

 vtc

 v0.13.12

 [image: Logo]

 Table of contents

 	vtc-ex

 	Quickstart

 	Ecto Quickstart

 	Timecode: A History

 	NTSC: Framerate vs Timebase

 	The Rational Rationale

 	Contributing

 	Modules

 	Vtc.Framerate

 	Vtc.Framestamp

 	Vtc.Framestamp.Range

 	Vtc.FilmFormat

 	Vtc.Rates

 	Vtc.SMPTETimecode.Sections

 	Vtc.Source.Frames.FeetAndFrames

 	Vtc.Source.Frames.SMPTETimecodeStr

 	Vtc.Source.Seconds.PremiereTicks

 	Vtc.Source.Seconds.RuntimeStr

 	Vtc.Source.Frames

 	Vtc.Source.Seconds

 	Vtc.Ecto.Postgres.Migrations

 	Vtc.Ecto.Postgres.PgFramerate

 	Vtc.Ecto.Postgres.PgFramerate.Migrations

 	Vtc.Ecto.Postgres.PgFramestamp

 	Vtc.Ecto.Postgres.PgFramestamp.Migrations

 	Vtc.Ecto.Postgres.PgFramestamp.Range

 	Vtc.Ecto.Postgres.PgFramestamp.Range.Migrations

 	Vtc.Ecto.Postgres.PgRational

 	Vtc.Ecto.Postgres.PgRational.Migrations

 	Vtc.TestUtls.StreamDataVtc

 	Vtc.Framerate.ParseError

 	Vtc.Framestamp.ParseError

vtc-ex

 Quickstart - vtc v0.13.12

Quickstart

Let's take a little peek at what Vtc can do, for you! Note that printing calls like
inspect/1 have been elided from these examples.
These are the three main modules that make up the Vtc API:
alias Vtc.Framerate
alias Vtc.Rates
alias Vtc.Framestamp
Let's start with a 23.98 NTSC timecode. We use the with_frames constructor here
since timecode is really a human-readable way to represent frame count. The Vtc.Rates
module defines a number of Vtc.Framerate values found in the wild. Most common, by
far, is 23.98 NTSC, which is shorthand for video footage running at 24000/1001
frames-per-second.
iex> framestamp = Framestamp.with_frames!("17:23:13:02", Rates.f23_98())
"<17:23:00:02 <23.98 NTSC>>"
Once we have a Vtc.Framestamp struct, we can render all sorts of commonly used
framestamp representations, like SMPTE timecode:
Unit Conversions
smpte_timecode/2
iex> Framestamp.smpte_timecode(framestamp)
"17:23:00:02"
frames/2
iex> Framestamp.frames(framestamp)
1501922
seconds
iex> framestamp.seconds
"Ratio.new(751711961, 12000)"
runtime/2
iex> Framestamp.runtime(framestamp, 3)
"17:24:15.676"
premiere_ticks/2
iex> Framestamp.premiere_ticks(framestamp)
15915544300656000
physical film length in feet_and_frames/2
iex> Framestamp.feet_and_frames(framestamp)
"<93889+10 :ff35mm_4perf>"
Framerate Information
ntsc
iex> framestamp.rate.ntsc
:non_drop
playback speed
iex> framestamp.rate.playback
"Ratio.new(24000, 1001)"
timebase/1 logical speed
iex> Framerate.smpte_timebase(framestamp.rate)
24
.
Parsing
Parsing is flexible, we can pass in partial or maformed timecode.
In Vtc, there are only two ways to parse framestamps, either with
Timecode.with_frames/2 for formats that represnet a
discrete frame count, or Timecode.with_seconds/2 for
formats that represent a number of real-world, elapsed seconds were those frames to be
played back at the framestamp's rate.
Examples
Frames Formats
timecode
iex> Framestamp.with_frames!("3:12", Rates.f23_98())
"<03:00:00:12 <23.98 NTSC>>"
malformed timecode
iex> Framestamp.with_frames!("3:12", Rates.f23_98())
"<03:00:00:12 <23.98 NTSC>>"
frame count
iex> Framestamp.with_frames!(24, Rates.f23_98())
"<00:00:01:00 <23.98 NTSC>>"
physical film length in feet+frames
iex> Framestamp.with_frames!("1+08", Rates.f23_98())
"<00:00:01:00 <23.98 NTSC>>"
Seconds Formats
seconds
iex> Framestamp.with_seconds!(1.5, Rates.f23_98())
"<00:05:23:04 <23.98 NTSC>>"
runtime
iex> Framestamp.with_seconds!("00:05:23.5", Rates.f23_98())
"<00:05:23:04 <23.98 NTSC>>"
malformed runtime
iex> Framestamp.with_seconds!("5:23.5", Rates.f23_98())
"<00:05:23:04 <23.98 NTSC>>"
premiere ticks
iex> input = %PremiereTicks{in: 254_016_000_000}
iex> Framestamp.with_seconds!(input, Rates.f23_98())
"<00:00:01:00 <23.98 NTSC>>"
Other film formats
By default, feet+frames is interpreted as 35mm, 4perf film. You can use the
FeetAndFrames struct to parse other film formats.
16mm feet + frames
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> {:ok, feet_and_frames} = FeetAndFrames.from_string("5400+00", film_format: :ff16mm)
iex>
iex> Framestamp.with_frames(feet_and_frames, Rates.f23_98())
"{:ok, <01:15:00:00 <23.98 NTSC>>}"
Arithmetic
.
add/3
iex> a = Framestamp.with_frames!("18:23:13:02", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> framestamp = Framestamp.add(a, b)
"<18:23:13:02 <23.98 NTSC>>"
add/3 with string
iex> Framestamp.add(tc, "00:10:00:00")
"<18:33:13:02 <23.98 NTSC>>"
add/3 with ints means adding frames
