

 vsr

 v0.1.0

 Table of contents

 	Vsr

 	Changelog

 	Viewstamped Replication (VSR) Specification

 	Telemetry Events

 	
 Modules

 	Vsr.Message.StartViewChangeAck

 	Vsr.Message.ViewChangeOk

 	Core

 	VsrServer

 	Messages

 	Vsr.Message

 	Vsr.Message.ClientRequest

 	Vsr.Message.Commit

 	Vsr.Message.DoViewChange

 	Vsr.Message.GetState

 	Vsr.Message.Heartbeat

 	Vsr.Message.NewState

 	Vsr.Message.Prepare

 	Vsr.Message.PrepareOk

 	Vsr.Message.StartView

 	Vsr.Message.StartViewChange

 	Support

 	Vsr.LogEntry

 	Vsr.Telemetry

 Vsr

Viewstamped Replication for Elixir
A distributed consensus system implementing the Viewstamped Replication (VSR) protocol, providing fault-tolerant state machine replication with automatic failure recovery.
Features
✅ Core VSR Protocol
	Primary-backup replication with view changes
	Automatic primary failure detection and recovery
	Log-based operation ordering and consistency
	Quorum-based consensus decisions

✅ Implemented Components
	Sequential operation validation with gap detection
	Heartbeat mechanism for failure detection
	Automatic view change triggering on primary timeout
	Memory management (cleanup of committed operation metadata)
	Pluggable state machines, log storage, and communication layers

✅ Observability
	Comprehensive telemetry instrumentation following Erlang/Elixir conventions
	Leadership span tracking (when nodes are primary/leader)
	Protocol event tracking (prepare, commit, view changes)
	State machine operation spans with duration metrics
	Timer and heartbeat event tracking
	See TELEMETRY_EVENTS.md for complete event documentation

Current Limitations
⚠️ Client Request Deduplication: Currently only implemented for read-only operations. Write operations may be processed multiple times if clients retry requests due to network timeouts. This does not affect VSR protocol correctness or safety properties, but may impact user experience.
	Workaround: Implement request deduplication at the application layer using unique request IDs
	Future Work: Full write operation deduplication requires propagating client identifiers through the entire VSR protocol

⚠️ No Reconfiguration Support: The implementation assumes a static cluster with fixed membership. Dynamic addition or removal of replicas (reconfiguration protocol from the VSR paper) is not currently supported.
	Limitation: Cluster size and membership must be determined at startup and cannot be changed during operation
	Workaround: Plan cluster capacity ahead of time to accommodate expected load
	Future Work: Implement the reconfiguration protocol described in "Viewstamped Replication Revisited"

Installation
If available in Hex, the package can be installed
by adding vsr to your list of dependencies in mix.exs:
def deps do
 [
 {:vsr, "~> 0.1.0"}
]
end
Usage
Start a VSR replica with a key-value state machine
{:ok, replica} = Vsr.start_link(
 log: [],
 state_machine: VsrKv,
 cluster_size: 3
)

Perform operations
VsrKv.put(replica, "key", "value")
result = VsrKv.get(replica, "key") # Returns "value"
Testing
Unit Tests
mix test

Test Status: 106/106 tests passing
Jepsen Maelstrom Testing
VSR includes integration with Jepsen Maelstrom, a workbench for learning distributed systems by writing your own implementations and testing them against fault injection.
Download Maelstrom
	Download the latest Maelstrom release:
wget https://github.com/jepsen-io/maelstrom/releases/download/v0.2.3/maelstrom.tar.bz2
tar -xjf maelstrom.tar.bz2

	Or use the provided script to download and extract:
curl -L https://github.com/jepsen-io/maelstrom/releases/download/v0.2.3/maelstrom.tar.bz2 | tar -xj

Run Maelstrom Tests
The repository includes a convenience script for running linearizable key-value tests:
./maelstrom-kv

This runs the lin-kv workload which tests:
	Linearizable key-value operations (read, write, cas)
	Fault tolerance with network partitions
	Consistency under concurrent operations

Manual Maelstrom Testing
You can also run Maelstrom tests manually:
cd maelstrom
java -jar maelstrom.jar test \
 -w lin-kv \
 --bin ../run-vsr-node \
 --node-count 3 \
 --time-limit 10 \
 --concurrency 6

Workload Options:
	lin-kv - Linearizable key-value store (read, write, cas operations)
	--node-count - Number of VSR replicas to run
	--time-limit - Duration of test in seconds
	--concurrency - Number of concurrent client operations

Interpreting Results
After a test run, check:
	Test results: Maelstrom will report if linearizability was maintained
	Logs: Found in store/lin-kv/latest/	jepsen.log - Test runner logs and errors
	node-logs/n*.log - Individual node logs

Success criteria:
	All operations must satisfy linearizability
	Minimal network timeouts (some expected during partitions)
	No crashes or protocol violations

Architecture
See SPECIFICATION.md for detailed VSR protocol specification.
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/vsr.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.1.0 - 2025-01-01
Added
	Initial release of VSR (Viewstamped Replication) protocol implementation
	Core VSR protocol with primary-backup replication and view changes
	Automatic primary failure detection and recovery via heartbeat mechanism
	Log-based operation ordering and consistency
	Quorum-based consensus decisions
	Sequential operation validation with gap detection
	Memory management with cleanup of committed operation metadata
	Pluggable state machines, log storage, and communication layers
	Comprehensive telemetry instrumentation following Erlang/Elixir conventions	Leadership span tracking (when nodes are primary/leader)
	Protocol event tracking (prepare, commit, view changes)
	State machine operation spans with duration metrics
	Timer and heartbeat event tracking

	Client request deduplication with waiter list for duplicate requests
	Simplified view change protocol (counts StartViewChange messages directly)
	Jepsen Maelstrom integration for distributed systems testing
	Example key-value state machine implementations (in-memory and DETS)

Documentation
	Comprehensive README with usage examples and testing instructions
	SPECIFICATION.md with detailed VSR protocol specification
	TELEMETRY_EVENTS.md with complete telemetry event documentation
	Review documentation showing all safety issues addressed

Testing
	106 unit tests covering all protocol operations
	Maelstrom linearizability testing integration
	Zero network timeout validation

