API parameters for pooling models.
Attributes:
truncate_prompt_tokens: Controls prompt truncation.
Set to -1 to use the model's default truncation size.
Set to k to keep only the last k tokens (left truncation).
Set to None to disable truncation.
dimensions: Reduce the dimensions of embeddings
if model support matryoshka representation.
normalize: Deprecated, please use use_activation instead.
softmax: Deprecated, please use use_activation instead.
activation: Deprecated, please use use_activation instead.
use_activation: Whether to apply activation function to
the classification outputs.
Summary
Functions
vLLM: a high-throughput and memory-efficient inference engine for LLMs
vLLM: a high-throughput and memory-efficient inference engine for LLMs
vLLM: a high-throughput and memory-efficient inference engine for LLMs
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns a deep copy of the PoolingParams instance.
Initialize self. See help(type(self)) for accurate signature.
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Types
Functions
@spec _merge_default_parameters(SnakeBridge.Ref.t(), [term()], keyword()) :: {:ok, nil} | {:error, Snakepit.Error.t()}
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
model_config(term() | nil default: None)
Returns
nil
@spec _set_default_parameters(SnakeBridge.Ref.t(), term() | nil, keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
model_config(term() | nil)
Returns
term()
@spec _verify_step_pooling(SnakeBridge.Ref.t(), term(), [String.t()], keyword()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
pooler_config(term())valid_parameters(list(String.t()))
Returns
term()
@spec _verify_valid_parameters( SnakeBridge.Ref.t(), keyword() ) :: {:ok, term()} | {:error, Snakepit.Error.t()}
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Returns
term()
@spec activation(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec all_parameters(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec clone( SnakeBridge.Ref.t(), keyword() ) :: {:ok, Vllm.PoolingParamsClass.t()} | {:error, Snakepit.Error.t()}
Returns a deep copy of the PoolingParams instance.
Returns
Vllm.PoolingParamsClass.t()
@spec dimensions(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec extra_kwargs(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec new( [term()], keyword() ) :: {:ok, SnakeBridge.Ref.t()} | {:error, Snakepit.Error.t()}
Initialize self. See help(type(self)) for accurate signature.
Parameters
args(term())kwargs(term())
@spec normalize(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec output_kind(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec requires_token_ids(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec returned_token_ids(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec skip_reading_prefix_cache(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec softmax(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec step_tag_id(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec task(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec truncate_prompt_tokens(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec use_activation(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec valid_parameters(SnakeBridge.Ref.t()) :: {:ok, term()} | {:error, Snakepit.Error.t()}
@spec verify(SnakeBridge.Ref.t(), term(), [term()], keyword()) :: {:ok, nil} | {:error, Snakepit.Error.t()}
vLLM: a high-throughput and memory-efficient inference engine for LLMs
Parameters
task(term())model_config(term() | nil default: None)
Returns
nil