iex> Framestamp.add(tc, 38)
"<18:33:14:16 <23.98 NTSC>>"
sub/3
iex> Framestamp.sub(tc, "01:00:00:00")
"<17:33:14:16 <23.98 NTSC>>"
.
minus/1
iex> Framestamp.minus(framestamp)
"<-17:33:14:16 <23.98 NTSC>>"
abs/1
iex> Framestamp.abs(framestamp)
"<17:33:14:16 <23.98 NTSC>>"
mult/3
iex> Framestamp.mult(framestamp, 2)
"<35:06:29:08 <23.98 NTSC>>"
div/3
iex> Framestamp.div(framestamp, 2)
"<17:33:14:16 <23.98 NTSC>>"
divrem/3
iex> {dividend, remainder} = Framestamp.divrem(framestamp, 3)
iex> {dividend, remainder}
"{<05:51:04:21 <23.98 NTSC>>, <00:00:00:01 <23.98 NTSC>>}"
Eval
Special Framestamp.eval do blocks let us use native operators.
eval/2
iex> require Framestamp
iex>
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("00:30:00:00", Rates.f23_98())
iex> c = Framestamp.with_frames!("00:15:00:00", Rates.f23_98())
iex>
iex> Framestamp.eval do
iex> a + b * 2 - c
iex> end
"<01:45:00:00 <23.98 NTSC>>"
Or even do some quick scratch calculations in a given framerate:
scratch calculation
iex> Framestamp.eval at: 23.98 do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
"<01:45:00:00 <23.98 NTSC>>"
Framerates
We can make dropframe framestamps for 29.97 or 59.94 using one of the pre-set
framerates.
drop-frame
iex> Framestamp.with_frames!(15_000, Rates.f29_97_df())
"<00:08:20;18 <29.97 NTSC DF>>"
We can make new framestamps with arbitrary framerates if we want.
non-ntsc
iex> Framestamp.with_frames!("01:00:00:00", Framerate.new!(240, nil))
"<01:00:00:00 <240.0 fps>>"
Using :non_drop indicates this framestamp represents an NTSC timecode, and will
convert whole-number timebases to the correct speed.
non-drop coersion
iex> Framestamp.with_frames!("01:00:00:00", Framerate.new!(48, :non_drop))
"<01:00:00:00 <47.95 NTSC>>"
We can also rebase the frames using a new framerate!
rebase
iex> Framestamp.rebase(tc, Rates.f23_98())
"<02:00:00:00 <23.98 NTSC>>"
Comparisons and Sorting
It's easy to compare two framestamps.
compare/2
iex> a = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> Framestamp.compare(a, b)
:lt
There a host of other specific comparison functions like eq?/2,
gt?/2 that return
booleans.
Specific comparison
iex> Framestamp.lt?(a, b)
true
Like arithmetic, we can compare directly with a timecode string:
compare/2 with string
iex> Framestamp.compare(a, "00:59:00:00")
:gt
Sorting is suported through the compare/2 function.
sort through Framestamp
iex> framestamp_01 = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> framestamp_02 = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> data_01 = %{id: 2, tc: framestamp_01}
iex> data_02 = %{id: 1, tc: framestamp_02}
iex>
iex> Enum.sort_by([data_02, data_01], & &1.tc, Framestamp)
"[%{id: 2, tc: <01:00:00:00 <23.98 NTSC>>}, %{id: 1, tc: <02:00:00:00 <23.98 NTSC>>}]"
Ranges
Range helps with common operations using in/out points. Let's set two of
those up.
new/3
iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a_out = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> a = Framestamp.Range.new!(a_in, a_out)
"<01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>"
By default, ranges are exclusive, meaning the out point represents the boundary
where the clip ends, not the final frame that is part of the video clip. This way
will be familiar to Premiere and Final Cut editors. But fear not, our Avid bretheren,
inclusive out points like you are used to are available as well!
Just like addition, we can write a bare timecode string as the out value if we want.
new/3 with string
iex> b_in = Framestamp.with_frames!("01:45:00:00", Rates.f23_98())
iex>
iex> b = Framestamp.Range.new!(b_in, "02:30:00:00")
"<01:45:00:00 - 02:30:00:00 :exclusive <23.98 NTSC>>"
We can get the duration of a range.
duration/1
iex> Framestamp.Range.duration(b)
iex> "<00:45:00:00 <23.98 NTSC>>"
... see if a specific framestamp is in a range:
contains?/2
iex> Framestamp.Range.contains?(b, "02:00:00:00")
iex> true
... or see if it overlaps with another range.
overlaps?/2
iex> Framestamp.Range.overlaps?(a, b)
iex> true
We can even get the overlapping area as its own range!
intersection/2
iex> Framestamp.Range.intersection!(a, b)
"<01:45:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>"
Postgres Types
To include Postgres types with Ecto. Add the following into you applications
configuration file:
config :vtc,
 env: config_env(),
 include_postgres_types?: true
See each posgres type for information on it's configuration.

