

 VLLM

 v0.1.1

 [image: Logo]

 Table of contents

 	LICENSE

 	Guides

 	README

 	Quickstart Guide

 	Features

 	Offline Inference

 	Online Serving

 	Sampling Parameters

 	Configuration Guide

 	Multimodal Models

 	LoRA Adapters

 	Structured Outputs

 	Reference

 	Supported Models

 	Quantization

 	Examples

 	VLLM Examples

 	Release Notes

 	Changelog

 	
 Modules

 	Vllm

 	Core API

 	VLLM

 LICENSE

MIT License

Copyright (c) 2026 nshkrdotcom

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 README

 [image: VLLM]

 Quickstart Guide - VLLM v0.1.1

 Quickstart Guide

This guide will help you get started with VLLM for Elixir, providing high-throughput LLM inference via vLLM.
Prerequisites
	Elixir 1.18 or later
	Python 3.8 or later
	CUDA-capable GPU (recommended) or CPU-only mode

Installation
Add VLLM to your mix.exs dependencies:
def deps do
 [
 {:vllm, "~> 0.1.0"}
]
end
Fetch dependencies and set up the Python environment:
mix deps.get
mix snakebridge.setup

This will install vLLM and its dependencies in a managed Python environment.
Your First Generation
Here's a minimal example to generate text:
VLLM.run(fn ->
 # Load a small model for testing
 llm = VLLM.llm!("facebook/opt-125m")

 # Generate completions
 outputs = VLLM.generate!(llm, "Hello, my name is")

 # Print the result
 output = Enum.at(outputs, 0)
 completion = VLLM.attr!(output, "outputs") |> Enum.at(0)
 text = VLLM.attr!(completion, "text")
 IO.puts(text)
end)
Save this as hello_vllm.exs and run:
mix run hello_vllm.exs

Understanding the Output
vLLM returns RequestOutput objects with the following structure:
	prompt - The original input prompt
	outputs - List of CompletionOutput objects	text - The generated text
	token_ids - List of generated token IDs
	finish_reason - Why generation stopped ("length", "stop", etc.)

Controlling Generation
Use SamplingParams to control text generation:
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")

 # Create sampling parameters
 params = VLLM.sampling_params!(
 temperature: 0.8, # Higher = more random
 top_p: 0.95, # Nucleus sampling
 max_tokens: 100, # Maximum tokens to generate
 stop: ["\\n"] # Stop at newline
)

 outputs = VLLM.generate!(llm, "The secret to happiness is",
 sampling_params: params
)
end)
Chat Mode
For instruction-tuned models, use the chat interface:
VLLM.run(fn ->
 llm = VLLM.llm!("Qwen/Qwen2-0.5B-Instruct")

 messages = [[
 %{"role" => "system", "content" => "You are a helpful assistant."},
 %{"role" => "user", "content" => "Explain quantum computing in simple terms."}
]]

 params = VLLM.sampling_params!(temperature: 0.7, max_tokens: 200)
 outputs = VLLM.chat!(llm, messages, sampling_params: params)
end)
Batch Processing
Process multiple prompts efficiently:
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 params = VLLM.sampling_params!(temperature: 0.7, max_tokens: 50)

 prompts = [
 "The capital of France is",
 "Machine learning is",
 "The best way to learn programming is"
]

 # vLLM processes these efficiently with continuous batching
 outputs = VLLM.generate!(llm, prompts, sampling_params: params)

 Enum.each(outputs, fn output ->
 prompt = VLLM.attr!(output, "prompt")
 completion = VLLM.attr!(output, "outputs") |> Enum.at(0)
 IO.puts("#{prompt}#{VLLM.attr!(completion, "text")}")
 end)
end)
Next Steps
	Sampling Parameters - Fine-tune generation behavior
	Configuration - Model and engine options
	Supported Models - Full list of supported models
	Examples - Comprehensive code examples

 Offline Inference - VLLM v0.1.1

 Offline Inference

Offline inference refers to batch processing of prompts without a running server. This is ideal for:
	Processing large datasets
	Batch evaluation
	One-time generation tasks
	Research and experimentation

Basic Offline Inference
The VLLM.llm/2 function creates an LLM instance for offline inference:
VLLM.run(fn ->
 # Create LLM instance
 llm = VLLM.llm!("facebook/opt-125m")

 # Generate completions
 prompts = ["Hello, my name is", "The weather today is"]
 outputs = VLLM.generate!(llm, prompts)
end)
LLM Configuration Options
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 # Data type
 dtype: "auto", # "auto", "float16", "bfloat16", "float32"

 # Memory management
 gpu_memory_utilization: 0.9, # Fraction of GPU memory to use
 max_model_len: 4096, # Maximum sequence length

 # Parallelism
 tensor_parallel_size: 1, # Number of GPUs for tensor parallelism

 # Quantization
 quantization: nil, # "awq", "gptq", "squeezellm", etc.

 # Trust settings
 trust_remote_code: false # Allow custom model code from HuggingFace
)
Batch Processing
vLLM excels at batch processing with continuous batching:
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 params = VLLM.sampling_params!(temperature: 0.7, max_tokens: 100)

 # Large batch of prompts
 prompts = Enum.map(1..100, fn i ->
 "Story #{i}: Once upon a time,"
 end)

 # vLLM handles batching automatically
 start = System.monotonic_time(:millisecond)
 outputs = VLLM.generate!(llm, prompts, sampling_params: params)
 elapsed = System.monotonic_time(:millisecond) - start

 IO.puts("Processed #{length(prompts)} prompts in #{elapsed}ms")
 IO.puts("Throughput: #{Float.round(length(prompts) / (elapsed / 1000), 2)} prompts/sec")
end)
Chat Mode for Offline Inference
Use chat format with instruction-tuned models:
VLLM.run(fn ->
 llm = VLLM.llm!("Qwen/Qwen2-0.5B-Instruct")
 params = VLLM.sampling_params!(temperature: 0.7, max_tokens: 200)

 # Batch of conversations
 conversations = [
 [
 %{"role" => "user", "content" => "What is 2 + 2?"}
],
 [
 %{"role" => "user", "content" => "Name the planets in our solar system."}
],
 [
 %{"role" => "system", "content" => "You are a poet."},
 %{"role" => "user", "content" => "Write a haiku about coding."}
]
]

 outputs = VLLM.chat!(llm, conversations, sampling_params: params)
end)
Memory-Efficient Processing
For large batches with limited GPU memory:
VLLM.run(fn ->
 # Use lower memory utilization to leave room for KV cache
 llm = VLLM.llm!("facebook/opt-125m",
 gpu_memory_utilization: 0.7
)

 # Process in chunks if needed
 all_prompts = Enum.to_list(1..1000) |> Enum.map(&"Prompt #{&1}:")

 chunk_size = 100
 all_prompts
 |> Enum.chunk_every(chunk_size)
 |> Enum.with_index(1)
 |> Enum.each(fn {chunk, idx} ->
 IO.puts("Processing chunk #{idx}...")
 outputs = VLLM.generate!(llm, chunk)
 # Process outputs...
 end)
end)
Progress Tracking
vLLM shows progress by default via tqdm. Disable if needed:
outputs = VLLM.generate!(llm, prompts,
 sampling_params: params,
 use_tqdm: false
)
Tokenization
Access the tokenizer directly:
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")

 # Encode text to tokens
 token_ids = VLLM.encode!(llm, "Hello, world!")
 IO.inspect(token_ids, label: "Token IDs")
end)
Performance Tips
	Maximize batch size: vLLM is most efficient with larger batches
	Adjust gpu_memory_utilization: Higher values allow more KV cache
	Use appropriate max_model_len: Shorter = faster for short generations
	Consider quantization: AWQ/GPTQ for memory-constrained scenarios

 Online Serving - VLLM v0.1.1

 Online Serving

While VLLM for Elixir primarily focuses on offline inference, you can build online serving solutions using the Engine APIs.
AsyncLLMEngine
For concurrent request handling:
VLLM.run(fn ->
 # Create async engine
 engine = VLLM.async_engine!("facebook/opt-125m",
 gpu_memory_utilization: 0.9
)

