from_id(ref, scalar_type_id, opts \\ [])

 Python method ScalarType.from_id.

 has_bias(ref, opts \\ [])

 If the type has a non-zero bias

 has_infs(ref, opts \\ [])

 If the type is floating point and supports infinity

 has_nans(ref, opts \\ [])

 Python method ScalarType.has_nans.

 id(ref)

 int_(ref, size_bits, bias, opts \\ [])

 Create a signed integer scalar type (size_bits includes sign-bit).

 is_floating_point(ref, opts \\ [])

 If the type is a floating point type

 is_ieee_754(ref, opts \\ [])

 If the type is a floating point type that follows IEEE 754

 is_integer(ref, opts \\ [])

 If the type is an integer type

 is_signed(ref, opts \\ [])

 If the type is signed (i.e. has a sign bit), same as signed

 max(ref, opts \\ [])

 Max representable value for this scalar type.

 min(ref, opts \\ [])

 Min representable value for this scalar type.

 nan_repr(ref)

 new(exponent, mantissa, signed, bias, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 size_bits(ref)

 uint(ref, size_bits, bias, opts \\ [])

 Create an unsigned integer scalar type.

 Types

 t()

 @opaque t()

 Functions

 _floating_point_max(ref, opts \\ [])

 @spec _floating_point_max(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, float()} | {:error, Snakepit.Error.t()}

Python method ScalarType._floating_point_max.
Returns
	float()

 _floating_point_max_int(ref, opts \\ [])

 @spec _floating_point_max_int(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method ScalarType._floating_point_max_int.
Returns
	integer()

 _raw_max(ref, opts \\ [])

 @spec _raw_max(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ScalarType._raw_max.
Returns
	term()

 _raw_min(ref, opts \\ [])

 @spec _raw_min(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ScalarType._raw_min.
Returns
	term()

 float_(ref, exponent, mantissa, finite_values_only, nan_repr, opts \\ [])

 @spec float_(
 SnakeBridge.Ref.t(),
 integer(),
 integer(),
 boolean(),
 Vllm.ScalarType.NanRepr.t(),
 keyword()
) :: {:ok, t()} | {:error, Snakepit.Error.t()}

Create a non-standard floating point type
(i.e. does not follow IEEE 754 conventions).
Parameters
	exponent (integer())
	mantissa (integer())
	finite_values_only (boolean())
	nan_repr (Vllm.ScalarType.NanRepr.t())

Returns
	Vllm.ScalarType.t()

 float_ieee754(ref, exponent, mantissa, opts \\ [])

 @spec float_ieee754(SnakeBridge.Ref.t(), integer(), integer(), keyword()) ::
 {:ok, t()} | {:error, Snakepit.Error.t()}

Create a standard floating point type
(i.e. follows IEEE 754 conventions).
Parameters
	exponent (integer())
	mantissa (integer())

Returns
	Vllm.ScalarType.t()

 from_id(ref, scalar_type_id, opts \\ [])

 @spec from_id(SnakeBridge.Ref.t(), integer(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method ScalarType.from_id.
Parameters
	scalar_type_id (integer())

Returns
	term()

 has_bias(ref, opts \\ [])

 @spec has_bias(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

If the type has a non-zero bias
Returns
	boolean()

 has_infs(ref, opts \\ [])

 @spec has_infs(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

If the type is floating point and supports infinity
Returns
	boolean()

 has_nans(ref, opts \\ [])

 @spec has_nans(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python method ScalarType.has_nans.
Returns
	boolean()

 id(ref)

 @spec id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 int_(ref, size_bits, bias, opts \\ [])

 @spec int_(SnakeBridge.Ref.t(), integer(), term(), keyword()) ::
 {:ok, t()} | {:error, Snakepit.Error.t()}

Create a signed integer scalar type (size_bits includes sign-bit).
Parameters
	size_bits (integer())
	bias (term())

Returns
	Vllm.ScalarType.t()

 is_floating_point(ref, opts \\ [])

 @spec is_floating_point(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

If the type is a floating point type
Returns
	boolean()

 is_ieee_754(ref, opts \\ [])

 @spec is_ieee_754(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

If the type is a floating point type that follows IEEE 754
conventions
Returns
	boolean()

 is_integer(ref, opts \\ [])

 @spec is_integer(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

If the type is an integer type
Returns
	boolean()

 is_signed(ref, opts \\ [])

 @spec is_signed(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

If the type is signed (i.e. has a sign bit), same as signed
added for consistency with:
https://pytorch.org/docs/stable/generated/torch.Tensor.is_signed.html
Returns
	boolean()

 max(ref, opts \\ [])

 @spec max(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Max representable value for this scalar type.
(accounting for bias if there is one)
Returns
	term()

 min(ref, opts \\ [])

 @spec min(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Min representable value for this scalar type.
(accounting for bias if there is one)
Returns
	term()

 nan_repr(ref)

 @spec nan_repr(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(exponent, mantissa, signed, bias, args, opts \\ [])

 @spec new(integer(), integer(), boolean(), integer(), [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	exponent (integer())
	mantissa (integer())
	signed (boolean())
	bias (integer())
	finite_values_only (boolean() default: False)
	nan_repr (Vllm.ScalarType.NanRepr.t() default: <NanRepr.IEEE_754: 1>)

 size_bits(ref)

 @spec size_bits(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uint(ref, size_bits, bias, opts \\ [])

 @spec uint(SnakeBridge.Ref.t(), integer(), term(), keyword()) ::
 {:ok, t()} | {:error, Snakepit.Error.t()}

Create an unsigned integer scalar type.
Parameters
	size_bits (integer())
	bias (term())

Returns
	Vllm.ScalarType.t()

Vllm.ScalarType.Module

Submodule bindings for vllm.scalar_type.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ScalarType.Module.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ScalarType.Module.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ScalarType.Module.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ScalarType.Module.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _scalar_types_id_map()

 dict() -> new empty dictionary

 Functions

 _scalar_types_id_map()

 @spec _scalar_types_id_map() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

Vllm.ScalarType.NanRepr

Create a collection of name/value pairs.
Example enumeration:
class Color(Enum):
... RED = 1
... BLUE = 2
... GREEN = 3

Access them by:
	attribute access:
Color.RED
<Color.RED: 1>

	value lookup:
Color(1)
<Color.RED: 1>

	name lookup:
Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:
len(Color)
3

list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own
attributes -- see the documentation for details.

 Summary

 Types

 t()

 Functions

 extd_range_max_min(ref)

 ieee_754(ref)

 name(ref)

 new(opts \\ [])

 Constructs NanRepr.

 none(ref)

 value(ref)

 Types

 t()

 @opaque t()

 Functions

 extd_range_max_min(ref)

 @spec extd_range_max_min(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 ieee_754(ref)

 @spec ieee_754(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 name(ref)

 @spec name(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs NanRepr.

 none(ref)

 @spec none(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 value(ref)

 @spec value(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ScalarType.ScalarTypes

Wrapper for Python class scalar_types.