 Ecto Quickstart - vtc v0.13.12

Ecto Quickstart

Vtc ships with a numer of
Ecto custom types designed to work with
Postgres databases connected by Postgrex.
Ecto types
The custom Ecto & Postgres types provided by Vtc are:
PgRational
	Migrations Schema
	Not re-exported, Ratio is not owned by Vtc.

PgFramerate
	Migrations Schema
	Re-exported by Framerate

PgFramestamp
	Migrations Schema
	Re-exported by Framestamp

PgFramestamp.Range
	Migrations Schema
	Re-exported by Framestamp.Range

Configuration
To enable ecto types in your application, set the following in your
config/config.exs file:
config :vtc, Postgrex, include?: true
Without this setting, Vtc's Ecto modules will not compile when you compile your app.
Once you have Postgrex types enabled, additional configuration is done at the
Repo level:
config :vtc, Vtc.Test.Support.Repo,
 adapter: Ecto.Adapters.Postgres,
 vtc: [
 rational: [
 functions_schema: :rational,
 functions_prefix: ""
],
 framerate: [
 functions_schema: :framerate,
 functions_prefix: ""
],
 framestamp: [
 functions_schema: :framestamp,
 functions_prefix: ""
],
 framestamp_range: [
 functions_schema: :framestamp_range,
 functions_prefix: ""
]
]