 # Handle concurrent requests
 # (Implementation depends on your serving requirements)
end)
Building a Simple Server
You can wrap VLLM in a Phoenix or Plug-based HTTP server:
defmodule MyApp.LLMServer do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 # Initialize in a task to not block
 Task.start(fn ->
 VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 # Store llm reference for handling requests
 # Note: This is a simplified example
 end)
 end)

 {:ok, %{}}
 end

 def generate(prompt, opts \\ []) do
 GenServer.call(__MODULE__, {:generate, prompt, opts})
 end
end
OpenAI-Compatible Server
For full OpenAI API compatibility, consider running the Python vLLM server directly and calling it from Elixir via HTTP:
Start vLLM server
python -m vllm.entrypoints.openai.api_server \\
 --model facebook/opt-125m \\
 --port 8000

Then call from Elixir using any HTTP client:
defmodule MyApp.VLLMClient do
 def chat_completion(messages, opts \\ []) do
 body = %{
 model: Keyword.get(opts, :model, "facebook/opt-125m"),
 messages: messages,
 temperature: Keyword.get(opts, :temperature, 0.7),
 max_tokens: Keyword.get(opts, :max_tokens, 100)
 }

 case HTTPoison.post("http://localhost:8000/v1/chat/completions",
 Jason.encode!(body),
 [{"Content-Type", "application/json"}]) do
 {:ok, %{status_code: 200, body: body}} ->
 {:ok, Jason.decode!(body)}
 {:error, reason} ->
 {:error, reason}
 end
 end
end
Streaming Responses
For streaming, use the AsyncLLMEngine with iteration:
Note: Streaming implementation depends on how you want to
deliver partial results to clients (WebSocket, SSE, etc.)
Scaling Considerations
	Single Engine: vLLM's continuous batching handles multiple requests efficiently
	Multiple Engines: For very high throughput, run multiple engines on different GPUs
	Load Balancing: Use nginx or similar for distributing requests across engines

Timeout Configuration
For online serving, configure appropriate timeouts:
In config/config.exs
config :snakebridge,
 runtime: [
 library_profiles: %{"vllm" => :streaming} # 30 min timeout
]

Or per-request
outputs = VLLM.generate!(llm, prompt,
 __runtime__: [timeout_profile: :streaming]
)
Health Checks
Implement health checks for your serving infrastructure:
defmodule MyApp.HealthCheck do
 def check_vllm do
 try do
 VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 outputs = VLLM.generate!(llm, "test", sampling_params: VLLM.sampling_params!(max_tokens: 1))
 :ok
 end, timeout: 30_000)
 rescue
 _ -> :error
 end
 end
end

 Sampling Parameters - VLLM v0.1.1

 Sampling Parameters

SamplingParams controls how vLLM generates text. Understanding these parameters is essential for getting the output quality and style you need.
Creating Sampling Parameters
params = VLLM.sampling_params!(
 temperature: 0.8,
 top_p: 0.95,
 max_tokens: 100
)

outputs = VLLM.generate!(llm, prompt, sampling_params: params)
Temperature
Controls randomness in generation. Higher values produce more diverse outputs.
Deterministic (greedy decoding)
params = VLLM.sampling_params!(temperature: 0.0, max_tokens: 50)

Low temperature (focused, consistent)
params = VLLM.sampling_params!(temperature: 0.3, max_tokens: 50)

Medium temperature (balanced)
params = VLLM.sampling_params!(temperature: 0.7, max_tokens: 50)

High temperature (creative, diverse)
params = VLLM.sampling_params!(temperature: 1.2, max_tokens: 50)
Top-p (Nucleus Sampling)
Limits sampling to tokens comprising the top p probability mass.
Only consider tokens in top 90% probability mass
params = VLLM.sampling_params!(top_p: 0.9, temperature: 0.7)

More restrictive (top 50%)
params = VLLM.sampling_params!(top_p: 0.5, temperature: 0.7)
Top-k Sampling
Limits sampling to the top k most likely tokens.
Only consider top 50 tokens
params = VLLM.sampling_params!(top_k: 50, temperature: 0.7)

Very restrictive (top 10 tokens)
params = VLLM.sampling_params!(top_k: 10, temperature: 0.7)

Disable (default)
params = VLLM.sampling_params!(top_k: -1, temperature: 0.7)
Token Limits
Control the length of generated text.
params = VLLM.sampling_params!(
 max_tokens: 100, # Maximum tokens to generate
 min_tokens: 10 # Minimum tokens (prevents very short outputs)
)
Stop Sequences
Define strings or token IDs that stop generation.
Stop at newline or specific phrases
params = VLLM.sampling_params!(
 max_tokens: 200,
 stop: ["\\n", "END", "---"]
)

Stop at specific token IDs
params = VLLM.sampling_params!(
 max_tokens: 200,
 stop_token_ids: [50256] # EOS token for some models
)
Repetition Control
Prevent repetitive text with penalties.
params = VLLM.sampling_params!(
 # Penalize tokens that have appeared (reduces repetition)
 presence_penalty: 0.5, # Range: -2.0 to 2.0

 # Penalize based on frequency of appearance
 frequency_penalty: 0.5, # Range: -2.0 to 2.0

 # Multiplicative penalty for repeated tokens
 repetition_penalty: 1.1 # > 1.0 reduces repetition
)
Multiple Completions
Generate multiple outputs for the same prompt.
Generate 3 completions
params = VLLM.sampling_params!(
 n: 3,
 temperature: 0.8,
 max_tokens: 50
)

outputs = VLLM.generate!(llm, prompt, sampling_params: params)
output = Enum.at(outputs, 0)

Access all completions
completions = VLLM.attr!(output, "outputs")
Enum.each(completions, fn comp ->
 IO.puts(VLLM.attr!(comp, "text"))
end)
Best-of Sampling
Generate multiple sequences and return the best.
Generate 5 sequences, return the best one
params = VLLM.sampling_params!(
 n: 1,
 best_of: 5,
 temperature: 0.8,
 max_tokens: 50
)
Reproducibility
Use a seed for reproducible outputs.
params = VLLM.sampling_params!(
 seed: 42,
 temperature: 0.7,
 max_tokens: 50
)

Same seed + same prompt = same output
All Parameters Reference
	Parameter	Type	Default	Description
	temperature	float	1.0	Randomness (0 = deterministic)
	top_p	float	1.0	Nucleus sampling threshold
	top_k	int	-1	Top-k sampling (-1 = disabled)
	max_tokens	int	16	Maximum tokens to generate
	min_tokens	int	0	Minimum tokens to generate
	presence_penalty	float	0.0	Penalty for token presence
	frequency_penalty	float	0.0	Penalty for token frequency
	repetition_penalty	float	1.0	Multiplicative repetition penalty
	stop	list	nil	Stop strings
	stop_token_ids	list	nil	Stop token IDs
	n	int	1	Number of completions
	best_of	int	nil	Generate N, return best
	seed	int	nil	Random seed

Recommended Settings
Creative Writing
VLLM.sampling_params!(temperature: 0.9, top_p: 0.95, max_tokens: 500)
Factual Q&A
VLLM.sampling_params!(temperature: 0.3, top_p: 0.9, max_tokens: 200)
Code Generation
VLLM.sampling_params!(temperature: 0.2, top_p: 0.95, max_tokens: 500, stop: ["```"])
Chat/Conversation
VLLM.sampling_params!(temperature: 0.7, top_p: 0.9, max_tokens: 300, repetition_penalty: 1.1)

 Configuration Guide - VLLM v0.1.1

 Configuration Guide

This guide covers all configuration options for VLLM.
Model Configuration
Basic Options
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 # Data type for model weights
 dtype: "auto", # "auto", "float16", "bfloat16", "float32"

 # Maximum sequence length
 max_model_len: 4096,

 # Trust remote code from HuggingFace
 trust_remote_code: false
)
Memory Configuration
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 # GPU memory utilization (0.0 to 1.0)
 gpu_memory_utilization: 0.9,

 # Swap space for CPU offloading (GB)
 swap_space: 4,

 # CPU offload GB
 cpu_offload_gb: 0
)
Parallelism Configuration
llm = VLLM.llm!("meta-llama/Llama-2-70b-hf",
 # Tensor parallelism (split layers across GPUs)
 tensor_parallel_size: 4,

 # Pipeline parallelism (split stages across GPUs)
 pipeline_parallel_size: 2,

 # Distributed executor backend
 distributed_executor_backend: "ray" # or "mp"
)
Quantization Configuration
llm = VLLM.llm!("TheBloke/Llama-2-7B-AWQ",
 # Quantization method
 quantization: "awq", # "awq", "gptq", "squeezellm", "fp8", etc.