 Summary

 Types

 t()

 Functions

 bfloat16(ref)

 float4_e2m1f(ref)

 float6_e2m3f(ref)

 float6_e3m2f(ref)

 float8_e4m3fn(ref)

 float8_e5m2(ref)

 float8_e8m0fnu(ref)

 float16(ref)

 float16_e5m10(ref)

 float16_e8m7(ref)

 int4(ref)

 int8(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 uint2b2(ref)

 uint3b4(ref)

 uint4(ref)

 uint4b8(ref)

 uint8(ref)

 uint8b128(ref)

 Types

 t()

 @opaque t()

 Functions

 bfloat16(ref)

 @spec bfloat16(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 float4_e2m1f(ref)

 @spec float4_e2m1f(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 float6_e2m3f(ref)

 @spec float6_e2m3f(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 float6_e3m2f(ref)

 @spec float6_e3m2f(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 float8_e4m3fn(ref)

 @spec float8_e4m3fn(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 float8_e5m2(ref)

 @spec float8_e5m2(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 float8_e8m0fnu(ref)

 @spec float8_e8m0fnu(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 float16(ref)

 @spec float16(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 float16_e5m10(ref)

 @spec float16_e5m10(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 float16_e8m7(ref)

 @spec float16_e8m7(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 int4(ref)

 @spec int4(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 int8(ref)

 @spec int8(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 uint2b2(ref)

 @spec uint2b2(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uint3b4(ref)

 @spec uint3b4(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uint4(ref)

 @spec uint4(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uint4b8(ref)

 @spec uint4b8(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uint8(ref)

 @spec uint8(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 uint8b128(ref)

 @spec uint8b128(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Scripts

Submodule bindings for vllm.scripts.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Scripts.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Scripts.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Scripts.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Scripts.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 logger()

 Instances of the Logger class represent a single logging channel. A

 main(opts \\ [])

 Python binding for vllm.scripts.main.

 Functions

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 main(opts \\ [])

 @spec main(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.scripts.main.
Returns
	term()

Vllm.Sequence

Sequence and its related classes.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Sequence.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Sequence.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Sequence.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Sequence.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Sequence.IntermediateTensors

For all pipeline stages except the last, we need to return the hidden
states and residuals to be sent to the next stage. This data structure
contains the hidden states and residuals for a request.
Each stage also needs to handle its own kv_connector_output.

 Summary

 Types

 t()

 Functions

 items(ref, opts \\ [])

 Sequence and its related classes.

 new(tensors, args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 items(ref, opts \\ [])

 @spec items(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Sequence and its related classes.
Returns
	term()

 new(tensors, args, opts \\ [])

 @spec new(%{optional(String.t()) => term()}, [term()], keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	tensors (%{optional(String.t()) => term()})
	kv_connector_output (term() default: None)

Vllm.Sequence.KVConnectorOutput

Special type indicating an unconstrained type.
	Any is compatible with every type.
	Any assumed to have all methods.
	All values assumed to be instances of Any.

Note that all the above statements are true from the point of view of
static type checkers. At runtime, Any should not be used with instance
checks.

 Summary

 Types

 t()

 Functions

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

Vllm.Tasks

Submodule bindings for vllm.tasks.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Tasks.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Tasks.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Tasks.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Tasks.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 generation_task(opts \\ [])

 Python binding for vllm.tasks.GenerationTask.

 generation_tasks()

 Built-in immutable sequence.

 pooling_task(opts \\ [])

 Python binding for vllm.tasks.PoolingTask.

 pooling_tasks()

 Built-in immutable sequence.

 supported_task(opts \\ [])

 Python binding for vllm.tasks.SupportedTask.

 Functions

 generation_task(opts \\ [])

 @spec generation_task(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tasks.GenerationTask.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 generation_tasks()

 @spec generation_tasks() :: {:ok, tuple()} | {:error, Snakepit.Error.t()}

Built-in immutable sequence.
If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable's items.
If the argument is a tuple, the return value is the same object.
Returns
	tuple()

 pooling_task(opts \\ [])

 @spec pooling_task(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tasks.PoolingTask.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

 pooling_tasks()

 @spec pooling_tasks() :: {:ok, tuple()} | {:error, Snakepit.Error.t()}

Built-in immutable sequence.
If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable's items.
If the argument is a tuple, the return value is the same object.
Returns
	tuple()

 supported_task(opts \\ [])

 @spec supported_task(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tasks.SupportedTask.
Parameters
	args (term())
	kwargs (term())

Returns
	term()

Vllm.Tokenizers

Submodule bindings for vllm.tokenizers.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Tokenizers.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Tokenizers.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Tokenizers.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Tokenizers.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 cached_get_tokenizer(tokenizer_name, opts \\ [])

 Gets a tokenizer for the given model name via HuggingFace or ModelScope.

 cached_tokenizer_from_config(model_config, opts \\ [])

 Python binding for vllm.tokenizers.cached_tokenizer_from_config.

 get_tokenizer(tokenizer_name, opts \\ [])

 Gets a tokenizer for the given model name via HuggingFace or ModelScope.

 tokenizer_registry()

 _TokenizerRegistry(tokenizers: dict[str, tuple[str, str]] = <factory>)

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 cached_get_tokenizer(tokenizer_name, opts \\ [])

 @spec cached_get_tokenizer(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Gets a tokenizer for the given model name via HuggingFace or ModelScope.
Parameters
	tokenizer_name (term())
	args (term())
	tokenizer_cls (term() keyword-only default: <class 'vllm.tokenizers.protocol.TokenizerLike'>)
	trust_remote_code (boolean() keyword-only default: False)
	revision (term() keyword-only default: None)
	download_dir (term() keyword-only default: None)
	kwargs (term())

Returns
	term()

 cached_tokenizer_from_config(model_config, opts \\ [])

 @spec cached_tokenizer_from_config(
 term(),
 keyword()
) :: {:ok, nil} | {:error, Snakepit.Error.t()}

Python binding for vllm.tokenizers.cached_tokenizer_from_config.
Parameters
	model_config (term())

Returns
	nil

 get_tokenizer(tokenizer_name, opts \\ [])

 @spec get_tokenizer(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Gets a tokenizer for the given model name via HuggingFace or ModelScope.
Parameters
	tokenizer_name (term())
	args (term())
	tokenizer_cls (term() keyword-only default: <class 'vllm.tokenizers.protocol.TokenizerLike'>)
	trust_remote_code (boolean() keyword-only default: False)
	revision (term() keyword-only default: None)
	download_dir (term() keyword-only default: None)
	kwargs (term())

Returns
	term()

 tokenizer_registry()

 @spec tokenizer_registry() :: {:ok, term()} | {:error, Snakepit.Error.t()}

_TokenizerRegistry(tokenizers: dict[str, tuple[str, str]] = <factory>)
Returns
	term()

Vllm.Tokenizers.TokenizerLike

Base class for protocol classes.
Protocol classes are defined as::
class Proto(Protocol):
 def meth(self) -> int:
 ...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing).
For example::
class C:
 def meth(self) -> int:
 return 0

def func(x: Proto) -> int:
 return x.meth()

func(C()) # Passes static type check
See PEP 544 for details. Protocol classes decorated with
@typing.runtime_checkable act as simple-minded runtime protocols that check
only the presence of given attributes, ignoring their type signatures.
Protocol classes can be generic, they are defined as::
class GenProto[T](Protocol):
 def meth(self) -> T:
 ...