Known Limitations
	Client request deduplication only implemented for read operations on write paths
	No reconfiguration support (static cluster membership)

 Viewstamped Replication (VSR) Specification

Overview
Viewstamped Replication is a consensus algorithm for building fault-tolerant distributed systems. VSR ensures that a collection of replicas agree on a sequence of operations, even in the presence of failures.
Core Concepts
Roles
	Primary: The current leader that processes client requests and coordinates replication
	Backup: Followers that maintain replicated state and can become primary
	Client: External entities that submit operations to the system

View
A view is a configuration period with a designated primary. Views are numbered sequentially starting from 0.
The primary for view v is determined by: primary = configuration[v % length(configuration)]
Operation Log
Each replica maintains an ordered log of operations. Operations are identified by:
	View number: The view in which the operation was proposed
	Operation number: Sequential number within the view
	Operation: The actual operation to execute
	Sender ID: The replica that proposed the operation

Replica State
Each replica maintains:
%Vsr.Replica{
 replica_id: integer(), # Unique identifier for this replica
 view_number: integer(), # Current view number
 status: :normal | :view_change | :recovering, # Current operational status
 op_number: integer(), # Highest operation number seen
 commit_number: integer(), # Highest committed operation number
 log: [log_entry()], # Ordered list of operations
 configuration: [integer()], # List of all replica IDs
 primary: integer(), # Current primary replica ID
 store: term(), # State machine storage
 client_table: term(), # Client request deduplication
 prepare_ok_count: %{integer() => integer()}, # Count of prepare-ok per operation
 view_change_votes: %{integer() => boolean()}, # Votes for view change
 last_normal_view: integer() # Last view in normal operation
}
Algorithm Phases
1. Normal Operation Phase
Client Request Processing
Message: Client sends operation to primary
Internal State Changes:
	Primary receives client request:	Checks if request already processed (client_table lookup)
	If duplicate: return cached result
	If new: increment op_number
	Create log entry: {view_number, op_number, operation, replica_id}
	Append to log
	Initialize prepare_ok_count[op_number] = 1 (self-vote)

Prepare Phase
Message: Primary sends PREPARE(view, op-num, operation, commit-num) to all backups
Internal State Changes:
	Backup receives PREPARE:
	Validates view >= view_number
	If op_number > length(log): append operation to log
	Update op_number = max(op_number, received_op_number)
	Send PREPARE-OK(view, op-num, replica-id) to primary

	Primary receives PREPARE-OK:
	Increment prepare_ok_count[op_number]
	If prepare_ok_count[op_number] > majority:	Update commit_number = max(commit_number, op_number)
	Apply all operations where log_op_number <= commit_number to state machine
	Send COMMIT(view, commit-num) to all backups

Commit Phase
Message: Primary sends COMMIT(view, commit-num) to backups
Internal State Changes:
	Backup receives COMMIT:	Validates view == view_number
	If commit_number < received_commit_number:	Update commit_number = received_commit_number
	Apply all operations where log_op_number <= commit_number to state machine
	Update client_table with results

2. View Change Phase
Detecting Primary Failure
Trigger: Backup detects primary timeout or failure
Internal State Changes:
	Backup initiates view change:	Increment view_number
	Set status = :view_change
	Calculate new primary = configuration[view_number % length(configuration)]
	Initialize view_change_votes[replica_id] = true
	Send START-VIEW-CHANGE(view, replica-id) to all replicas

Start View Change Phase
Message: START-VIEW-CHANGE(view, replica-id) sent to all replicas
Internal State Changes:
	Replica receives START-VIEW-CHANGE:	If view > view_number:	Update view_number = view
	Set status = :view_change
	Update primary = configuration[view % length(configuration)]
	Set view_change_votes[sender_id] = true
	Send START-VIEW-CHANGE-ACK(view, replica-id) to sender

	If count(view_change_votes) > majority:	Send DO-VIEW-CHANGE(view, log, last_normal_view, op_number, commit_number, replica-id) to new primary

Do View Change Phase
Message: DO-VIEW-CHANGE(view, log, last_normal_view, op_number, commit_number, replica-id) sent to new primary
Internal State Changes:
	New primary receives DO-VIEW-CHANGE:	If view >= view_number:	Merge received log with local log (take highest op_number entries)
	Update view_number = view
	Update log = merged_log
	Update op_number = max(op_number, received_op_number)
	Update commit_number = max(commit_number, received_commit_number)
	Set status = :normal
	Send START-VIEW(view, log, op_number, commit_number) to all other replicas

Start View Phase
Message: START-VIEW(view, log, op_number, commit_number) sent from new primary
Internal State Changes:
	Replica receives START-VIEW:	If view >= view_number:	Update view_number = view
	Replace log = received_log
	Update op_number = received_op_number
	Update commit_number = received_commit_number
	Set status = :normal
	Update primary = configuration[view % length(configuration)]
	Apply all committed operations to state machine
	Send VIEW-CHANGE-OK(view, replica-id) to new primary

View Change Completion
Message: VIEW-CHANGE-OK(view, replica-id) sent to new primary
Internal State Changes:
	New primary receives VIEW-CHANGE-OK:	Set view_change_votes[sender_id] = true
	If count(view_change_votes) > majority:	Clear view_change_votes = %{}
	Set last_normal_view = view
	Resume normal operation

3. State Transfer Phase
Requesting State
Message: Lagging replica sends GET-STATE(view, op_number, replica-id) to primary
Internal State Changes:
	Lagging replica initiates:
	Detect it's behind (lower op_number or view_number)
	Send GET-STATE(view_number, op_number, replica_id) to primary

	Primary receives GET-STATE:
	Package current state: {view_number, log, op_number, commit_number}
	Send NEW-STATE(view, log, op_number, commit_number) to requester

Receiving State
Message: NEW-STATE(view, log, op_number, commit_number) sent from primary
Internal State Changes:
	Lagging replica receives NEW-STATE:	If view >= view_number OR op_number > local_op_number:	Update view_number = received_view
	Replace log = received_log
	Update op_number = received_op_number
	Update commit_number = received_commit_number
	Set status = :normal
	Apply all committed operations to state machine
	Resume normal operation