 # Quantized KV cache
 kv_cache_dtype: "auto" # "auto", "fp8"
)
Snakebridge Configuration
Configure in config/config.exs:
import Config

config :snakebridge,
 verbose: false,
 runtime: [
 # Set vLLM to use ML inference timeout profile
 library_profiles: %{"vllm" => :ml_inference}
]

Configure snakepit at compile time so SnakeBridge installs Python deps
into the same venv used at runtime (ConfigHelper is not available here).
project_root = Path.expand("..", __DIR__)
snakebridge_venv =
 [
 System.get_env("SNAKEBRIDGE_VENV"),
 Path.join(project_root, ".venv"),
 Path.expand("../snakebridge/.venv", __DIR__)
]
 |> Enum.find(fn path -> is_binary(path) and File.dir?(path) end)

python_executable =
 if snakebridge_venv do
 [
 Path.join([snakebridge_venv, "bin", "python3"]),
 Path.join([snakebridge_venv, "bin", "python"]),
 Path.join([snakebridge_venv, "Scripts", "python.exe"]),
 Path.join([snakebridge_venv, "Scripts", "python"])
]
 |> Enum.find(&File.exists?/1)
 end

if snakebridge_venv do
 config :snakebridge, venv_path: snakebridge_venv
end

if python_executable do
 config :snakepit, python_executable: python_executable
end

config :snakepit, environment: config_env()

config :logger, level: :warning
Configure in config/runtime.exs:
import Config

Auto-configure snakepit
SnakeBridge.ConfigHelper.configure_snakepit!()
Timeout Configuration
Global Timeouts
config/config.exs
config :snakebridge,
 runtime: [
 library_profiles: %{"vllm" => :batch_job} # 1 hour timeout
]
Per-Call Timeouts
Use timeout profile
outputs = VLLM.generate!(llm, prompts,
 __runtime__: [timeout_profile: :batch_job]
)

Use exact milliseconds
outputs = VLLM.generate!(llm, prompts,
 __runtime__: [timeout: 300_000] # 5 minutes
)

Using helpers
opts = VLLM.with_timeout([sampling_params: params], timeout_profile: :ml_inference)
outputs = VLLM.generate!(llm, prompts, opts)
Timeout Profiles
	Profile	Duration	Use Case
	:default	2 min	Standard calls
	:streaming	30 min	Streaming responses
	:ml_inference	10 min	LLM inference (recommended)
	:batch_job	1 hour	Large batch processing

Environment Variables
vLLM respects these environment variables:
HuggingFace token for gated models
export HF_TOKEN="your-token"

Use ModelScope instead of HuggingFace
export VLLM_USE_MODELSCOPE=1

Specify CUDA devices
export CUDA_VISIBLE_DEVICES="0,1"

Disable warnings
export VLLM_LOGGING_LEVEL=ERROR

Model Loading
From HuggingFace Hub
Public model
llm = VLLM.llm!("facebook/opt-125m")

Gated model (requires HF_TOKEN)
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf")
From Local Path
llm = VLLM.llm!("/path/to/local/model")
Specific Revision
llm = VLLM.llm!("facebook/opt-125m",
 revision: "main" # or specific commit hash
)
LoRA Configuration
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 enable_lora: true,
 max_lora_rank: 64,
 max_loras: 4,
 lora_extra_vocab_size: 256
)
Structured Output Configuration
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 # Enable guided decoding
 guided_decoding_backend: "outlines" # or "lm-format-enforcer"
)
Performance Tuning
For Maximum Throughput
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 gpu_memory_utilization: 0.95,
 max_num_batched_tokens: 8192,
 max_num_seqs: 256
)
For Minimum Latency
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 gpu_memory_utilization: 0.8,
 max_num_seqs: 1
)
For Memory-Constrained Systems
llm = VLLM.llm!("TheBloke/Llama-2-7B-AWQ",
 quantization: "awq",
 gpu_memory_utilization: 0.7,
 max_model_len: 2048
)

 Multimodal Models - VLLM v0.1.1

 Multimodal Models

vLLM supports multimodal models that can process images, audio, and video alongside text.
Supported Model Types
	Vision-Language Models (VLMs) - Images + Text
	Audio Models - Audio + Text
	Video Models - Video + Text

Vision-Language Models
LLaVA
VLLM.run(fn ->
 llm = VLLM.llm!("llava-hf/llava-1.5-7b-hf",
 max_model_len: 4096
)

 # Note: Image input requires specific formatting
 # depending on the model's expected input format
end)
Qwen-VL
VLLM.run(fn ->
 llm = VLLM.llm!("Qwen/Qwen2-VL-7B-Instruct")
end)
Image Input Formats
Multimodal inputs typically include:
	Image URLs - Direct links to images
	Base64 encoded images - Inline image data
	Local file paths - Path to image files

Example message format for vision models:
messages = [[
 %{
 "role" => "user",
 "content" => [
 %{"type" => "text", "text" => "What's in this image?"},
 %{"type" => "image_url", "image_url" => %{"url" => "https://example.com/image.jpg"}}
]
 }
]]
Model-Specific Formats
Different models may expect different input formats. Check the specific model's documentation on HuggingFace for details.
LLaVA Format
LLaVA uses special tokens for images
prompt = "<image>\\nUSER: What's in this image?\\nASSISTANT:"
Qwen-VL Format
Qwen-VL uses specific message format
messages = [[
 %{
 "role" => "user",
 "content" => [
 %{"type" => "image", "image" => "path/to/image.jpg"},
 %{"type" => "text", "text" => "Describe this image."}
]
 }
]]
Configuration for Multimodal
llm = VLLM.llm!("llava-hf/llava-1.5-7b-hf",
 # Limit number of images per prompt
 limit_mm_per_prompt: %{"image" => 4},

 # Maximum model length (images use many tokens)
 max_model_len: 8192,

 # Trust remote code for custom processors
 trust_remote_code: true
)
Memory Considerations
Multimodal models are typically larger due to:
	Vision encoder weights
	Cross-modal projection layers
	Higher sequence lengths for images

Consider:
	Using quantization for larger models
	Reducing max_model_len if not processing many images
	Using tensor parallelism for very large models

Limitations
	Image processing overhead - First inference may be slower due to image encoding
	Token consumption - Images consume many tokens (hundreds to thousands)
	Model availability - Not all multimodal models are supported

Example: Image Description
VLLM.run(fn ->
 llm = VLLM.llm!("llava-hf/llava-1.5-7b-hf")

 params = VLLM.sampling_params!(
 temperature: 0.7,
 max_tokens: 200
)

 # Format depends on specific model
 # Consult model documentation for exact format
 prompt = "<image>\\nDescribe this image in detail.\\nASSISTANT:"

 # Note: Actual image data needs to be provided via
 # model-specific mechanisms
end)
Future Support
vLLM continues to expand multimodal support. Check the latest vLLM documentation for newly supported models and features.