 Summary

 Types

 t()

 Functions

 all_special_ids(ref)

 all_special_tokens(ref)

 apply_chat_template(ref, messages, args, opts \\ [])

 Python method TokenizerLike.apply_chat_template.

 bos_token_id(ref)

 convert_ids_to_tokens(ref, ids, args, opts \\ [])

 Python method TokenizerLike.convert_ids_to_tokens.

 convert_tokens_to_ids(ref, tokens, opts \\ [])

 Python method TokenizerLike.convert_tokens_to_ids.

 convert_tokens_to_string(ref, tokens, opts \\ [])

 Python method TokenizerLike.convert_tokens_to_string.

 decode(ref, ids, args, opts \\ [])

 Python method TokenizerLike.decode.

 encode(ref, text, args, opts \\ [])

 Python method TokenizerLike.encode.

 eos_token_id(ref)

 from_pretrained(ref, path_or_repo_id, args, opts \\ [])

 Python method TokenizerLike.from_pretrained.

 get_added_vocab(ref, opts \\ [])

 Python method TokenizerLike.get_added_vocab.

 get_vocab(ref, opts \\ [])

 Python method TokenizerLike.get_vocab.

 is_fast(ref)

 max_token_id(ref)

 new(args, opts \\ [])

 Constructs TokenizerLike.

 num_special_tokens_to_add(ref, opts \\ [])

 Python method TokenizerLike.num_special_tokens_to_add.

 pad_token_id(ref)

 truncation_side(ref)

 vocab_size(ref)

 Types

 t()

 @opaque t()

 Functions

 all_special_ids(ref)

 @spec all_special_ids(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 all_special_tokens(ref)

 @spec all_special_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 apply_chat_template(ref, messages, args, opts \\ [])

 @spec apply_chat_template(SnakeBridge.Ref.t(), [term()], [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.apply_chat_template.
Parameters
	messages (list(term()))
	tools (term() default: None)
	kwargs (term())

Returns
	term()

 bos_token_id(ref)

 @spec bos_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 convert_ids_to_tokens(ref, ids, args, opts \\ [])

 @spec convert_ids_to_tokens(SnakeBridge.Ref.t(), [integer()], [term()], keyword()) ::
 {:ok, [String.t()]} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.convert_ids_to_tokens.
Parameters
	ids (list(integer()))
	skip_special_tokens (boolean() default: False)

Returns
	list(String.t())

 convert_tokens_to_ids(ref, tokens, opts \\ [])

 @spec convert_tokens_to_ids(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.convert_tokens_to_ids.
Parameters
	tokens (term())

Returns
	term()

 convert_tokens_to_string(ref, tokens, opts \\ [])

 @spec convert_tokens_to_string(SnakeBridge.Ref.t(), [String.t()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.convert_tokens_to_string.
Parameters
	tokens (list(String.t()))

Returns
	String.t()

 decode(ref, ids, args, opts \\ [])

 @spec decode(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.decode.
Parameters
	ids (term())
	skip_special_tokens (boolean() default: False)

Returns
	String.t()

 encode(ref, text, args, opts \\ [])

 @spec encode(SnakeBridge.Ref.t(), String.t(), [term()], keyword()) ::
 {:ok, [integer()]} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.encode.
Parameters
	text (String.t())
	truncation (term() default: None)
	max_length (term() default: None)
	add_special_tokens (boolean() default: True)

Returns
	list(integer())

 eos_token_id(ref)

 @spec eos_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 from_pretrained(ref, path_or_repo_id, args, opts \\ [])

 @spec from_pretrained(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.from_pretrained.
Parameters
	path_or_repo_id (term())
	args (term())
	trust_remote_code (boolean() keyword-only default: False)
	revision (term() keyword-only default: None)
	download_dir (term() keyword-only default: None)
	kwargs (term())

Returns
	term()

 get_added_vocab(ref, opts \\ [])

 @spec get_added_vocab(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => integer()}} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.get_added_vocab.
Returns
	%{optional(String.t()) => integer()}

 get_vocab(ref, opts \\ [])

 @spec get_vocab(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, %{optional(String.t()) => integer()}} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.get_vocab.
Returns
	%{optional(String.t()) => integer()}

 is_fast(ref)

 @spec is_fast(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 max_token_id(ref)

 @spec max_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs TokenizerLike.
Parameters
	args (term())
	kwargs (term())

 num_special_tokens_to_add(ref, opts \\ [])

 @spec num_special_tokens_to_add(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, integer()} | {:error, Snakepit.Error.t()}

Python method TokenizerLike.num_special_tokens_to_add.
Returns
	integer()

 pad_token_id(ref)

 @spec pad_token_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 truncation_side(ref)

 @spec truncation_side(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 vocab_size(ref)

 @spec vocab_size(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ToolParsers

Submodule bindings for vllm.tool_parsers.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.ToolParsers.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.ToolParsers.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.ToolParsers.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.ToolParsers.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 _tool_parsers_to_register()

 dict() -> new empty dictionary

 register_lazy_tool_parsers(opts \\ [])

 Python binding for vllm.tool_parsers.register_lazy_tool_parsers.

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 _tool_parsers_to_register()

 @spec _tool_parsers_to_register() ::
 {:ok, %{optional(term()) => term()}} | {:error, Snakepit.Error.t()}

dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
 (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
 d = {}
 for k, v in iterable:
 d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
 in the keyword argument list. For example: dict(one=1, two=2)
Returns
	%{optional(term()) => term()}

 register_lazy_tool_parsers(opts \\ [])

 @spec register_lazy_tool_parsers(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tool_parsers.register_lazy_tool_parsers.
Returns
	term()

Vllm.ToolParsers.ToolParser

Abstract ToolParser class that should not be used directly. Provided
properties and methods should be used in
derived classes.