Message Types
Normal Operation Messages
	PREPARE(view, op-num, operation, commit-num)
	PREPARE-OK(view, op-num, replica-id)
	COMMIT(view, commit-num)

View Change Messages
	START-VIEW-CHANGE(view, replica-id)
	START-VIEW-CHANGE-ACK(view, replica-id)
	DO-VIEW-CHANGE(view, log, last_normal_view, op_number, commit_number, replica-id)
	START-VIEW(view, log, op_number, commit_number)
	VIEW-CHANGE-OK(view, replica-id)

State Transfer Messages
	GET-STATE(view, op_number, replica-id)
	NEW-STATE(view, log, op_number, commit_number)

Client Messages
	REQUEST(operation, client-id, request-id)
	REPLY(request-id, result)

Safety Properties
	Agreement: All replicas execute the same operations in the same order
	Integrity: A replica executes an operation at most once
	Validity: Only proposed operations are executed

Liveness Properties
	Termination: Every operation eventually executes (assuming eventual synchrony)
	View Change: System eventually selects a new primary when current primary fails

State Machine Integration
The VSR protocol is agnostic to the underlying state machine. Operations are applied in order to maintain consistency:
defprotocol Vsr.StateMachine do
 @doc "Apply an operation to the state machine"
 def _apply_operation(state_machine, operation)

 @doc "Get current state for state transfer"
 def _get_state(state_machine)

 @doc "Set state during state transfer"
 def _set_state(state_machine, state)
end
Log Storage Abstraction
The operation log can be implemented with different backends:
defprotocol Vsr.Log do
 @doc "Append operation to log"
 def append(log, view, op_number, operation, sender_id)

 @doc "Get operation at index"
 def get(log, index)

 @doc "Get all operations"
 def get_all(log)

 @doc "Get operations from index onwards"
 def get_from(log, index)

 @doc "Get log length"
 def length(log)
end
Correctness Conditions
	View Synchronization: All replicas agree on current view
	Log Consistency: Replica logs are consistent up to commit point
	Primary Completeness: New primary has all committed operations
	Monotonicity: View numbers and operation numbers never decrease

This specification provides the foundation for implementing a correct and efficient VSR-based distributed system with clear understanding of internal state transitions.

 Telemetry Events

VSR emits comprehensive telemetry events following Erlang/Elixir telemetry conventions. All events are prefixed with [:vsr].
Event Categories
	Leadership Span
	Protocol Events
	State Changes
	View Changes
	State Machine Operations
	Timer Events

Leadership Span
Tracks when a node is the primary/leader in the VSR cluster.
[:vsr, :leadership, :start]
Emitted when a node becomes the primary.
Measurements:
	system_time - System time when leadership started
	monotonic_time - Monotonic time when leadership started

Metadata:
	telemetry_span_context - Unique reference for correlating start/stop events
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

When emitted:
	During initial startup if the node is primary for view 0
	After completing a view change when becoming the new primary

[:vsr, :leadership, :stop]
Emitted when a node loses leadership.
Measurements:
	monotonic_time - Monotonic time when leadership ended
	duration - Duration of leadership (currently 0, to be calculated in future versions)

Metadata:
	telemetry_span_context - Same reference from the corresponding :start event
	node_id - The node's identifier
	view_number - View number when leadership was lost
	status - Node status when leadership was lost
	cluster_size - Total cluster size
	op_number - Operation number when leadership was lost
	commit_number - Commit number when leadership was lost

When emitted:
	During view changes when transitioning from primary to backup

Protocol Events
[:vsr, :protocol, :client_request, :start]
Emitted when a primary node starts processing a client request.
Measurements:
	count - Always 1

Metadata:
	operation - String representation of the operation
	client_id - Client identifier (if provided for deduplication)
	request_id - Request identifier (if provided for deduplication)
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :protocol, :prepare, :sent]
Emitted when a primary broadcasts PREPARE messages to replicas.
Measurements:
	count - Number of replicas the prepare was sent to

Metadata:
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :protocol, :prepare, :received]
Emitted when a backup receives a PREPARE message.
Measurements:
	count - Always 1

Metadata:
	prepare_view - View number from the prepare message
	prepare_op_number - Operation number from the prepare message
	sender - Node ID of the sender (leader)
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :protocol, :prepare_ok, :sent]
Emitted when a backup sends a PREPARE-OK message to the primary.
Measurements:
	count - Always 1

Metadata:
	prepare_ok_view - View number in the prepare-ok
	prepare_ok_op_number - Operation number in the prepare-ok
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :protocol, :prepare_ok, :received]
Emitted when a primary receives a PREPARE-OK message.
Measurements:
	count - Always 1

Metadata:
	prepare_ok_view - View number from the prepare-ok
	prepare_ok_op_number - Operation number from the prepare-ok
	sender - Node ID of the sender (backup)
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :protocol, :commit, :sent]
Emitted when a primary broadcasts COMMIT messages.
Measurements:
	count - Number of replicas the commit was sent to

Metadata:
	commit_view - View number in the commit message
	commit_number - Commit number in the commit message
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number (before the new commit)

[:vsr, :protocol, :commit, :received]
Emitted when a backup receives a COMMIT message.
Measurements:
	count - Always 1

Metadata:
	commit_view - View number from the commit message
	commit_number - Commit number from the commit message
	sender - Node ID of the sender (primary)
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number (before applying the new commit)

State Changes
[:vsr, :state, :status_change]
Emitted when a node's status changes (e.g., normal ↔ view_change).
Measurements:
	count - Always 1

Metadata:
	old_status - Previous status (:normal, :view_change, or :uninitialized)
	new_status - New status (:normal, :view_change, or :uninitialized)
	node_id - The node's identifier
	view_number - Current view number
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :state, :commit_advance]
Emitted when the commit number advances after operations are committed.
Measurements:
	operations_committed - Number of operations committed in this batch

Metadata:
	old_commit_number - Commit number before the advancement
	new_commit_number - Commit number after the advancement
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number

View Changes
[:vsr, :view_change, :start]
Emitted when a view change is initiated.
Measurements:
	count - Always 1

Metadata:
	old_view - Previous view number
	new_view - New view number being transitioned to
	old_status - Status before the view change
	node_id - The node's identifier
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :view_change, :vote_received]
Emitted when a START-VIEW-CHANGE-ACK is received.
Measurements:
	count - Always 1