 LoRA Adapters - VLLM v0.1.1

 LoRA Adapters

LoRA (Low-Rank Adaptation) enables efficient fine-tuning and serving of customized models.
What is LoRA?
LoRA adds small trainable matrices to transformer layers while keeping base model weights frozen. This provides:
	Efficient fine-tuning: Train with less GPU memory
	Small adapter files: Typically 10-100 MB vs GB for full models
	Easy deployment: Switch adapters without reloading base model
	Multi-adapter serving: Serve different adapters from one base model

Enabling LoRA
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 enable_lora: true,
 max_lora_rank: 64,
 max_loras: 4
)
end)
Configuration Options
	Option	Description	Default
	enable_lora	Enable LoRA adapter support	false
	max_lora_rank	Maximum adapter rank	16
	max_loras	Maximum concurrent adapters	1
	lora_extra_vocab_size	Extra vocabulary for adapters	256

Creating LoRA Requests
Create a LoRA request
lora = VLLM.lora_request!(
 "my-adapter", # Unique name
 1, # Integer ID
 "/path/to/adapter" # Path to adapter weights
)
Using LoRA in Generation
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 enable_lora: true,
 max_lora_rank: 64
)

 # Create adapter request
 sql_lora = VLLM.lora_request!("sql-expert", 1, "/path/to/sql-adapter")

 params = VLLM.sampling_params!(temperature: 0.7, max_tokens: 200)

 # Generate with adapter
 outputs = VLLM.generate!(llm, "Write a SQL query to find all users",
 sampling_params: params,
 lora_request: sql_lora
)
end)
Multi-LoRA Serving
Serve different adapters for different requests:
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 enable_lora: true,
 max_loras: 4
)

 # Create multiple adapters
 sql_adapter = VLLM.lora_request!("sql", 1, "/adapters/sql")
 code_adapter = VLLM.lora_request!("code", 2, "/adapters/code")
 medical_adapter = VLLM.lora_request!("medical", 3, "/adapters/medical")

 params = VLLM.sampling_params!(max_tokens: 200)

 # Use different adapters per request
 VLLM.generate!(llm, "SQL query...", sampling_params: params, lora_request: sql_adapter)
 VLLM.generate!(llm, "Python function...", sampling_params: params, lora_request: code_adapter)
 VLLM.generate!(llm, "Medical diagnosis...", sampling_params: params, lora_request: medical_adapter)

 # Generate without adapter (base model)
 VLLM.generate!(llm, "General question...", sampling_params: params)
end)
LoRA Adapter Format
vLLM expects LoRA adapters in the HuggingFace PEFT format:
adapter_directory/
├── adapter_config.json
├── adapter_model.bin (or .safetensors)
└── (optional) special_tokens_map.json
Training LoRA Adapters
Popular tools for training LoRA adapters:
HuggingFace PEFT
from peft import LoraConfig, get_peft_model

config = LoraConfig(
 r=64,
 lora_alpha=16,
 target_modules=["q_proj", "v_proj"],
 lora_dropout=0.1
)

model = get_peft_model(base_model, config)
Train...
model.save_pretrained("/path/to/adapter")
LLaMA-Factory
python train.py --model_name meta-llama/Llama-2-7b-hf \
 --lora_rank 64 \
 --output_dir /path/to/adapter

Performance Tips
	Adapter hot-swapping: vLLM efficiently switches between adapters
	Batch different adapters: Requests with different adapters can be batched
	Memory overhead: Each loaded adapter adds minimal memory
	Rank trade-off: Higher rank = more capacity but more memory

Common Issues
Adapter Not Loading
Check adapter path exists
Check adapter_config.json is valid
Ensure max_lora_rank >= adapter rank
Memory Issues
Reduce max_loras
Use smaller max_lora_rank
Consider quantized base model
Performance Issues
Batch requests with same adapter when possible
Pre-load frequently used adapters
Example: Task-Specific Adapters
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 enable_lora: true,
 max_loras: 3
)

 # Different adapters for different tasks
 adapters = %{
 summarization: VLLM.lora_request!("sum", 1, "/adapters/summarizer"),
 translation: VLLM.lora_request!("trans", 2, "/adapters/translator"),
 qa: VLLM.lora_request!("qa", 3, "/adapters/qa-expert")
 }

 # Route based on task
 task = :summarization
 adapter = Map.get(adapters, task)

 outputs = VLLM.generate!(llm, "Summarize this article...",
 lora_request: adapter
)
end)

 Structured Outputs - VLLM v0.1.1

 Structured Outputs

Structured outputs allow you to constrain LLM generation to specific formats like JSON, regex patterns, or predefined choices.
Overview
vLLM supports guided decoding through:
	JSON Schema - Output valid JSON matching a schema
	Regex - Output matching a regular expression
	Choice - Output from a predefined list
	Grammar - Output matching a BNF grammar

Note: Guided decoding requires a vLLM build that exposes GuidedDecodingParams.
Check VLLM.guided_decoding_supported?/0 before using these APIs.
Guided Decoding Parameters
Create guided decoding params
guided = VLLM.guided_decoding_params!(
 json: schema,
 # OR regex: pattern,
 # OR choice: options,
 # OR grammar: bnf
)
JSON Schema
Constrain output to valid JSON matching a schema:
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf")

 schema = ~s({
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "age": {"type": "integer", "minimum": 0},
 "email": {"type": "string", "format": "email"}
 },
 "required": ["name", "age"]
 })

 guided = VLLM.guided_decoding_params!(json: schema)
 params = VLLM.sampling_params!(max_tokens: 100)

 outputs = VLLM.generate!(llm,
 "Extract user info from: John is 25 years old, email john@example.com",
 sampling_params: params,
 guided_decoding_params: guided
)
end)
Regex Constraints
Match output to a regular expression:
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf")

 # Phone number pattern
 guided = VLLM.guided_decoding_params!(regex: "[0-9]{3}-[0-9]{3}-[0-9]{4}")

 outputs = VLLM.generate!(llm,
 "Generate a US phone number:",
 guided_decoding_params: guided
)
 # Output: "555-123-4567"
end)
Common regex patterns:
Date (YYYY-MM-DD)
VLLM.guided_decoding_params!(regex: "[0-9]{4}-[0-9]{2}-[0-9]{2}")

Email
VLLM.guided_decoding_params!(regex: "[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}")

Integer
VLLM.guided_decoding_params!(regex: "-?[0-9]+")

Float
VLLM.guided_decoding_params!(regex: "-?[0-9]+\\.?[0-9]*")
Choice Constraints
Limit output to specific options:
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf")

 # Sentiment classification
 guided = VLLM.guided_decoding_params!(choice: ["positive", "negative", "neutral"])

 outputs = VLLM.generate!(llm,
 "Classify the sentiment of 'I love this product!': ",
 guided_decoding_params: guided
)
 # Output: "positive"
end)
Grammar Constraints
Use BNF grammar for complex formats:
VLLM.run(fn ->
 llm = VLLM.llm!("meta-llama/Llama-2-7b-hf")

 # Simple arithmetic grammar
 grammar = """
 ?start: expr
 ?expr: term (("+" | "-") term)*
 ?term: factor (("*" | "/") factor)*
 ?factor: NUMBER | "(" expr ")"
 NUMBER: /[0-9]+/
 """

 guided = VLLM.guided_decoding_params!(grammar: grammar)

 outputs = VLLM.generate!(llm,
 "Write a math expression:",
 guided_decoding_params: guided
)
end)
Backend Selection
vLLM supports different guided decoding backends:
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 guided_decoding_backend: "outlines" # or "lm-format-enforcer"
)
Use Cases
Structured Data Extraction
schema = ~s({
 "type": "object",
 "properties": {
 "entities": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "type": {"type": "string", "enum": ["person", "organization", "location"]}
 }
 }
 }
 }
})

guided = VLLM.guided_decoding_params!(json: schema)
Classification
categories = ["technology", "sports", "politics", "entertainment", "science"]
guided = VLLM.guided_decoding_params!(choice: categories)
Form Validation
ZIP code
guided = VLLM.guided_decoding_params!(regex: "[0-9]{5}(-[0-9]{4})?")