 Summary

 Types

 t()

 Functions

 adjust_request(ref, request, opts \\ [])

 Static method that used to adjust the request parameters.

 extract_tool_calls(ref, model_output, request, opts \\ [])

 Static method that should be implemented for extracting tool calls from

 extract_tool_calls_streaming(ref, previous_text, current_text, delta_text, previous_token_ids, current_token_ids, delta_token_ids, request, opts \\ [])

 Instance method that should be implemented for extracting tool calls

 new(tokenizer, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 vocab(ref)

 Types

 t()

 @opaque t()

 Functions

 adjust_request(ref, request, opts \\ [])

 @spec adjust_request(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Static method that used to adjust the request parameters.
Parameters
	request (term())

Returns
	term()

 extract_tool_calls(ref, model_output, request, opts \\ [])

 @spec extract_tool_calls(SnakeBridge.Ref.t(), String.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Static method that should be implemented for extracting tool calls from
a complete model-generated string.
Used for non-streaming responses where we have the entire model response
available before sending to the client.
Static because it's stateless.
Parameters
	model_output (String.t())
	request (term())

Returns
	term()

 extract_tool_calls_streaming(ref, previous_text, current_text, delta_text, previous_token_ids, current_token_ids, delta_token_ids, request, opts \\ [])

 @spec extract_tool_calls_streaming(
 SnakeBridge.Ref.t(),
 String.t(),
 String.t(),
 String.t(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instance method that should be implemented for extracting tool calls
from an incomplete response; for use when handling tool calls and
streaming. Has to be an instance method because it requires state -
the current tokens/diffs, but also the information about what has
previously been parsed and extracted (see constructor)
Parameters
	previous_text (String.t())
	current_text (String.t())
	delta_text (String.t())
	previous_token_ids (term())
	current_token_ids (term())
	delta_token_ids (term())
	request (term())

Returns
	term()

 new(tokenizer, opts \\ [])

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	tokenizer (term())

 vocab(ref)

 @spec vocab(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.ToolParsers.ToolParserManager

Central registry for ToolParser implementations.
Supports two modes:
	Eager (immediate) registration via register_module
	Lazy registration via register_lazy_module

 Summary

 Types

 t()

 Functions

 _load_lazy_parser(ref, name, opts \\ [])

 Import and register a lazily loaded parser.

 _register_module(ref, module, args, opts \\ [])

 Register a ToolParser class immediately.

 get_tool_parser(ref, name, opts \\ [])

 Retrieve a registered or lazily registered ToolParser class.

 import_tool_parser(ref, plugin_path, opts \\ [])

 Import a user-defined parser file from arbitrary path.

 lazy_parsers(ref)

 list_registered(ref, opts \\ [])

 Return names of all eagerly and lazily registered tool parsers.

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 register_lazy_module(ref, name, module_path, class_name, opts \\ [])

 Register a lazy module mapping.

 register_module(ref, args, opts \\ [])

 Register module immediately or lazily (as a decorator).

 tool_parsers(ref)

 Types

 t()

 @opaque t()

 Functions

 _load_lazy_parser(ref, name, opts \\ [])

 @spec _load_lazy_parser(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Import and register a lazily loaded parser.
Parameters
	name (String.t())

Returns
	term()

 _register_module(ref, module, args, opts \\ [])

 @spec _register_module(SnakeBridge.Ref.t(), term(), [term()], keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Register a ToolParser class immediately.
Parameters
	module (term())
	module_name (term() default: None)
	force (boolean() default: True)

Returns
	nil

 get_tool_parser(ref, name, opts \\ [])

 @spec get_tool_parser(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Retrieve a registered or lazily registered ToolParser class.
If the parser is lazily registered,
it will be imported and cached on first access.
Raises KeyError if not found.
Parameters
	name (String.t())

Returns
	term()

 import_tool_parser(ref, plugin_path, opts \\ [])

 @spec import_tool_parser(SnakeBridge.Ref.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Import a user-defined parser file from arbitrary path.
Parameters
	plugin_path (String.t())

Returns
	nil

 lazy_parsers(ref)

 @spec lazy_parsers(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 list_registered(ref, opts \\ [])

 @spec list_registered(
 SnakeBridge.Ref.t(),
 keyword()
) :: {:ok, [String.t()]} | {:error, Snakepit.Error.t()}

Return names of all eagerly and lazily registered tool parsers.
Returns
	list(String.t())

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

 register_lazy_module(ref, name, module_path, class_name, opts \\ [])

 @spec register_lazy_module(
 SnakeBridge.Ref.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Register a lazy module mapping.
Examples
ToolParserManager.register_lazy_module(
name="kimi_k2",
module_path="vllm.tool_parsers.kimi_k2_parser",
class_name="KimiK2ToolParser",
)
Parameters
	name (String.t())
	module_path (String.t())
	class_name (String.t())

Returns
	nil

 register_module(ref, args, opts \\ [])

 @spec register_module(SnakeBridge.Ref.t(), [term()], keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Register module immediately or lazily (as a decorator).
Usage:
@ToolParserManager.register_module("kimi_k2")
class KimiK2ToolParser(ToolParser):
 ...
Or:
ToolParserManager.register_module(module=SomeToolParser)
Parameters
	name (term() default: None)
	force (boolean() default: True)
	module (term() default: None)

Returns
	term()

 tool_parsers(ref)

 @spec tool_parsers(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Vllm.Tracing

Submodule bindings for vllm.tracing.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Tracing.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Tracing.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Tracing.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Tracing.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _is_otel_imported()

 bool(x) -> bool

 contains_trace_headers(headers, opts \\ [])

 Python binding for vllm.tracing.contains_trace_headers.

 extract_trace_context(headers, opts \\ [])

 Python binding for vllm.tracing.extract_trace_context.

 extract_trace_headers(headers, opts \\ [])

 Python binding for vllm.tracing.extract_trace_headers.

 get_span_exporter(endpoint, opts \\ [])

 Python binding for vllm.tracing.get_span_exporter.

 init_tracer(instrumenting_module_name, otlp_traces_endpoint, opts \\ [])

 Python binding for vllm.tracing.init_tracer.

 is_otel_available(opts \\ [])

 Python binding for vllm.tracing.is_otel_available.

 log_tracing_disabled_warning(opts \\ [])

 Python binding for vllm.tracing.log_tracing_disabled_warning.

 logger()

 Instances of the Logger class represent a single logging channel. A

 otel_import_error_traceback()

 Python binding for vllm.tracing.otel_import_error_traceback.

 otel_import_error_traceback(opts)

 otel_import_error_traceback(arg1, opts)

 otel_import_error_traceback(arg1, arg2, opts)

 otel_import_error_traceback(arg1, arg2, arg3, opts)

 otel_import_error_traceback(arg1, arg2, arg3, arg4, opts)

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, opts)

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 run_once(f, opts \\ [])

 Python binding for vllm.tracing.run_once.

 trace_headers()

 Built-in mutable sequence.