config :vtc,
 ecto_repos: [Vtc.Test.Support.Repo]
Each type can be configured to store it's support functions on a schema of your choice
as well as have a custom, per-type function name prefix.
By default, all funcitons are added to the public schema, and are prefaced by their
type name. For example, the PgFramestamp
frames function
is created in the public schema, and named framestamp_frames.
Initial Migration
To create all the Postgres types, functions, operators, casts, and operator classes
that Vtc provides, run the following migration:
defmodule Vtc.Test.Support.Repo.Migrations.AddPostgresTypes do
 @moduledoc false
 use Ecto.Migration

 def change do
 Vtc.Ecto.Postgres.Migrations.migrate()
 end
end
This migration is safe to run multiple times, and can be run again when new
functionality is added to Vtc.
All objects created by the migration come complete with in-database documentation
with links to the relevant Vtc docs. Using DataGrip:
[image: Database documentation]
Ecto API
Vtc's custom Ecto types are each implemented in a dedicated module. For instance, the
framestamp type is implemented by PgFramestamp.
However, each ecto type's functions are re-exported by the Vtc elixir type it is
designed to work with, allowing you to mostly ignore the dedicated ecto module when
creating migrations and schemas:
defmodule MyApp.MySchema do
 @moduledoc false
 use Ecto.Migration

 alias Vtc.Ecto.Postgres.PgFramestamp
 alias Vtc.Framestamp

 def change do
 create table("my_table", primary_key: false) do
 add(:id, :uuid, primary_key: true, null: false)
 add(:a, Framestamp.type())
 add(:b, Framestamp.type())
 end
 end
end
Each type ships with a set of custom constraints that can be used for data integrity
validation in migrations:
Framestamp constraint docs
def change do
 create table("my_table", primary_key: false) do
 add(:b, Framestamp.type())
 end

 PgFramestamp.Migrations.create_field_constraints("my_table", :b)
end
Vtc modules can be used directly in schemas:
Framestamp changeset casting docs
defmodule Vtc.Test.Support.FramestampSchema01 do
 @moduledoc false
 use Ecto.Schema

 alias Ecto.Changeset
 alias Vtc.Framestamp

 @type t() :: %__MODULE__{
 id: Ecto.UUID.t(),
 a: Framestamp.t(),
 b: Framestamp.t()
 }