Social Security Number
guided = VLLM.guided_decoding_params!(regex: "[0-9]{3}-[0-9]{2}-[0-9]{4}")
Tips
	Simpler is better: Use choice for finite options, regex for patterns
	Test schemas: Validate JSON schemas work before deployment
	Performance: Constrained decoding adds overhead; balance quality vs speed
	Model compatibility: Ensure model can follow constraints (instruction-tuned helps)

Limitations
	Complex grammars: Very complex grammars may slow generation
	Schema validation: Runtime validation, not compile-time
	Model capabilities: Model must understand the task to produce valid output
	Token boundaries: Regex/grammar constraints work at token level

 Supported Models - VLLM v0.1.1

 Supported Models

vLLM supports a wide variety of open-source models from HuggingFace. This guide lists major supported model families.
Transformer LLMs
Llama Family
Llama 2
VLLM.llm!("meta-llama/Llama-2-7b-hf")
VLLM.llm!("meta-llama/Llama-2-13b-hf")
VLLM.llm!("meta-llama/Llama-2-70b-hf")
VLLM.llm!("meta-llama/Llama-2-7b-chat-hf")

Llama 3
VLLM.llm!("meta-llama/Meta-Llama-3-8B")
VLLM.llm!("meta-llama/Meta-Llama-3-70B")
VLLM.llm!("meta-llama/Meta-Llama-3-8B-Instruct")

Llama 3.1
VLLM.llm!("meta-llama/Llama-3.1-8B")
VLLM.llm!("meta-llama/Llama-3.1-70B")
VLLM.llm!("meta-llama/Llama-3.1-405B")

Llama 3.2
VLLM.llm!("meta-llama/Llama-3.2-1B")
VLLM.llm!("meta-llama/Llama-3.2-3B")
VLLM.llm!("meta-llama/Llama-3.2-1B-Instruct")
Note: Some Llama models are gated. Accept the license and request access on Hugging Face.
Mistral Family
VLLM.llm!("mistralai/Mistral-7B-v0.1")
VLLM.llm!("mistralai/Mistral-7B-Instruct-v0.2")
VLLM.llm!("mistralai/Mistral-Nemo-Base-2407")
Qwen Family
VLLM.llm!("Qwen/Qwen2-7B")
VLLM.llm!("Qwen/Qwen2-72B")
VLLM.llm!("Qwen/Qwen2.5-7B-Instruct")
VLLM.llm!("Qwen/Qwen2.5-72B-Instruct")
Gemma Family
VLLM.llm!("google/gemma-2b")
VLLM.llm!("google/gemma-7b")
VLLM.llm!("google/gemma-2-9b")
VLLM.llm!("google/gemma-2-27b")
Phi Family
VLLM.llm!("microsoft/phi-2")
VLLM.llm!("microsoft/Phi-3-mini-4k-instruct")
VLLM.llm!("microsoft/Phi-3.5-mini-instruct")
Mixture-of-Experts (MoE)
Mixtral
VLLM.llm!("mistralai/Mixtral-8x7B-v0.1")
VLLM.llm!("mistralai/Mixtral-8x7B-Instruct-v0.1")
VLLM.llm!("mistralai/Mixtral-8x22B-v0.1")

DeepSeek
VLLM.llm!("deepseek-ai/deepseek-moe-16b-base")
VLLM.llm!("deepseek-ai/DeepSeek-V2")
VLLM.llm!("deepseek-ai/DeepSeek-V3")

Qwen MoE
VLLM.llm!("Qwen/Qwen1.5-MoE-A2.7B")
Code Models
CodeLlama
VLLM.llm!("codellama/CodeLlama-7b-hf")
VLLM.llm!("codellama/CodeLlama-34b-Instruct-hf")

StarCoder
VLLM.llm!("bigcode/starcoder2-15b")

DeepSeek Coder
VLLM.llm!("deepseek-ai/deepseek-coder-6.7b-base")
Embedding Models
E5 Mistral
VLLM.llm!("intfloat/e5-mistral-7b-instruct", runner: "pooling")

BGE
VLLM.llm!("BAAI/bge-large-en-v1.5", runner: "pooling")
Multimodal Models
LLaVA
VLLM.llm!("llava-hf/llava-1.5-7b-hf")
VLLM.llm!("llava-hf/llava-v1.6-mistral-7b-hf")

Qwen-VL
VLLM.llm!("Qwen/Qwen2-VL-7B-Instruct")
Quantized Models
Many models are available pre-quantized:
AWQ Quantized
VLLM.llm!("TheBloke/Llama-2-7B-AWQ", quantization: "awq")
VLLM.llm!("TheBloke/Llama-2-13B-AWQ", quantization: "awq")

GPTQ Quantized
VLLM.llm!("TheBloke/Llama-2-7B-GPTQ", quantization: "gptq")
Small Models (for Testing)
OPT (small, fast)
VLLM.llm!("facebook/opt-125m")
VLLM.llm!("facebook/opt-350m")
VLLM.llm!("facebook/opt-1.3b")

GPT-2
VLLM.llm!("gpt2")
VLLM.llm!("gpt2-medium")
Model Selection Tips
	For chat/instruction following: Use "-Instruct" or "-chat" variants
	For memory constraints: Use quantized versions (AWQ, GPTQ)
	For multi-GPU: Use larger models with tensor parallelism
	For testing: Use small models like OPT-125m

Gated Models
Some models require accepting terms on HuggingFace:
	Visit the model page on HuggingFace
	Accept the license agreement
	Set HF_TOKEN environment variable

export HF_TOKEN="your-huggingface-token"

Adding New Models
vLLM supports most transformer-based architectures. If a model isn't working:
	Check if it's on the vLLM supported models list
	Try with trust_remote_code: true for custom architectures
	Check vLLM GitHub issues for known compatibility issues

 Quantization - VLLM v0.1.1

 Quantization

Quantization reduces model memory footprint by using lower-precision number formats. vLLM supports multiple quantization methods.
Why Quantization?
	Precision	Memory per Parameter	Relative Size
	FP32	4 bytes	100%
	FP16/BF16	2 bytes	50%
	INT8	1 byte	25%
	INT4	0.5 bytes	12.5%

A 7B parameter model:
	FP32: ~28 GB
	FP16: ~14 GB
	INT8: ~7 GB
	INT4: ~3.5 GB

Supported Methods
AWQ (Activation-aware Weight Quantization)
High-quality 4-bit quantization with excellent performance:
llm = VLLM.llm!("TheBloke/Llama-2-7B-AWQ",
 quantization: "awq"
)
GPTQ
Popular post-training quantization method:
llm = VLLM.llm!("TheBloke/Llama-2-7B-GPTQ",
 quantization: "gptq"
)
SqueezeLLM
Sensitivity-based non-uniform quantization:
llm = VLLM.llm!("squeezellm/Llama-2-7b-squeezellm",
 quantization: "squeezellm"
)
FP8
8-bit floating point quantization:
llm = VLLM.llm!("neuralmagic/Meta-Llama-3-8B-Instruct-FP8",
 quantization: "fp8"
)
BitsAndBytes
4-bit quantization via the bitsandbytes library:
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 quantization: "bitsandbytes",
 load_format: "bitsandbytes"
)
Using Pre-Quantized Models
The easiest approach is using pre-quantized models from HuggingFace:
AWQ models from TheBloke
VLLM.llm!("TheBloke/Llama-2-7B-AWQ", quantization: "awq")
VLLM.llm!("TheBloke/Llama-2-13B-AWQ", quantization: "awq")
VLLM.llm!("TheBloke/Mistral-7B-Instruct-v0.2-AWQ", quantization: "awq")

GPTQ models from TheBloke
VLLM.llm!("TheBloke/Llama-2-7B-GPTQ", quantization: "gptq")
VLLM.llm!("TheBloke/CodeLlama-34B-GPTQ", quantization: "gptq")
Quantized KV Cache
In addition to model quantization, you can quantize the KV cache:
llm = VLLM.llm!("meta-llama/Llama-2-7b-hf",
 kv_cache_dtype: "fp8" # Reduce KV cache memory by 50%
)
Performance Comparison
	Method	Memory Reduction	Speed Impact	Quality Impact
	AWQ	~75%	+20-50%	Minimal
	GPTQ	~75%	+10-30%	Minimal
	FP8	~50%	+10-20%	Negligible
	INT8	~50%	+10-30%	Negligible

When to Use Quantization
Use quantization when:
	GPU memory is limited
	Running larger models
	Need to maximize throughput
	Quality loss is acceptable

Avoid quantization when:
	Maximum quality is required
	Running small models
	Memory is not constrained

Example: Running Large Models
Run a 70B model on consumer hardware:
70B model quantized to fit on 2x 24GB GPUs
llm = VLLM.llm!("TheBloke/Llama-2-70B-AWQ",
 quantization: "awq",
 tensor_parallel_size: 2,
 gpu_memory_utilization: 0.95
)
Quality Considerations
Quantization can affect output quality, especially for:
	Mathematical reasoning
	Code generation
	Precise factual recall

For critical applications, benchmark quantized vs. full-precision models on your specific use case.