 Functions

 _is_otel_imported()

 @spec _is_otel_imported() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

 contains_trace_headers(headers, opts \\ [])

 @spec contains_trace_headers(
 term(),
 keyword()
) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.contains_trace_headers.
Parameters
	headers (term())

Returns
	boolean()

 extract_trace_context(headers, opts \\ [])

 @spec extract_trace_context(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.extract_trace_context.
Parameters
	headers (term())

Returns
	term()

 extract_trace_headers(headers, opts \\ [])

 @spec extract_trace_headers(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.extract_trace_headers.
Parameters
	headers (term())

Returns
	term()

 get_span_exporter(endpoint, opts \\ [])

 @spec get_span_exporter(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.get_span_exporter.
Parameters
	endpoint (term())

Returns
	term()

 init_tracer(instrumenting_module_name, otlp_traces_endpoint, opts \\ [])

 @spec init_tracer(String.t(), String.t(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.init_tracer.
Parameters
	instrumenting_module_name (String.t())
	otlp_traces_endpoint (String.t())

Returns
	term()

 is_otel_available(opts \\ [])

 @spec is_otel_available(keyword()) :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.is_otel_available.
Returns
	boolean()

 log_tracing_disabled_warning(opts \\ [])

 @spec log_tracing_disabled_warning(keyword()) ::
 {:ok, nil} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.log_tracing_disabled_warning.
Parameters
	args (term())
	kwargs (term())

Returns
	nil

 logger()

 @spec logger() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
Returns
	term()

 otel_import_error_traceback()

 @spec otel_import_error_traceback() :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.otel_import_error_traceback.
Returns
	term()

 otel_import_error_traceback(opts)

 @spec otel_import_error_traceback(keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, opts)

 @spec otel_import_error_traceback(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, opts)

 @spec otel_import_error_traceback(term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, arg3, opts)

 @spec otel_import_error_traceback(term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, arg3, arg4, opts)

 @spec otel_import_error_traceback(term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, opts)

 @spec otel_import_error_traceback(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(term(), term(), term(), term(), term(), term()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec otel_import_error_traceback(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec otel_import_error_traceback(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 @spec otel_import_error_traceback(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 otel_import_error_traceback(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec otel_import_error_traceback(
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

 run_once(f, opts \\ [])

 @spec run_once(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Python binding for vllm.tracing.run_once.
Parameters
	f (term())

Returns
	term()

 trace_headers()

 @spec trace_headers() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

Vllm.Tracing.BaseSpanAttributes

Wrapper for Python class BaseSpanAttributes.

 Summary

 Types

 t()

 Functions

 new()

 Constructs BaseSpanAttributes.

 new(opts)

 new(arg1, opts)

 new(arg1, arg2, opts)

 new(arg1, arg2, arg3, opts)

 new(arg1, arg2, arg3, arg4, opts)

 new(arg1, arg2, arg3, arg4, arg5, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 Types

 t()

 @opaque t()

 Functions

 new()

 @spec new() :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Constructs BaseSpanAttributes.

 new(opts)

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, opts)

 @spec new(
 term(),
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, opts)

 @spec new(term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, opts)

 @spec new(term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, opts)

 @spec new(term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, opts)

 @spec new(term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, opts)

 @spec new(term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, opts)

 @spec new(term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 @spec new(term(), term(), term(), term(), term(), term(), term(), term()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

 new(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, opts)

 @spec new(term(), term(), term(), term(), term(), term(), term(), term(), keyword()) ::
 {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Vllm.Tracing.SpanAttributes

Wrapper for Python class SpanAttributes.

 Summary

 Types

 t()

 Functions

 gen_ai_latency_e2_e(ref)

 gen_ai_latency_time_in_model_decode(ref)

 gen_ai_latency_time_in_model_execute(ref)

 gen_ai_latency_time_in_model_forward(ref)

 gen_ai_latency_time_in_model_inference(ref)

 gen_ai_latency_time_in_model_prefill(ref)

 gen_ai_latency_time_in_queue(ref)

 gen_ai_latency_time_in_scheduler(ref)

 gen_ai_latency_time_to_first_token(ref)

 gen_ai_request_id(ref)

 gen_ai_request_max_tokens(ref)

 gen_ai_request_n(ref)

 gen_ai_request_temperature(ref)

 gen_ai_request_top_p(ref)

 gen_ai_response_model(ref)

 gen_ai_usage_completion_tokens(ref)

 gen_ai_usage_num_sequences(ref)

 gen_ai_usage_prompt_tokens(ref)

 new(args, opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 gen_ai_latency_e2_e(ref)

 @spec gen_ai_latency_e2_e(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_model_decode(ref)

 @spec gen_ai_latency_time_in_model_decode(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_model_execute(ref)

 @spec gen_ai_latency_time_in_model_execute(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_model_forward(ref)

 @spec gen_ai_latency_time_in_model_forward(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_model_inference(ref)

 @spec gen_ai_latency_time_in_model_inference(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_model_prefill(ref)

 @spec gen_ai_latency_time_in_model_prefill(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_queue(ref)

 @spec gen_ai_latency_time_in_queue(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_in_scheduler(ref)

 @spec gen_ai_latency_time_in_scheduler(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_latency_time_to_first_token(ref)

 @spec gen_ai_latency_time_to_first_token(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_request_id(ref)

 @spec gen_ai_request_id(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_request_max_tokens(ref)

 @spec gen_ai_request_max_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_request_n(ref)

 @spec gen_ai_request_n(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_request_temperature(ref)

 @spec gen_ai_request_temperature(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_request_top_p(ref)

 @spec gen_ai_request_top_p(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_response_model(ref)

 @spec gen_ai_response_model(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_usage_completion_tokens(ref)

 @spec gen_ai_usage_completion_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_usage_num_sequences(ref)

 @spec gen_ai_usage_num_sequences(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 gen_ai_usage_prompt_tokens(ref)

 @spec gen_ai_usage_prompt_tokens(SnakeBridge.Ref.t()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

 new(args, opts \\ [])

 @spec new(
 [term()],
 keyword()
) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.
Parameters
	args (term())
	kwargs (term())

Vllm.TransformersUtils

Submodule bindings for vllm.transformers_utils.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.TransformersUtils.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.TransformersUtils.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.TransformersUtils.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.TransformersUtils.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.TritonUtils

Submodule bindings for vllm.triton_utils.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.TritonUtils.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.TritonUtils.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.TritonUtils.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.TritonUtils.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 __all__()

 Built-in mutable sequence.

 has_triton()

 bool(x) -> bool

 Functions

 __all__()

 @spec __all__() :: {:ok, [term()]} | {:error, Snakepit.Error.t()}

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Returns
	list(term())

 has_triton()

 @spec has_triton() :: {:ok, boolean()} | {:error, Snakepit.Error.t()}

bool(x) -> bool
Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.
Returns
	boolean()

Vllm.TritonUtils.TritonLanguagePlaceholder

Create a module object.
The name must be a string; the optional doc argument can have any type.