Metadata:
	vote_view - View number from the vote
	voter - Node ID of the voter
	total_votes - Total number of votes collected for this view
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :view_change, :do_view_change, :received]
Emitted when a DO-VIEW-CHANGE message is received by the new primary.
Measurements:
	count - Always 1

Metadata:
	do_view_change_view - View number from the message
	sender - Node ID of the sender
	sender_op_number - Operation number from the sender's log
	sender_commit_number - Commit number from the sender
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :view_change, :complete]
Emitted when a view change completes and the node transitions back to normal status.
Measurements:
	count - Always 1

Metadata:
	old_view - Previous view number
	new_view - New view number after completion
	new_status - Status after view change (should be :normal)
	node_id - The node's identifier
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

State Machine Operations
[:vsr, :state_machine, :operation, :start]
Emitted when a committed operation starts execution on the state machine.
Measurements:
	monotonic_time - Monotonic time when operation execution started
	system_time - System time when operation execution started

Metadata:
	telemetry_span_context - Unique reference for correlating with :stop event
	extra_op_number - The operation number being executed
	operation - String representation of the operation
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number (latest in log)
	commit_number - Current commit number

[:vsr, :state_machine, :operation, :stop]
Emitted when a committed operation completes execution on the state machine.
Measurements:
	monotonic_time - Monotonic time when operation execution completed
	duration - Duration of the operation execution in native time units

Metadata:
	telemetry_span_context - Same reference from the corresponding :start event
	extra_op_number - The operation number that was executed
	operation - String representation of the operation
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

Timer Events
[:vsr, :timer, :heartbeat_received]
Emitted when a backup receives a heartbeat from the primary.
Measurements:
	count - Always 1

Metadata:
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

[:vsr, :timer, :primary_timeout]
Emitted when a backup detects primary inactivity timeout.
Measurements:
	count - Always 1

Metadata:
	timeout_ms - The timeout duration in milliseconds
	node_id - The node's identifier
	view_number - Current view number
	status - Current node status
	cluster_size - Total cluster size
	op_number - Current operation number
	commit_number - Current commit number

Common Metadata
All telemetry events include the following common metadata fields (unless otherwise noted):
	node_id - The identifier of the node emitting the event
	view_number - Current view number
	status - Current node status (:normal, :view_change, or :uninitialized)
	cluster_size - Total number of nodes in the cluster
	op_number - Current operation number (highest in the log)
	commit_number - Current commit number (highest committed operation)

Usage Example
Attach a handler to track leadership changes
:telemetry.attach(
 "leadership-tracker",
 [:vsr, :leadership, :start],
 fn event, measurements, metadata, _config ->
 IO.inspect({event, measurements, metadata}, label: "Leadership started")
 end,
 nil
)

Attach a handler to track committed operations
:telemetry.attach(
 "commit-tracker",
 [:vsr, :state, :commit_advance],
 fn _event, measurements, metadata, _config ->
 IO.puts("Committed #{measurements.operations_committed} operations, " <>
 "commit_number: #{metadata.old_commit_number} -> #{metadata.new_commit_number}")
 end,
 nil
)

Use telemetry_metrics for aggregation
Telemetry.Metrics.counter("vsr.protocol.prepare.sent.count")
Telemetry.Metrics.distribution("vsr.state_machine.operation.duration",
 unit: {:native, :millisecond}
)
Integration with Monitoring Systems
These telemetry events are designed to integrate with standard Erlang/Elixir monitoring tools:
	Telemetry.Metrics - For aggregating and reporting metrics
	TelemetryMetricsPrometheus - For Prometheus integration
	TelemetryMetricsStatsd - For StatsD integration
	Phoenix.LiveDashboard - For real-time monitoring in Phoenix applications

Vsr.Message.StartViewChangeAck

ACK response to START-VIEW-CHANGE

Vsr.Message.ViewChangeOk

VIEW-CHANGE-OK response to new primary

VsrServer behaviour

GenServer wrapper that implements the VSR (Viewstamped Replication) protocol.
This module provides a framework for building VSR-enabled services by handling
all VSR protocol messages while delegating application-specific logic to
the implementing module.
Overview
VsrServer implements the core VSR consensus protocol including:
	Primary-backup replication with automatic failover
	View changes for fault tolerance
	Quorum-based consensus decisions
	Linearizable operation ordering
	Comprehensive telemetry instrumentation

Basic Usage
To create a VSR-enabled service, you need to implement the VsrServer behaviour
and provide three key components:
	State Machine: Handles application operations
	Communication Layer: Routes VSR protocol messages between nodes
	Optional Configuration: Cluster size, timeouts, etc.

Minimal Example
defmodule MyKvStore do
 use VsrServer

 def start_link(opts) do
 node_id = Keyword.fetch!(opts, :node_id)
 cluster_size = Keyword.fetch!(opts, :cluster_size)

 VsrServer.start_link(__MODULE__,
 node_id: node_id,
 cluster_size: cluster_size
)
 end

 @impl VsrServer
 def init(vsr_state) do
 # Initialize your application state
 my_state = %{vsr: vsr_state, data: %{}}
 {:ok, my_state}
 end

 @impl VsrServer
 def handle_commit(operation, state) do
 # Apply committed operation to your state machine
 case operation do
 {:write, key, value} ->
 new_data = Map.put(state.data, key, value)
 new_state = %{state | data: new_data}
 {new_state, :ok}

 {:read, key} ->
 result = Map.get(state.data, key, {:error, :not_found})
 {state, result}
 end
 end

 @impl VsrServer
 def send_reply(from, reply, state) do
 # Send reply back to client
 GenServer.reply(from, reply)
 end
end
State Machine Implementation
The state machine handles application-specific operations. You must implement:
Required Callback: handle_commit/2
@callback handle_commit(operation :: term, state :: term) ::
 {new_state :: term, result :: term}
This callback is invoked when an operation has been committed by the VSR cluster.
It should:
	Apply the operation to your application state
	Return the updated state and operation result
	Be deterministic (same operation → same result)