 VLLM Examples - VLLM v0.1.1

 VLLM Examples

This directory contains comprehensive examples demonstrating VLLM capabilities for Elixir. VLLM wraps Python's vLLM library via SnakeBridge, providing high-throughput LLM inference.
Prerequisites
IMPORTANT: vLLM requires a CUDA-capable NVIDIA GPU. If you don't have a compatible GPU, the inference examples will fail with CUDA errors.
Install dependencies and set up Python environment
mix deps.get
mix snakebridge.setup

Verify you have a CUDA-capable GPU
nvidia-smi

GPU Requirements
	CUDA-capable NVIDIA GPU (e.g., RTX 3090, A100, V100)
	CUDA toolkit installed and configured
	Sufficient GPU memory for your chosen model (8GB+ recommended)

Running Examples
Run any example individually:
mix run examples/basic.exs

Or run all examples with the test script:
./examples/run_all.sh

Runtime options
Some examples accept CLI flags for overrides:
Embeddings example (optional override)
mix run examples/embeddings.exs -- --model "BAAI/bge-large-en-v1.5"

LoRA example (auto-downloads a public default adapter on first run)
mix run examples/lora.exs

LoRA example (optional overrides)
mix run examples/lora.exs -- \
 --adapter /path/to/adapter \
 --model "your-base-model" \
 --name "adapter" \
 --prompt "Write a short SQL query to list users." \
 --rank 64

Timeout example (optional overrides)
mix run examples/timeout_config.exs -- --model "facebook/opt-125m"
mix run examples/timeout_config.exs -- --prompt "Explain Elixir in one sentence."

The default LoRA adapter comes from edbeeching/opt-125m-lora (base model facebook/opt-125m)
and is downloaded automatically. This requires network access the first time it runs.

Core Examples
Basic Generation (basic.exs)
The foundational VLLM example showing core concepts:
	Creating an LLM instance
	Generating text completions
	Processing results

llm = VLLM.llm!("facebook/opt-125m")
outputs = VLLM.generate!(llm, ["Hello, my name is"])
Run: mix run examples/basic.exs

Sampling Parameters (sampling_params.exs)
Control text generation behavior:
	Temperature for randomness
	Top-p (nucleus) sampling
	Max tokens limit
	Stop sequences
	Multiple completions

params = VLLM.sampling_params!(temperature: 0.8, top_p: 0.95, max_tokens: 100)
outputs = VLLM.generate!(llm, prompt, sampling_params: params)
Run: mix run examples/sampling_params.exs

Chat Completions (chat.exs)
Chat-style interactions with instruction-tuned models:
	System prompts
	Multi-turn conversations
	Batch chat processing

messages = [[
 %{"role" => "system", "content" => "You are helpful."},
 %{"role" => "user", "content" => "Hello!"}
]]
outputs = VLLM.chat!(llm, messages)
Run: mix run examples/chat.exs

Batch Inference (batch_inference.exs)
High-throughput batch processing:
	Processing multiple prompts efficiently
	Continuous batching
	Performance measurement

prompts = ["Prompt 1", "Prompt 2", "Prompt 3", ...]
outputs = VLLM.generate!(llm, prompts, sampling_params: params)
Run: mix run examples/batch_inference.exs

Advanced Examples
Structured Output (structured_output.exs)
Guided generation for structured outputs:
	JSON schema constraints
	Regex patterns
	Choice constraints

guided = VLLM.guided_decoding_params!(choice: ["yes", "no", "maybe"])
Run: mix run examples/structured_output.exs

Quantization (quantization.exs)
Memory-efficient inference with quantized models:
	AWQ quantization
	GPTQ quantization
	Memory comparison

llm = VLLM.llm!("TheBloke/Llama-2-7B-AWQ", quantization: "awq")
Run: mix run examples/quantization.exs

Multi-GPU (multi_gpu.exs)
Distributed inference across GPUs:
	Tensor parallelism
	Pipeline parallelism
	Memory utilization

llm = VLLM.llm!("meta-llama/Llama-2-13b-hf",
 tensor_parallel_size: 2,
 gpu_memory_utilization: 0.9
)
Run: mix run examples/multi_gpu.exs

Embeddings (embeddings.exs)
Vector embeddings for semantic search:
	Loading embedding models
	Batch embedding
	Use cases

llm = VLLM.llm!("intfloat/e5-mistral-7b-instruct", runner: "pooling")
outputs = VLLM.embed!(llm, ["Hello, world!"])
Run: mix run examples/embeddings.exs

LoRA Adapters (lora.exs)
Fine-tuned model serving:
	Loading LoRA adapters
	Multi-LoRA serving
	Configuration

llm = VLLM.llm!("meta-llama/Llama-2-7b-hf", enable_lora: true)
lora = VLLM.lora_request!("my-adapter", 1, "/path/to/adapter")
outputs = VLLM.generate!(llm, prompt, lora_request: lora)
Run: mix run examples/lora.exs

Timeout Configuration (timeout_config.exs)
Configure timeouts for long-running operations:
	Timeout profiles
	Per-call overrides
	Helper functions

opts = VLLM.with_timeout([sampling_params: params], timeout_profile: :batch_job)
outputs = VLLM.generate!(llm, prompts, opts)
Run: mix run examples/timeout_config.exs

Direct API (direct_api.exs)
Universal FFI for advanced usage:
	Direct Python calls
	Object methods and attributes
	Error handling

version = VLLM.get!("vllm", "__version__")
result = VLLM.call!("vllm", "SamplingParams", [], temperature: 0.8)
Run: mix run examples/direct_api.exs

Running All Examples
The run_all.sh script runs all examples sequentially with:
	Colorized output
	Per-example timing
	Pass/fail summary
	Automatic timeout handling

Run with default timeout
./examples/run_all.sh

Run with custom timeout (300s per example)
VLLM_RUN_TIMEOUT_SECONDS=300 ./examples/run_all.sh

Disable timeout
VLLM_RUN_TIMEOUT_SECONDS=0 ./examples/run_all.sh

Example Index
	Example	Focus	Description
	basic.exs	Core	Simple text generation
	sampling_params.exs	Core	Generation control parameters
	chat.exs	Core	Chat completions
	batch_inference.exs	Performance	High-throughput batching
	structured_output.exs	Advanced	Constrained generation
	quantization.exs	Advanced	Memory-efficient models
	multi_gpu.exs	Advanced	Distributed inference
	embeddings.exs	Advanced	Vector embeddings
	lora.exs	Advanced	Fine-tuned adapters
	timeout_config.exs	Configuration	Timeout settings
	direct_api.exs	Advanced	Raw Python access

Troubleshooting
No CUDA-Capable GPU / CUDA Errors
CUDA error: no kernel image is available for execution on the device
or
RuntimeError: CUDA error
	vLLM requires a CUDA-capable NVIDIA GPU - it cannot run on CPU-only systems
	Verify your GPU is detected: nvidia-smi
	Ensure CUDA toolkit is properly installed
	Check GPU compute capability matches vLLM requirements (compute capability 7.0+)

CUDA Out of Memory
CUDA out of memory
	Reduce gpu_memory_utilization
	Use smaller model
	Use quantized model

Model Not Found
Model not found
	Check model name on HuggingFace
	Check internet connection

Timeout Errors
For long operations, increase timeout:
VLLM.generate!(llm, prompts,
 __runtime__: [timeout_profile: :batch_job]
)
Python/vLLM Not Installed
Module vllm not found
Run: mix snakebridge.setup

 Changelog - VLLM v0.1.1

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.1.1 - 2026-01-10
Changed
	Embedding models now use runner: "pooling" instead of task: "embed"
	The embed/3 function now calls the embed method instead of encode

Improved
	Rewrote examples to be runnable with real GPU inference
	Added CLI flag support for examples (--model, --prompt, --adapter, etc.)
	LoRA example auto-downloads a default adapter on first run
	Updated documentation to reflect embedding API changes