 Summary

 Types

 t()

 Functions

 new(opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.

Vllm.TritonUtils.TritonPlaceholder

Create a module object.
The name must be a string; the optional doc argument can have any type.

 Summary

 Types

 t()

 Functions

 _dummy_decorator(ref, name, opts \\ [])

 Python method TritonPlaceholder._dummy_decorator.

 new(opts \\ [])

 Initialize self. See help(type(self)) for accurate signature.

 Types

 t()

 @opaque t()

 Functions

 _dummy_decorator(ref, name, opts \\ [])

 @spec _dummy_decorator(SnakeBridge.Ref.t(), term(), keyword()) ::
 {:ok, term()} | {:error, Snakepit.Error.t()}

Python method TritonPlaceholder._dummy_decorator.
Parameters
	name (term())

Returns
	term()

 new(opts \\ [])

 @spec new(keyword()) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}

Initialize self. See help(type(self)) for accurate signature.

Vllm.Usage

Submodule bindings for vllm.usage.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Usage.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Usage.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Usage.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Usage.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Utils

Submodule bindings for vllm.utils.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Utils.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Utils.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Utils.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Utils.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 length_from_prompt_token_ids_or_embeds(prompt_token_ids, prompt_embeds, opts \\ [])

 Calculate the request length (in number of tokens) give either

 mask_64_bits()

 int([x]) -> integer

 random_uuid(opts \\ [])

 Python binding for vllm.utils.random_uuid.

 Functions

 length_from_prompt_token_ids_or_embeds(prompt_token_ids, prompt_embeds, opts \\ [])

 @spec length_from_prompt_token_ids_or_embeds(term(), term(), keyword()) ::
 {:ok, integer()} | {:error, Snakepit.Error.t()}

Calculate the request length (in number of tokens) give either
prompt_token_ids or prompt_embeds.
Parameters
	prompt_token_ids (term())
	prompt_embeds (term())

Returns
	integer()

 mask_64_bits()

 @spec mask_64_bits() :: {:ok, integer()} | {:error, Snakepit.Error.t()}

int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.int(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
int('0b100', base=0)
4

Returns
	integer()

 random_uuid(opts \\ [])

 @spec random_uuid(keyword()) :: {:ok, String.t()} | {:error, Snakepit.Error.t()}

Python binding for vllm.utils.random_uuid.
Returns
	String.t()

Vllm.V1

Submodule bindings for vllm.v1.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.V1.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.V1.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.V1.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.V1.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

Vllm.Version

Submodule bindings for vllm.version.
Version
	Requested: 0.14.0
	Observed at generation: 0.14.0

Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Vllm.Version.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call
	:pool_name - Target a specific Snakepit pool (multi-pool setups)
	:affinity - Override session affinity (:hint, :strict_queue, :strict_fail_fast)

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Vllm.Version.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Vllm.Version.predict(data, __runtime__: [timeout: 600_000])

Route to a pool and enforce strict affinity
Vllm.Version.predict(data, __runtime__: [pool_name: :strict_pool, affinity: :strict_queue])
See SnakeBridge.Defaults for global timeout configuration.

 Summary

 Functions

 _prev_minor_version(opts \\ [])

 For the purpose of testing, return a previous minor version number.

 _prev_minor_version_was(version_str, opts \\ [])

 Check whether a given version matches the previous minor version.

 Functions

 _prev_minor_version(opts \\ [])

 @spec _prev_minor_version(keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}

For the purpose of testing, return a previous minor version number.
Returns
	term()

 _prev_minor_version_was(version_str, opts \\ [])

 @spec _prev_minor_version_was(
 term(),
 keyword()
) :: {:ok, term()} | {:error, Snakepit.Error.t()}

Check whether a given version matches the previous minor version.
Return True if version_str matches the previous minor version.
For example - return True if the current version if 0.7.4 and the
supplied version_str is '0.6'.
Used for --show-hidden-metrics-for-version.
Parameters
	version_str (term())

Returns
	term()

VLLM

VLLM - vLLM for Elixir via SnakeBridge.
Easy, fast, and cheap LLM serving for everyone. This library provides
transparent access to Python vLLM through SnakeBridge's generated wrappers.
Quick Start
VLLM.run(fn ->
 # Create an LLM instance
 llm = VLLM.llm!("facebook/opt-125m")

 # Generate text
 outputs = VLLM.generate!(llm, ["Hello, my name is"])

 # Process results
 Enum.each(outputs, fn output ->
 prompt = VLLM.attr!(output, "prompt")
 generated = VLLM.attr!(output, "outputs") |> Enum.at(0)
 text = VLLM.attr!(generated, "text")
 IO.puts("Prompt: #{prompt}")
 IO.puts("Generated: #{text}")
 end)
end)
Chat Interface
VLLM.run(fn ->
 llm = VLLM.llm!("Qwen/Qwen2-0.5B-Instruct")

 messages = [[
 %{"role" => "system", "content" => "You are a helpful assistant."},
 %{"role" => "user", "content" => "What is the capital of France?"}
]]

 outputs = VLLM.chat!(llm, messages)
 # Process chat outputs...
end)
Sampling Parameters
Control generation with VLLM.SamplingParams:
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 params = VLLM.sampling_params!(temperature: 0.8, top_p: 0.95, max_tokens: 100)

 outputs = VLLM.generate!(llm, ["Once upon a time"], sampling_params: params)
end)
Generated Wrappers
This library uses SnakeBridge's generated wrappers for type-safe bindings:
	Vllm.LLM - Main inference class
	Vllm.SamplingParams - Generation parameters
	Vllm.PoolingParams - Embedding parameters
	Vllm.LLMEngine - Low-level engine
	Vllm.AsyncLLMEngine - Async engine for serving

Timeout Configuration
VLLM leverages SnakeBridge's timeout architecture for LLM workloads.
By default, all vLLM calls use the :ml_inference profile (10 minute timeout).
Timeout Profiles
	Profile	Timeout	Use Case
	:default	2 min	Standard Python calls
	:streaming	30 min	Streaming responses
	:ml_inference	10 min	LLM inference (VLLM default)
	:batch_job	1 hour	Long-running batch operations

Per-Call Timeout Override
VLLM.generate!(llm, prompts,
 sampling_params: params,
 __runtime__: [timeout_profile: :batch_job]
)
Architecture
VLLM uses SnakeBridge's generated wrappers to call vLLM:
Elixir (VLLM module)
 |
Generated Wrappers (Vllm.LLM, etc.)
 |
SnakeBridge.Runtime
 |
Snakepit gRPC
 |
Python vLLM
 |
GPU/TPU Inference
All Python lifecycle is managed automatically by Snakepit.