Example:
def handle_commit({:increment, key}, state) do
 current = Map.get(state.counters, key, 0)
 new_counters = Map.put(state.counters, key, current + 1)
 new_state = %{state | counters: new_counters}
 {new_state, {:ok, current + 1}}
end
Communication Layer Implementation
The communication layer is implemented via the send_vsr/3 callback on your
module. This callback is invoked whenever VSR needs to send a protocol message
to another node.
Default Implementation (Erlang Distribution)
The use VsrServer macro provides a default implementation that works with
Erlang distribution using send/2:
defmodule MyKvStore do
 use VsrServer # Provides default send_vsr implementation

 # ... other callbacks
end
The default implementation is:
def send_vsr(destination, message, _inner_state) do
 send(destination, {:"$vsr", message})
end
This works when node_id values are:
	PIDs (e.g., self())
	Registered names (e.g., :my_server or {:global, :my_server})
	Node names (e.g., :"node1@localhost" with registered name)

Custom Communication Protocol
To use a different transport (HTTP, gRPC, JSON-RPC, etc.), override the
send_vsr/3 callback:
defmodule MyHttpKvStore do
 use VsrServer

 # Override the default send_vsr to use HTTP
 @impl VsrServer
 def send_vsr(dest_node_id, vsr_message, _inner_state) do
 # Serialize VSR message to JSON
 json_body = Jason.encode!(%{
 "type" => message_type(vsr_message),
 "view" => vsr_message.view,
 "data" => serialize_message(vsr_message)
 })

 # Send via HTTP POST to the destination node
 url = "http://#{dest_node_id}:8080/vsr"
 HTTPoison.post(url, json_body, [{"Content-Type", "application/json"}])
 end

 defp message_type(%Vsr.Message.Prepare{}), do: "prepare"
 defp message_type(%Vsr.Message.PrepareOk{}), do: "prepare_ok"
 defp message_type(%Vsr.Message.Commit{}), do: "commit"
 # ... other message types

 defp serialize_message(%Vsr.Message.Prepare{} = msg) do
 %{
 "op_number" => msg.op_number,
 "operation" => msg.operation,
 "commit_number" => msg.commit_number,
 "leader_id" => msg.leader_id
 }
 end
 # ... other serializers

 # ... other callbacks
end
When receiving messages via your custom transport, deserialize and deliver to VsrServer:
defmodule MyHttpHandler do
 def handle_vsr_request(conn) do
 # Deserialize from JSON
 {:ok, json} = Jason.decode(conn.body_params)
 vsr_message = deserialize_vsr_message(json)

 # Deliver to local VsrServer
 VsrServer.vsr_send(conn.assigns.vsr_server, vsr_message)

 # Send HTTP response
 send_resp(conn, 200, "ok")
 end

 defp deserialize_vsr_message(%{"type" => "prepare", "data" => data} = json) do
 %Vsr.Message.Prepare{
 view: json["view"],
 op_number: data["op_number"],
 operation: data["operation"],
 commit_number: data["commit_number"],
 leader_id: data["leader_id"]
 }
 end

 # ... deserialize other message types
end
The key insight is that send_vsr/3 only handles outgoing messages.
Incoming messages are delivered via VsrServer.vsr_send/2 after your
custom transport receives and deserializes them.
Client Request Handling
For client requests, use the send_reply/3 callback to reply back to clients:
@impl VsrServer
def send_reply(from, reply, state) do
 case from do
 # Standard GenServer from tuple (Erlang distribution)
 {pid, ref} when is_pid(pid) and is_reference(ref) ->
 GenServer.reply(from, reply)

 # Custom from (e.g., HTTP request context)
 %{conn: conn, request_id: req_id} ->
 send_http_response(conn, req_id, reply)

 # JSON-RPC from
 %{"node" => node_id, "from" => client_ref} ->
 send_json_rpc_reply(node_id, client_ref, reply)
 end
end
Client Request Deduplication
VsrServer provides automatic deduplication for client requests using
client_id and request_id:
In your client API
def write(vsr_pid, key, value) do
 client_id = :my_client_1
 request_id = System.unique_integer([:positive])

 VsrServer.client_request(vsr_pid,
 {:write, key, value},
 client_id: client_id,
 request_id: request_id
)
end
Multiple identical requests (same client_id and request_id) will:
	Be processed once
	All waiting callers receive the same result
	Prevent duplicate operations

Configuration Options
When starting VsrServer, you can configure:
VsrServer.start_link(MyModule,
 # Required
 node_id: :node1, # Unique identifier for this node
 cluster_size: 3, # Total number of replicas

 # Optional
 replicas: [:node2, :node3], # Other replica node IDs (auto-computed if not provided)
 heartbeat_interval: 100, # Primary heartbeat interval (ms)
 heartbeat_timeout: 500, # Backup timeout for primary failure (ms)
 name: {:global, :my_vsr_server} # GenServer registration
)
Complete Example: Maelstrom Integration
See maelstrom-adapter/ directory for a complete example of implementing
VSR with a custom JSON-based protocol for Jepsen Maelstrom testing.
Key components:
	Maelstrom.Kv - State machine implementation with custom send_vsr/3
	Maelstrom.Message - JSON message serialization
	Maelstrom.Stdio - STDIN/STDOUT message handling

This demonstrates a complete custom transport implementation without using
Erlang distribution.
Telemetry Events
VsrServer emits comprehensive telemetry events for monitoring and debugging.
See Vsr.Telemetry module documentation for complete event reference.
Example telemetry handler:
:telemetry.attach_many(
 "vsr-logger",
 [
 [:vsr, :state, :commit_advance],
 [:vsr, :view_change, :complete],
 [:vsr, :leadership, :start]
],
 &handle_vsr_event/4,
 nil
)

def handle_vsr_event(event_name, measurements, metadata, _config) do
 Logger.info("VSR Event: #{inspect(event_name)}")
end
Error Handling
VsrServer follows "let it crash" philosophy:
	Invalid messages crash the GenServer (supervised recovery)
	Network failures are handled by retries/timeouts
	State machine errors crash and require supervisor restart

For graceful error handling in your state machine:
def handle_commit(operation, state) do
 case validate_operation(operation) do
 :ok ->
 # Process operation
 {new_state, result}