Fixed
	Added generated files to .gitignore (examples/assets/, registry.json)

0.1.0 - 2026-01-08
	Initial release

 Vllm - VLLM v0.1.1

Vllm

SnakeBridge bindings for vllm.
Runtime Options
All functions accept a __runtime__ option for controlling execution behavior:
Elixir.Vllm.some_function(args, __runtime__: [timeout: 120_000])
Supported runtime options
	:timeout - Call timeout in milliseconds (default: 120,000ms / 2 minutes)
	:timeout_profile - Use a named profile (:default, :ml_inference, :batch_job, :streaming)
	:stream_timeout - Timeout for streaming operations (default: 1,800,000ms / 30 minutes)
	:session_id - Override the session ID for this call

Timeout Profiles
	:default - 2 minute timeout for regular calls
	:ml_inference - 10 minute timeout for ML/LLM workloads
	:batch_job - Unlimited timeout for long-running jobs
	:streaming - 2 minute timeout, 30 minute stream_timeout

Example with timeout override
For a long-running ML inference call
Elixir.Vllm.predict(data, __runtime__: [timeout_profile: :ml_inference])

Or explicit timeout
Elixir.Vllm.predict(data, __runtime__: [timeout: 600_000])
See SnakeBridge.Defaults for global timeout configuration.

 VLLM - VLLM v0.1.1

VLLM

VLLM - vLLM for Elixir via SnakeBridge.
Easy, fast, and cheap LLM serving for everyone. This library provides
transparent access to Python vLLM through SnakeBridge's Universal FFI.
Quick Start
VLLM.run(fn ->
 # Create an LLM instance
 llm = VLLM.llm!("facebook/opt-125m")

 # Generate text
 outputs = VLLM.generate!(llm, ["Hello, my name is"])

 # Process results
 Enum.each(outputs, fn output ->
 prompt = VLLM.attr!(output, "prompt")
 generated = VLLM.attr!(output, "outputs") |> Enum.at(0)
 text = VLLM.attr!(generated, "text")
 IO.puts("Prompt: #{prompt}")
 IO.puts("Generated: #{text}")
 end)
end)
Chat Interface
VLLM.run(fn ->
 llm = VLLM.llm!("Qwen/Qwen2-0.5B-Instruct")

 messages = [[
 %{"role" => "system", "content" => "You are a helpful assistant."},
 %{"role" => "user", "content" => "What is the capital of France?"}
]]

 outputs = VLLM.chat!(llm, messages)
 # Process chat outputs...
end)
Sampling Parameters
Control generation with VLLM.SamplingParams:
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 params = VLLM.sampling_params!(temperature: 0.8, top_p: 0.95, max_tokens: 100)

 outputs = VLLM.generate!(llm, ["Once upon a time"], sampling_params: params)
end)
Timeout Configuration
VLLM leverages SnakeBridge's timeout architecture for LLM workloads.
By default, all vLLM calls use the :ml_inference profile (10 minute timeout).
Timeout Profiles
	Profile	Timeout	Use Case
	:default	2 min	Standard Python calls
	:streaming	30 min	Streaming responses
	:ml_inference	10 min	LLM inference (VLLM default)
	:batch_job	1 hour	Long-running batch operations

Per-Call Timeout Override
VLLM.generate!(llm, prompts,
 sampling_params: params,
 __runtime__: [timeout_profile: :batch_job]
)
Architecture
VLLM uses SnakeBridge's Universal FFI to call vLLM directly:
Elixir (VLLM.call/4)
 |
SnakeBridge.call/4
 |
Snakepit gRPC
 |
Python vLLM
 |
GPU/TPU Inference
All Python lifecycle is managed automatically by Snakepit.

 Summary

 Functions

 async_engine(model, opts \\ [])

 Create an AsyncLLMEngine for asynchronous inference.

 async_engine!(model, opts \\ [])

 Bang version of async_engine/2.

 attr(ref, attribute)

 Get an attribute from a Python object reference.

 attr!(ref, attribute)

 Bang version of attr/2.

 bytes(data)

 Encode binary data as Python bytes.

 call(module, function, args \\ [], opts \\ [])

 Call any vLLM function or class.

 call!(module, function, args \\ [], opts \\ [])

 Bang version - raises on error, returns value directly.

 chat(llm, messages, opts \\ [])

 Generate chat completions from messages.

 chat!(llm, messages, opts \\ [])

 Bang version of chat/3 - raises on error.

 embed(llm, texts, opts \\ [])

 Generate embeddings for texts using a pooling model.

 embed!(llm, texts, opts \\ [])

 Bang version of embed/3.

 encode(llm, text, opts \\ [])

 Encode text to token IDs.

 encode!(llm, text, opts \\ [])

 Bang version of encode/3.

 engine(model, opts \\ [])

 Create an LLMEngine for fine-grained control over inference.

 engine!(model, opts \\ [])

 Bang version of engine/2.

 generate(llm, prompts, opts \\ [])

 Generate text completions from prompts.

 generate!(llm, prompts, opts \\ [])

 Bang version of generate/3 - raises on error.

 get(module, attr)

 Get a module attribute.

 get!(module, attr)

 Bang version of get/2.

 guided_decoding_params(opts \\ [])

 Create guided decoding parameters for structured outputs.

 guided_decoding_params!(opts \\ [])

 Bang version of guided_decoding_params/1.

 guided_decoding_supported?()

 Check whether guided decoding parameters are available in the installed vLLM.

 llm(model, opts \\ [])

 Create a vLLM LLM instance for offline inference.

 llm!(model, opts \\ [])

 Bang version of llm/2 - raises on error.

 lora_request(name, lora_int_id, lora_path, opts \\ [])

 Create a LoRARequest for serving LoRA adapters.

 lora_request!(name, lora_int_id, lora_path, opts \\ [])

 Bang version of lora_request/4.

 method(ref, method, args \\ [], opts \\ [])

 Call a method on a Python object reference.

 method!(ref, method, args \\ [], opts \\ [])

 Bang version of method/4.

 pooling_params(opts \\ [])

 Create PoolingParams for embedding models.

 pooling_params!(opts \\ [])

 Bang version of pooling_params/1.

 ref?(value)

 Check if a value is a Python object reference.

 run(fun, opts \\ [])

 Run VLLM code with automatic Python lifecycle management.

 sampling_params(opts \\ [])

 Create SamplingParams for controlling text generation.

 sampling_params!(opts \\ [])

 Bang version of sampling_params/1 - raises on error.

 set_attr(ref, attribute, value)

 Set an attribute on a Python object reference.

 timeout_ms(milliseconds)

 Create a timeout option for exact milliseconds.

 timeout_profile(profile)

 Timeout profile atoms for use with __runtime__ option.

 version()

 Get the installed vLLM version.

 version!()

 Bang version of version/0.

 with_timeout(opts, timeout_opts)

 Add timeout configuration to options.

 Functions

 async_engine(model, opts \\ [])

Create an AsyncLLMEngine for asynchronous inference.
Useful for building online serving applications with concurrent requests.
Examples
{:ok, engine} = VLLM.async_engine("facebook/opt-125m")

 async_engine!(model, opts \\ [])

Bang version of async_engine/2.

 attr(ref, attribute)

Get an attribute from a Python object reference.

 attr!(ref, attribute)

Bang version of attr/2.

 bytes(data)

Encode binary data as Python bytes.

 call(module, function, args \\ [], opts \\ [])

Call any vLLM function or class.
Examples
{:ok, result} = VLLM.call("vllm", "LLM", ["facebook/opt-125m"])
{:ok, config} = VLLM.call("vllm.config", "ModelConfig", [], model: "...")

 call!(module, function, args \\ [], opts \\ [])

Bang version - raises on error, returns value directly.

 chat(llm, messages, opts \\ [])

Generate chat completions from messages.
Arguments
	llm - LLM instance from VLLM.llm!/1
	messages - List of message conversations, where each conversation is a list of message maps
	opts - Options including:	:sampling_params - SamplingParams instance
	:use_tqdm - Show progress bar
	:chat_template - Custom chat template (Jinja2 format)

Message Format
Each message is a map with:
	"role" - One of "system", "user", "assistant"
	"content" - Message content string