 Summary

 Functions

 async_engine(model, opts \\ [])

 Create an AsyncLLMEngine for asynchronous inference.

 async_engine!(model, opts \\ [])

 Bang version of async_engine/2.

 attr(ref, attribute)

 Get an attribute from a Python object reference.

 attr!(ref, attribute)

 Bang version of attr/2.

 bytes(data)

 Encode binary data as Python bytes.

 call(module, function, args \\ [], opts \\ [])

 Call any vLLM function or class.

 call!(module, function, args \\ [], opts \\ [])

 Bang version - raises on error, returns value directly.

 chat(llm, messages, opts \\ [])

 Generate chat completions from messages.

 chat!(llm, messages, opts \\ [])

 Bang version of chat/3 - raises on error.

 embed(llm, texts, opts \\ [])

 Generate embeddings for texts using a pooling model.

 embed!(llm, texts, opts \\ [])

 Bang version of embed/3.

 encode(llm, text, opts \\ [])

 Encode text to token IDs.

 encode!(llm, text, opts \\ [])

 Bang version of encode/3.

 engine(model, opts \\ [])

 Create an LLMEngine for fine-grained control over inference.

 engine!(model, opts \\ [])

 Bang version of engine/2.

 generate(llm, prompts, opts \\ [])

 Generate text completions from prompts.

 generate!(llm, prompts, opts \\ [])

 Bang version of generate/3 - raises on error.

 get(module, attr)

 Get a module attribute.

 get!(module, attr)

 Bang version of get/2.

 guided_decoding_params(opts \\ [])

 Create guided decoding parameters for structured outputs.

 guided_decoding_params!(opts \\ [])

 Bang version of guided_decoding_params/1.

 guided_decoding_supported?()

 Check whether guided decoding parameters are available in the installed vLLM.

 llm(model, opts \\ [])

 Create a vLLM LLM instance for offline inference.

 llm!(model, opts \\ [])

 Bang version of llm/2 - raises on error.

 lora_request(name, lora_int_id, lora_path, opts \\ [])

 Create a LoRARequest for serving LoRA adapters.

 lora_request!(name, lora_int_id, lora_path, opts \\ [])

 Bang version of lora_request/4.

 method(ref, method, args \\ [], opts \\ [])

 Call a method on a Python object reference.

 method!(ref, method, args \\ [], opts \\ [])

 Bang version of method/4.

 pooling_params(opts \\ [])

 Create PoolingParams for embedding models.

 pooling_params!(opts \\ [])

 Bang version of pooling_params/1.

 ref?(value)

 Check if a value is a Python object reference.

 run(fun, opts \\ [])

 Run VLLM code with automatic Python lifecycle management.

 sampling_params(opts \\ [])

 Create SamplingParams for controlling text generation.

 sampling_params!(opts \\ [])

 Bang version of sampling_params/1 - raises on error.

 set_attr(ref, attribute, value)

 Set an attribute on a Python object reference.

 timeout_ms(milliseconds)

 Create a timeout option for exact milliseconds.

 timeout_profile(profile)

 Timeout profile atoms for use with __runtime__ option.

 version()

 Get the installed vLLM version.

 version!()

 Bang version of version/0.

 with_timeout(opts, timeout_opts)

 Add timeout configuration to options.

 Functions

 async_engine(model, opts \\ [])

Create an AsyncLLMEngine for asynchronous inference.
Useful for building online serving applications with concurrent requests.
Examples
{:ok, engine} = VLLM.async_engine("facebook/opt-125m")

 async_engine!(model, opts \\ [])

Bang version of async_engine/2.

 attr(ref, attribute)

Get an attribute from a Python object reference.

 attr!(ref, attribute)

Bang version of attr/2.

 bytes(data)

Encode binary data as Python bytes.

 call(module, function, args \\ [], opts \\ [])

Call any vLLM function or class.
Examples
{:ok, result} = VLLM.call("vllm", "LLM", ["facebook/opt-125m"])
{:ok, config} = VLLM.call("vllm.config", "ModelConfig", [], model: "...")

 call!(module, function, args \\ [], opts \\ [])

Bang version - raises on error, returns value directly.

 chat(llm, messages, opts \\ [])

Generate chat completions from messages.
Delegates to Vllm.LLM.chat/4.
Arguments
	llm - LLM instance from VLLM.llm!/1
	messages - List of message conversations, where each conversation is a list of message maps
	opts - Options including:	:sampling_params - SamplingParams instance
	:use_tqdm - Show progress bar
	:chat_template - Custom chat template (Jinja2 format)

Message Format
Each message is a map with:
	"role" - One of "system", "user", "assistant"
	"content" - Message content string

Examples
messages = [[
 %{"role" => "system", "content" => "You are helpful."},
 %{"role" => "user", "content" => "Hello!"}
]]

outputs = VLLM.chat!(llm, messages)
Returns
List of RequestOutput objects (same as generate/3).

 chat!(llm, messages, opts \\ [])

Bang version of chat/3 - raises on error.

 embed(llm, texts, opts \\ [])

Generate embeddings for texts using a pooling model.
Delegates to Vllm.LLM.embed/3.
Arguments
	llm - LLM instance configured with an embedding model
	texts - String or list of strings to embed
	opts - Options including:	:pooling_params - PoolingParams instance

Examples
llm = VLLM.llm!("intfloat/e5-mistral-7b-instruct", runner: "pooling")
outputs = VLLM.embed!(llm, ["Hello, world!", "How are you?"])
Returns
List of EmbeddingRequestOutput objects with:
	outputs - List of embeddings

 embed!(llm, texts, opts \\ [])

Bang version of embed/3.

 encode(llm, text, opts \\ [])

Encode text to token IDs.
Delegates to Vllm.LLM.encode/3.
Examples
{:ok, token_ids} = VLLM.encode(llm, "Hello, world!")

 encode!(llm, text, opts \\ [])

Bang version of encode/3.

 engine(model, opts \\ [])

Create an LLMEngine for fine-grained control over inference.
The LLMEngine provides lower-level access to vLLM's inference capabilities,
useful for building custom serving solutions.
Note: LLMEngine has a complex constructor requiring vllm_config and executor_class.
This helper creates it from EngineArgs for simpler usage.
Options
Same as llm/2 plus:
	:max_num_seqs - Maximum number of sequences per batch
	:max_num_batched_tokens - Maximum tokens per batch