 {:error, reason} ->
 # Return error result, state unchanged
 {state, {:error, reason}}
 end
end
Testing
For testing, you can use synchronous operations and inspect state:
test "writes are replicated" do
 {:ok, replica1} = start_replica(:r1, 3)
 {:ok, replica2} = start_replica(:r2, 3)
 {:ok, replica3} = start_replica(:r3, 3)

 # Perform operation
 result = VsrServer.client_request(replica1, {:write, "key", "value"})
 assert result == :ok

 # Check state is replicated
 state1 = VsrServer.dump(replica1)
 state2 = VsrServer.dump(replica2)

 assert state1.inner.data["key"] == "value"
 assert state2.inner.data["key"] == "value"
end

 Summary

 Types

 client_request()

 A client request that expects a reply. The from parameter is typically a GenServer.from() term,
if the cluster communicates using Erlang distribution. If it does not, you may encode the from
parameter in a way that is appropriate for the communication protocol used by the cluster.

 client_request_noreply()

 A client request that does not expect a reply. This should be used sparingly, typically, it is
better to produce a synchronous reply, even if the response is just an :ok acknowledgement.

 node_id()

 server()

 state()

 Callbacks

 code_change(old_vsn, state, extra)

 Invoked to change the state of the VsrServer when a different version of a
module is loaded (hot code swapping) and the state's term structure should be
changed.

 handle_call(request, from, state)

 Invoked to handle synchronous call/3 messages. Generally, initiating operations
on the state machine that VSR wraps should be done through this callback.

 handle_cast(request, state)

 Invoked to handle asynchronous cast/2 messages.

 handle_commit(operation, inner_state)

 Invoked when a VSR operation is committed and needs to be applied to the state machine.

 handle_continue(continue_arg, state)

 Invoked to handle continue instructions.

 handle_info(msg, state)

 Invoked to handle all other messages.

 init(init_arg)

 Invoked when the server is started. start_link/3 or start/3 will
block until it returns.

 log_append(log, entry)

 Appends an entry to the VSR log.

 log_clear(log)

 Clears all entries from the VSR log.

 log_fetch(log, op_number)

 Fetches an entry from the VSR log by operation number.

 log_get_all(log)

 Gets all entries from the VSR log.

 log_get_from(log, op_number)

 Gets entries from the specified operation number onwards.

 log_length(log)

 Gets the current length (number of entries) in the VSR log.

 log_replace(log, entries)

 Replaces the entire VSR log with new entries.

 monitor_node(node_id, message, inner_state)

 Monitors another node in the cluster for failure detection.

 send_reply(from, reply, inner_state)

 Sends a reply to a client.

 send_vsr(node_id, message, inner_state)

 Sends a VSR message to another node in the cluster.

 terminate(reason, state)

 Invoked when the server is about to exit. It should do any cleanup required.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 dump(server)

 Dumps the internal state of a VSR server for testing and debugging.

 node_id(server \\ self())

 Gets the node_id of a VSR server.

 set_cluster(server, node_id, replicas, cluster_size \\ nil)

 In the case that the cluster cannot be known at boot time, this function may be used to set cluster details.

 set_log(server, log)

 In the case that the log cannot be known at boot time (for example, some parameter in the log setup depends
on the cluster configuration), this function may be used to set the log.

 set_log_impl(log, state)

 start_link(module, opts)

 vsr_send(server, message)

 In certain situations, you may need to send VSR messages out-of-band from the normal erlang distribution
mechanism that VsrServer relies on by default. In this case you may use this function to send VSR messages
to VSR servers.

 Types

 client_request()

 @type client_request() ::
 client_request_noreply() | {:client_request, from :: term(), term()}

A client request that expects a reply. The from parameter is typically a GenServer.from() term,
if the cluster communicates using Erlang distribution. If it does not, you may encode the from
parameter in a way that is appropriate for the communication protocol used by the cluster.

 client_request_noreply()

 @type client_request_noreply() :: {:client_request, term()}

A client request that does not expect a reply. This should be used sparingly, typically, it is
better to produce a synchronous reply, even if the response is just an :ok acknowledgement.

 node_id()

 @type node_id() :: term()

 server()

 @type server() :: pid() | atom()

 state()

 @opaque state()

 Callbacks

 code_change(old_vsn, state, extra)

 @callback code_change(old_vsn, state :: term(), extra :: term()) ::
 {:ok, new_state :: term()} | {:error, reason :: term()}
when old_vsn: term() | {:down, term()}

Invoked to change the state of the VsrServer when a different version of a
module is loaded (hot code swapping) and the state's term structure should be
changed.
See GenServer.code_change/3 for general information about this callback.
This callback is optional.

 handle_call(request, from, state)

 @callback handle_call(request :: term(), GenServer.from(), state :: term()) ::
 {:reply, reply, new_state}
 | {:reply, reply, new_state,
 timeout()
 | :hibernate
 | {:continue, continue_arg :: term()}
 | client_request_noreply()}
 | {:noreply, new_state}
 | {:noreply, new_state,
 timeout()
 | :hibernate
 | {:continue, continue_arg :: term()}
 | client_request()}
 | {:stop, reason, reply, new_state}
 | {:stop, reason, new_state}
when reply: term(), new_state: term(), reason: term()

Invoked to handle synchronous call/3 messages. Generally, initiating operations
on the state machine that VSR wraps should be done through this callback.
See GenServer.handle_call/3 for general information about this callback.
To initiate a VSR request, use the :client_request tuple.

 handle_cast(request, state)

 @callback handle_cast(request :: term(), state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state,
 timeout()
 | :hibernate
 | {:continue, continue_arg :: term()}
 | client_request()}
 | {:stop, reason :: term(), new_state}
when new_state: term()

Invoked to handle asynchronous cast/2 messages.
See GenServer.handle_cast/2 for general information about this callback.
To initiate a VSR request, pass the :client_request tuple. You may use a from argument
in the tuple that has been created by a previous call and stored in the server state.
This callback is optional. If one is not implemented, the server will fail
if a cast is performed against it.

 handle_commit(operation, inner_state)

 @callback handle_commit(operation :: term(), inner_state :: term()) ::
 {new_inner_state :: term(), result :: term()}

Invoked when a VSR operation is committed and needs to be applied to the state machine.
This callback receives the operation that was committed, the current inner state,
and the full VSR state. It should apply the operation and return the new inner state
and any result value to be sent back to the client.