Examples
messages = [[
 %{"role" => "system", "content" => "You are helpful."},
 %{"role" => "user", "content" => "Hello!"}
]]

outputs = VLLM.chat!(llm, messages)
Returns
List of RequestOutput objects (same as generate/3).

 chat!(llm, messages, opts \\ [])

Bang version of chat/3 - raises on error.

 embed(llm, texts, opts \\ [])

Generate embeddings for texts using a pooling model.
Arguments
	llm - LLM instance configured with an embedding model
	texts - String or list of strings to embed
	opts - Options including:	:pooling_params - PoolingParams instance

Examples
llm = VLLM.llm!("intfloat/e5-mistral-7b-instruct", runner: "pooling")
outputs = VLLM.embed!(llm, ["Hello, world!", "How are you?"])
Returns
List of EmbeddingRequestOutput objects with:
	outputs - List of embeddings

 embed!(llm, texts, opts \\ [])

Bang version of embed/3.

 encode(llm, text, opts \\ [])

Encode text to token IDs.
Examples
{:ok, token_ids} = VLLM.encode(llm, "Hello, world!")

 encode!(llm, text, opts \\ [])

Bang version of encode/3.

 engine(model, opts \\ [])

Create an LLMEngine for fine-grained control over inference.
The LLMEngine provides lower-level access to vLLM's inference capabilities,
useful for building custom serving solutions.
Options
Same as llm/2 plus:
	:max_num_seqs - Maximum number of sequences per batch
	:max_num_batched_tokens - Maximum tokens per batch

Examples
{:ok, engine} = VLLM.engine("facebook/opt-125m")

 engine!(model, opts \\ [])

Bang version of engine/2.

 generate(llm, prompts, opts \\ [])

Generate text completions from prompts.
Arguments
	llm - LLM instance from VLLM.llm!/1
	prompts - String or list of strings to complete
	opts - Options including:	:sampling_params - SamplingParams instance
	:use_tqdm - Show progress bar (default: true)
	:lora_request - LoRA adapter request

Examples
outputs = VLLM.generate!(llm, "Hello, my name is")
outputs = VLLM.generate!(llm, ["Prompt 1", "Prompt 2"], sampling_params: params)
Returns
List of RequestOutput objects. Each has:
	prompt - Original prompt
	outputs - List of CompletionOutput objects	text - Generated text
	token_ids - Generated token IDs
	finish_reason - Reason for completion ("length", "stop", etc.)

 generate!(llm, prompts, opts \\ [])

Bang version of generate/3 - raises on error.

 get(module, attr)

Get a module attribute.

 get!(module, attr)

Bang version of get/2.

 guided_decoding_params(opts \\ [])

Create guided decoding parameters for structured outputs.
Options
	:json - JSON schema string for JSON output
	:json_object - Python dict/Pydantic model for JSON
	:regex - Regex pattern for output
	:choice - List of allowed string choices
	:grammar - BNF grammar string

Examples
JSON schema
{:ok, guided} = VLLM.guided_decoding_params(
 json: ~s({"type": "object", "properties": {"name": {"type": "string"}}})
)

Regex pattern
{:ok, guided} = VLLM.guided_decoding_params(regex: "[0-9]{3}-[0-9]{4}")

Choice
{:ok, guided} = VLLM.guided_decoding_params(choice: ["yes", "no", "maybe"])
Support
Guided decoding requires a vLLM build that exposes GuidedDecodingParams.
Use guided_decoding_supported?/0 to check availability.

 guided_decoding_params!(opts \\ [])

Bang version of guided_decoding_params/1.

 guided_decoding_supported?()

Check whether guided decoding parameters are available in the installed vLLM.

 llm(model, opts \\ [])

Create a vLLM LLM instance for offline inference.
Options
Common options passed as keyword arguments:
	:dtype - Data type ("auto", "float16", "bfloat16", "float32")
	:tensor_parallel_size - Number of GPUs for tensor parallelism
	:gpu_memory_utilization - Fraction of GPU memory to use (0.0-1.0)
	:max_model_len - Maximum sequence length
	:quantization - Quantization method ("awq", "gptq", "squeezellm", etc.)
	:trust_remote_code - Whether to trust remote code from HuggingFace

Examples
{:ok, llm} = VLLM.llm("facebook/opt-125m")
{:ok, llm} = VLLM.llm("Qwen/Qwen2-7B", tensor_parallel_size: 2)
{:ok, llm} = VLLM.llm("TheBloke/Llama-2-7B-AWQ", quantization: "awq")

 llm!(model, opts \\ [])

Bang version of llm/2 - raises on error.

 lora_request(name, lora_int_id, lora_path, opts \\ [])

Create a LoRARequest for serving LoRA adapters.
Arguments
	name - Unique name for this LoRA adapter
	lora_int_id - Integer ID for the adapter
	lora_path - Path to the LoRA adapter weights

Examples
{:ok, lora} = VLLM.lora_request("my-adapter", 1, "/path/to/adapter")

 lora_request!(name, lora_int_id, lora_path, opts \\ [])

Bang version of lora_request/4.

 method(ref, method, args \\ [], opts \\ [])

Call a method on a Python object reference.

 method!(ref, method, args \\ [], opts \\ [])

Bang version of method/4.

 pooling_params(opts \\ [])

Create PoolingParams for embedding models.
Options
	:additional_data - Additional metadata for the pooling request

Examples
{:ok, params} = VLLM.pooling_params()

 pooling_params!(opts \\ [])

Bang version of pooling_params/1.

 ref?(value)

Check if a value is a Python object reference.

 run(fun, opts \\ [])

Run VLLM code with automatic Python lifecycle management.
Wraps your code in Snakepit.run_as_script/2 which:
	Starts the Python process pool
	Runs your code
	Cleans up on exit

Pass halt: true in opts if you need to force the BEAM to exit
(for example, when running inside wrapper scripts).
Example
VLLM.run(fn ->
 llm = VLLM.llm!("facebook/opt-125m")
 outputs = VLLM.generate!(llm, ["Hello, world"])
 # ... process outputs
end)

 sampling_params(opts \\ [])

Create SamplingParams for controlling text generation.
Options
	:temperature - Sampling temperature (default: 1.0)
	:top_p - Nucleus sampling probability (default: 1.0)
	:top_k - Top-k sampling (default: -1, disabled)
	:max_tokens - Maximum tokens to generate (default: 16)
	:min_tokens - Minimum tokens to generate (default: 0)
	:presence_penalty - Presence penalty (default: 0.0)
	:frequency_penalty - Frequency penalty (default: 0.0)
	:repetition_penalty - Repetition penalty (default: 1.0)
	:stop - List of stop strings
	:stop_token_ids - List of stop token IDs
	:n - Number of completions to generate (default: 1)
	:best_of - Number of sequences to generate and select best from
	:seed - Random seed for reproducibility

Examples
{:ok, params} = VLLM.sampling_params(temperature: 0.8, max_tokens: 100)
{:ok, params} = VLLM.sampling_params(top_p: 0.9, stop: ["\n", "END"])

 sampling_params!(opts \\ [])

Bang version of sampling_params/1 - raises on error.

 set_attr(ref, attribute, value)

Set an attribute on a Python object reference.

 timeout_ms(milliseconds)

Create a timeout option for exact milliseconds.
Examples
VLLM.generate!(llm, prompts,
 Keyword.merge([sampling_params: params], VLLM.timeout_ms(300_000))
)

 timeout_profile(profile)

Timeout profile atoms for use with __runtime__ option.
Examples
VLLM.generate!(llm, prompts,
 Keyword.merge([sampling_params: params], VLLM.timeout_profile(:batch_job))
)

 version()

Get the installed vLLM version.

 version!()

Bang version of version/0.

 with_timeout(opts, timeout_opts)

Add timeout configuration to options.
Options
	:timeout - Exact timeout in milliseconds
	:timeout_profile - Use a predefined profile

Examples
opts = VLLM.with_timeout([], timeout: 60_000)
VLLM.generate!(llm, prompts, Keyword.merge(opts, sampling_params: params))

OEBPS/dist/epub-4WIP524F.js