Examples
{:ok, engine} = VLLM.engine("facebook/opt-125m")

 engine!(model, opts \\ [])

Bang version of engine/2.

 generate(llm, prompts, opts \\ [])

Generate text completions from prompts.
Delegates to Vllm.LLM.generate/4.
Arguments
	llm - LLM instance from VLLM.llm!/1
	prompts - String or list of strings to complete
	opts - Options including:	:sampling_params - SamplingParams instance
	:use_tqdm - Show progress bar (default: true)
	:lora_request - LoRA adapter request

Examples
outputs = VLLM.generate!(llm, "Hello, my name is")
outputs = VLLM.generate!(llm, ["Prompt 1", "Prompt 2"], sampling_params: params)
Returns
List of RequestOutput objects. Each has:
	prompt - Original prompt
	outputs - List of CompletionOutput objects	text - Generated text
	token_ids - Generated token IDs
	finish_reason - Reason for completion ("length", "stop", etc.)

 generate!(llm, prompts, opts \\ [])

Bang version of generate/3 - raises on error.

 get(module, attr)

Get a module attribute.

 get!(module, attr)

Bang version of get/2.

 guided_decoding_params(opts \\ [])

Create guided decoding parameters for structured outputs.
Options
	:json - JSON schema string for JSON output
	:json_object - Python dict/Pydantic model for JSON
	:regex - Regex pattern for output
	:choice - List of allowed string choices
	:grammar - BNF grammar string

Examples
JSON schema
{:ok, guided} = VLLM.guided_decoding_params(
 json: ~s({"type": "object", "properties": {"name": {"type": "string"}}})
)

Regex pattern
{:ok, guided} = VLLM.guided_decoding_params(regex: "[0-9]{3}-[0-9]{4}")

Choice
{:ok, guided} = VLLM.guided_decoding_params(choice: ["yes", "no", "maybe"])
Support
Guided decoding requires a vLLM build that exposes GuidedDecodingParams.
Use guided_decoding_supported?/0 to check availability.

 guided_decoding_params!(opts \\ [])

Bang version of guided_decoding_params/1.

 guided_decoding_supported?()

Check whether guided decoding parameters are available in the installed vLLM.

 llm(model, opts \\ [])

Create a vLLM LLM instance for offline inference.
Delegates to Vllm.LLM.new/2.
Options
Common options passed as keyword arguments:
	:dtype - Data type ("auto", "float16", "bfloat16", "float32")
	:tensor_parallel_size - Number of GPUs for tensor parallelism
	:gpu_memory_utilization - Fraction of GPU memory to use (0.0-1.0)
	:max_model_len - Maximum sequence length
	:quantization - Quantization method ("awq", "gptq", "squeezellm", etc.)
	:trust_remote_code - Whether to trust remote code from HuggingFace

Examples
{:ok, llm} = VLLM.llm("facebook/opt-125m")
{:ok, llm} = VLLM.llm("Qwen/Qwen2-7B", tensor_parallel_size: 2)
{:ok, llm} = VLLM.llm("TheBloke/Llama-2-7B-AWQ", quantization: "awq")

 llm!(model, opts \\ [])

Bang version of llm/2 - raises on error.

 lora_request(name, lora_int_id, lora_path, opts \\ [])

Create a LoRARequest for serving LoRA adapters.
Arguments
	name - Unique name for this LoRA adapter
	lora_int_id - Integer ID for the adapter
	lora_path - Path to the LoRA adapter weights

Examples
{:ok, lora} = VLLM.lora_request("my-adapter", 1, "/path/to/adapter")

 lora_request!(name, lora_int_id, lora_path, opts \\ [])

Bang version of lora_request/4.

 method(ref, method, args \\ [], opts \\ [])

Call a method on a Python object reference.

 method!(ref, method, args \\ [], opts \\ [])

Bang version of method/4.

 pooling_params(opts \\ [])

Create PoolingParams for embedding models.
Delegates to Vllm.PoolingParams.new/2.
Options
	:additional_data - Additional metadata for the pooling request

Examples
{:ok, params} = VLLM.pooling_params()

 pooling_params!(opts \\ [])

Bang version of pooling_params/1.

 ref?(value)

Check if a value is a Python object reference.

 run(fun, opts \\ [])

Run VLLM code with automatic Python lifecycle management.
Wraps your code in Snakepit.run_as_script/2 which:
	Starts the Python process pool
	Runs your code
	Cleans up on exit

Pass halt: true in opts if you need to force the BEAM to exit
(for example, when running inside wrapper scripts).
Example
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 outputs = VLLM.generate!(llm, ["Hello, world"])
 # ... process outputs
end)

 sampling_params(opts \\ [])

Create SamplingParams for controlling text generation.
Delegates to Vllm.SamplingParams.new/2.
Options
	:temperature - Sampling temperature (default: 1.0)
	:top_p - Nucleus sampling probability (default: 1.0)
	:top_k - Top-k sampling (default: -1, disabled)
	:max_tokens - Maximum tokens to generate (default: 16)
	:min_tokens - Minimum tokens to generate (default: 0)
	:presence_penalty - Presence penalty (default: 0.0)
	:frequency_penalty - Frequency penalty (default: 0.0)
	:repetition_penalty - Repetition penalty (default: 1.0)
	:stop - List of stop strings
	:stop_token_ids - List of stop token IDs
	:n - Number of completions to generate (default: 1)
	:best_of - Number of sequences to generate and select best from
	:seed - Random seed for reproducibility

Examples
{:ok, params} = VLLM.sampling_params(temperature: 0.8, max_tokens: 100)
{:ok, params} = VLLM.sampling_params(top_p: 0.9, stop: ["\n", "END"])

 sampling_params!(opts \\ [])

Bang version of sampling_params/1 - raises on error.

 set_attr(ref, attribute, value)

Set an attribute on a Python object reference.

 timeout_ms(milliseconds)

Create a timeout option for exact milliseconds.
Examples
VLLM.generate!(llm, prompts,
 Keyword.merge([sampling_params: params], VLLM.timeout_ms(300_000))
)

 timeout_profile(profile)

Timeout profile atoms for use with __runtime__ option.
Examples
VLLM.generate!(llm, prompts,
 Keyword.merge([sampling_params: params], VLLM.timeout_profile(:batch_job))
)

 version()

Get the installed vLLM version.

 version!()

Bang version of version/0.

 with_timeout(opts, timeout_opts)

Add timeout configuration to options.
Options
	:timeout - Exact timeout in milliseconds
	:timeout_profile - Use a predefined profile

Examples
opts = VLLM.with_timeout([], timeout: 60_000)
VLLM.generate!(llm, prompts, Keyword.merge(opts, sampling_params: params))

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