 handle_continue(continue_arg, state)

 @callback handle_continue(continue_arg, state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state,
 timeout() | :hibernate | {:continue, continue_arg} | client_request()}
 | {:stop, reason :: term(), new_state}
when new_state: term(), continue_arg: term()

Invoked to handle continue instructions.
See GenServer.handle_info/2 for general information about this callback.
Return values are the same as handle_cast/2.
This callback is optional. If one is not implemented, the server will fail
if a continue instruction is used.

 handle_info(msg, state)

 @callback handle_info(msg :: :timeout | term(), state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state,
 timeout()
 | :hibernate
 | {:continue, continue_arg :: term()}
 | client_request()}
 | {:stop, reason :: term(), new_state}
when new_state: term()

Invoked to handle all other messages.
See GenServer.handle_info/2 for general information about this callback.
Return values are the same as handle_cast/2.
This callback is optional. If one is not implemented, the received message
will be logged.

 init(init_arg)

 @callback init(init_arg :: term()) ::
 {:ok, state}
 | {:ok, log, state}
 | {:ok, log, state,
 timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | :ignore
 | {:stop, reason :: term()}
when state: term(), log: term()

Invoked when the server is started. start_link/3 or start/3 will
block until it returns.
See GenServer.init/1 for general information about the init/1 callback.
The VsrServer init callback adds an additional log term in the success tuple,
which initializes the VSR log, This should be a durable, local store for logging
VSR operations.
If the log must be initialized at a later stage (for example, via an out-of band
initialization, then you may return the normal {:ok, state} term)

 log_append(log, entry)

 @callback log_append(log :: term(), entry :: Vsr.LogEntry.t()) :: new_log :: term()

Appends an entry to the VSR log.
Required callback - must be implemented by all VSR modules.

 log_clear(log)

 @callback log_clear(log :: term()) :: new_log :: term()

Clears all entries from the VSR log.
Required callback - must be implemented by all VSR modules.

 log_fetch(log, op_number)

 @callback log_fetch(log :: term(), op_number :: non_neg_integer()) ::
 {:ok, Vsr.LogEntry.t()} | {:error, :not_found}

Fetches an entry from the VSR log by operation number.
Required callback - must be implemented by all VSR modules.

 log_get_all(log)

 @callback log_get_all(log :: term()) :: [Vsr.LogEntry.t()]

Gets all entries from the VSR log.
Required callback - must be implemented by all VSR modules.

 log_get_from(log, op_number)

 @callback log_get_from(log :: term(), op_number :: non_neg_integer()) :: [
 Vsr.LogEntry.t()
]

Gets entries from the specified operation number onwards.
Required callback - must be implemented by all VSR modules.

 log_length(log)

 @callback log_length(log :: term()) :: non_neg_integer()

Gets the current length (number of entries) in the VSR log.
Required callback - must be implemented by all VSR modules.

 log_replace(log, entries)

 @callback log_replace(log :: term(), entries :: [Vsr.LogEntry.t()]) :: new_log :: term()

Replaces the entire VSR log with new entries.
Used during state transfer and view changes.
Required callback - must be implemented by all VSR modules.

 monitor_node(node_id, message, inner_state)

 @callback monitor_node(node_id :: term(), message :: term(), inner_state :: term()) ::
 reference()

Monitors another node in the cluster for failure detection.
The default implementation uses Process.monitor/1 for PID-based node identifiers.
Override this for custom monitoring mechanisms.

 send_reply(from, reply, inner_state)

 @callback send_reply(from :: term(), reply :: term(), inner_state :: term()) :: term()

Sends a reply to a client.
The default implementation uses GenServer.reply/2 for standard Erlang distribution.
Override this for custom communication protocols where the from parameter
needs to be handled differently (e.g., encoded node references, message passing).

 send_vsr(node_id, message, inner_state)

 @callback send_vsr(node_id :: term(), message :: term(), inner_state :: term()) :: term()

Sends a VSR message to another node in the cluster.
The default implementation uses PIDs as node identifiers and sends via raw send/2.
Override this for custom communication protocols (e.g., Maelstrom, network protocols).

 terminate(reason, state)

 @callback terminate(reason, state :: term()) :: term()
when reason: :normal | :shutdown | {:shutdown, term()} | term()

Invoked when the server is about to exit. It should do any cleanup required.
See GenServer.terminate/2 for general information about this callback.
This callback is optional.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 dump(server)

 @spec dump(server()) :: state()

Dumps the internal state of a VSR server for testing and debugging.

 node_id(server \\ self())

Gets the node_id of a VSR server.

 set_cluster(server, node_id, replicas, cluster_size \\ nil)

 @spec set_cluster(
 server(),
 node_id,
 replicas :: Enumerable.t(node_id),
 cluster_size :: non_neg_integer() | nil
) :: :ok
when node_id: term()

In the case that the cluster cannot be known at boot time, this function may be used to set cluster details.

 set_log(server, log)

 @spec set_log(server(), log :: term()) :: :ok

In the case that the log cannot be known at boot time (for example, some parameter in the log setup depends
on the cluster configuration), this function may be used to set the log.

 set_log_impl(log, state)

 start_link(module, opts)

 vsr_send(server, message)

 @spec vsr_send(server(), message :: term()) :: term()

In certain situations, you may need to send VSR messages out-of-band from the normal erlang distribution
mechanism that VsrServer relies on by default. In this case you may use this function to send VSR messages
to VSR servers.

Vsr.Message

VSR protocol message definitions.
All VSR protocol messages are defined as structs to provide
type safety and clear documentation of the protocol.

Vsr.Message.ClientRequest

Client request message

Vsr.Message.Commit

COMMIT message sent by primary to backups

Vsr.Message.DoViewChange

DO-VIEW-CHANGE message sent to new primary

Vsr.Message.GetState

GET-STATE request for state transfer

Vsr.Message.Heartbeat

Control message for primary to check replica liveness

Vsr.Message.NewState

NEW-STATE response containing replica state

Vsr.Message.Prepare

PREPARE message sent by primary to backups

Vsr.Message.PrepareOk

PREPARE-OK response sent by backups to primary

Vsr.Message.StartView

START-VIEW message from new primary to all replicas

Vsr.Message.StartViewChange

START-VIEW-CHANGE message to initiate view change

Vsr.LogEntry

Represents a single entry in the VSR log.
Each entry contains the essential information needed for VSR consensus:
	view: The view number when this operation was prepared
	op_number: The operation number (sequence position in log)
	operation: The actual operation to be applied
	sender_id: ID of the client that sent this operation (for deduplication)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Vsr.LogEntry{
 op_number: non_neg_integer(),
 operation: term(),
 sender_id: term(),
 view: non_neg_integer()
}

Vsr.Telemetry

Telemetry instrumentation for VSR protocol operations.
Event Categories
Protocol Operations (:vsr, :protocol, ...)
	[:vsr, :protocol, :client_request, :start] - Client request received
	[:vsr, :protocol, :client_request, :stop] - Request completed (committed)
	[:vsr, :protocol, :prepare, :sent] - Prepare message broadcast
	[:vsr, :protocol, :prepare, :received] - Prepare message processed
	[:vsr, :protocol, :prepare_ok, :sent] - PrepareOk ACK sent
	[:vsr, :protocol, :prepare_ok, :received] - PrepareOk ACK received
	[:vsr, :protocol, :commit, :sent] - Commit broadcast
	[:vsr, :protocol, :commit, :received] - Commit processed

State Machine (:vsr, :state_machine, ...)
	[:vsr, :state_machine, :operation, :start] - Operation execution started
	[:vsr, :state_machine, :operation, :stop] - Operation completed
	[:vsr, :state_machine, :operation, :exception] - Operation failed

View Changes (:vsr, :view_change, ...)
	[:vsr, :view_change, :start] - View change initiated
	[:vsr, :view_change, :vote_received] - StartViewChangeAck received
	[:vsr, :view_change, :do_view_change, :sent] - DoViewChange sent to new primary
	[:vsr, :view_change, :do_view_change, :received] - DoViewChange received by primary
	[:vsr, :view_change, :complete] - StartView processed, view established

State Transitions (:vsr, :state, ...)
	[:vsr, :state, :status_change] - Status changed (normal ↔ view_change)
	[:vsr, :state, :view_change] - View number changed
	[:vsr, :state, :role_change] - Primary/replica role changed
	[:vsr, :state, :commit_advance] - Commit number advanced

State Transfer (:vsr, :state_transfer, ...)
	[:vsr, :state_transfer, :request_sent] - GetState sent
	[:vsr, :state_transfer, :request_received] - GetState received
	[:vsr, :state_transfer, :snapshot_sent] - NewState sent
	[:vsr, :state_transfer, :snapshot_received] - NewState applied

Replication Metrics (:vsr, :replication, ...)
	[:vsr, :replication, :log_append] - Entry appended to log
	[:vsr, :replication, :log_conflict] - Log conflict detected
	[:vsr, :replication, :quorum_reached] - Quorum achieved for operation

Timers (:vsr, :timer, ...)
	[:vsr, :timer, :heartbeat_sent] - Heartbeat broadcast
	[:vsr, :timer, :heartbeat_received] - Heartbeat processed
	[:vsr, :timer, :primary_timeout] - Primary inactivity timeout fired

Metadata
Common metadata included in events:
	:node_id - Node identifier
	:view_number - Current view number
	:status - Current status (:normal, :view_change, etc.)
	:is_primary - Boolean indicating if node is primary
	:op_number - Operation number (when applicable)
	:commit_number - Commit number (when applicable)

Example Usage
Attach a handler to log all VSR events:
:telemetry.attach_many(
 "vsr-logger",
 [
 [:vsr, :protocol, :client_request, :start],
 [:vsr, :protocol, :client_request, :stop],
 [:vsr, :state, :commit_advance]
],
 fn event, measurements, metadata, _config ->
 Logger.info("VSR Event: #{inspect(event)}",
 measurements: measurements,
 metadata: metadata
)
 end,
 nil
)

 Summary

 Functions

 common_metadata(state)

 Build common metadata from VSR state.

 execute(event, state, measurements, extra_metadata \\ %{})

 Execute a telemetry event with the given measurements and metadata.

 span(event, state, extra_metadata \\ %{}, fun)

 Execute a telemetry span with proper timing measurements and span context.

 Functions

 common_metadata(state)

 @spec common_metadata(map()) :: map()

Build common metadata from VSR state.
Extracts standard VSR state fields that are commonly included in telemetry events.

 execute(event, state, measurements, extra_metadata \\ %{})

 @spec execute([atom()], map(), map(), map()) :: :ok

Execute a telemetry event with the given measurements and metadata.
The event name will automatically have [:vsr] prepended to it.
Common metadata (node_id, view_number, etc.) is automatically extracted
from the state and merged with any additional metadata provided.
Examples
Basic usage
Vsr.Telemetry.execute(
 [:protocol, :prepare, :sent],
 state,
 %{count: 3}
)
Becomes: [:vsr, :protocol, :prepare, :sent]

With extra metadata
Vsr.Telemetry.execute(
 [:protocol, :prepare, :sent],
 state,
 %{count: 3},
 %{custom_field: "value"}
)

 span(event, state, extra_metadata \\ %{}, fun)

 @spec span([atom()], map(), map(), (-> result)) :: result when result: term()

Execute a telemetry span with proper timing measurements and span context.
The event name will automatically have [:vsr] prepended to it.
The span will emit both :start and :stop (or :exception) events.
Common metadata is automatically extracted from state and a unique span context
is generated using make_ref().
Examples
Wrap an operation in a telemetry span
result = Vsr.Telemetry.span(
 [:protocol, :client_request],
 state,
 %{custom: "metadata"},
 fn ->
 # Do work
 :ok
 end
)
Events Emitted
	[:vsr, :protocol, :client_request, :start] - When span begins
	[:vsr, :protocol, :client_request, :stop] - When span completes successfully
	[:vsr, :protocol, :client_request, :exception] - When span raises an exception

Measurements
	:start event: monotonic_time, system_time
	:stop event: monotonic_time, duration
	:exception event: monotonic_time, duration

Metadata
All events include:
	Common metadata from state (node_id, view_number, etc.)
	telemetry_span_context - Unique reference for correlating start/stop events
	Any additional metadata provided

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