 @primary_key {:id, Ecto.UUID, autogenerate: true}

 schema "my_table" do
 field(:a, Framestamp)
 field(:b, Framestamp)
 end

 @spec changeset(%__MODULE__{}, %{atom() => any()}) :: Changeset.t(%__MODULE__{})
 def changeset(schema, attrs), do: Changeset.cast(schema, attrs, [:id, :a, :b])
end
Values can be used in Ecto queries using the type/2 function.
Vtc registers native operators for each type, so you can write queries like you would
expect to with any other numeric type:
query value
iex> one_hour = Framestamp.with_frames("01:00:00:00", Rates.f23_98())
iex>
iex> EdlEvents
iex> |> where([event], event.start > type(^one_hour, Framestamp))
iex> |> select([event], {event, event.end - event.in_framestamp})
The above query finds all events with a start time greater than 01:00:00:00 and
returns the record AND its calculated duration.
Private functions
Many of Vtc's postgres functions are prefaced with __private__, for instance, the
framestamp__private__add function is used to back the addition + operator.
These functions have no API stability guarantee, and callers should avoid calling them
directly.
Framestamp Postgres functions
with_seconds/2
Elixir
iex> seconds = Ratio.new(3600)
iex> rate = Rates.f23_98()
iex>
iex> query =
iex> Query.from(
iex> f in fragment(
iex> "SELECT framestamp.with_seconds(?, ?) as r",
iex> type(^seconds, PgRational),
iex> type(^rate, Framerate)
iex>),
iex> select: f.r
iex>)
iex>
iex> query |> Repo.one!() |> Framestamp.load() |> inspect()
"{:ok, <00:59:56:10 <23.98 NTSC>>}"
SQL
SELECT framestamp.with_seconds(
 (3600, 1)::rational,
 ((24000, 1001), '{non_drop}')::framerate
);
Output:
 with_seconds
--
 ("(43200157,12000)","(""(24000,1001)"",{non_drop})")
(1 row)
Notice that just like Framestamp.with_seconds/3,
the seconds value is rounded to the neareset whole-frame on construction.
with_frames/2
Elixir
iex> frames = 24
iex> rate = Rates.f23_98()
iex>
iex> query =
iex> Query.from(
iex> f in fragment(
iex> "SELECT framestamp.with_frames(?, ?) as r",
iex> ^frames,
iex> type(^rate, Framerate)
iex>),
iex> select: f.r
iex>)
iex>
iex> query |> Repo.one!() |> Framestamp.load() |> inspect()
"{:ok, <00:00:01:00 <23.98 NTSC>>}"
SQL
SELECT framestamp.with_frames(
 24,
 ((24000, 1001), '{non_drop}')::framerate
);
Output:
 with_frames

 ("(1001,1000)","(""(24000,1001)"",{non_drop})")
(1 row)
frame count
Elixir
iex> stamp =
iex> Framestamp.with_frames!(
iex> "01:00:00:00",
iex> Rates.f23_98()
iex>)
iex>
iex> query =
iex> Query.from(
iex> f in fragment(
iex> "SELECT framestamp.frames(?) as r",
iex> type(^stamp, Framestamp)
iex>),
iex> select: f.r
iex>)
iex>
iex> Repo.one!(query)
86400
SQL
SELECT framestamp.frames(
 (
 (18018, 5)::rational,
 ((24000, 1001), '{non_drop}')::framerate
)
);
Output:
 frames

 86400
(1 row)

 Timecode: A History - vtc v0.13.12

Timecode: A History

But first: what is timecode?
If you're already familiar with timecode, it's history, and it's flavors, feel free to
skip this section.
How we got here
Back in the days of film, a running strip of numbers ran along the edge of the film
stock to uniquely identify each frame, called
keycode
Keycode was essential to the film editing process. The raw negative of a film is
irreplaceable: you loose quality each time you make a copy. Editing film is necessarily
a destructive process, and
often required multiple iterations. It would be just a tad nerve-wracking to take a pair
of scissors and some glue to the one-of-a-kind film reels straight out of the camera
on set, then running it over and over through a flatbed.
To avoid potential disaster, editors made their cut of the film using copies of the
raw negative, called a work print, allowing
the editor to work without fear of sinking a project from slicing, dicing, and wearing
at the film.
When the edit was complete, it was necessary to know exactly where the edits had been
made, so it could be recreated with the raw negative for finishing. A cut list would
be written out, with the exact reels and keycodes for every cut, and would be used to
make an exact duplicate of the editor's work print with the mint condition raw negative.
In video and digital filmmaking, the same approach is used. Massive RAW files from a
RED, ARRI, Sony, or other cinema camera are rendered down to more manageable files an
Editor's machine won't choke on. Once the edit is complete, the raw files are
re-assembled using a digital cutlist on a powerful machine for finishing out the film.
In film, we referenced keycode to know exactly what frame was being displayed on
screen at any given time. In digital video, we reference the timecode of a given
frame, as defined by the SMPTE Timecode standard.
Further Reading
For a technical deep-dive into the many flavors of timecode, check out
Frame.io's
excellent blogpost on
the subject.

 NTSC: Framerate vs Timebase - vtc v0.13.12

NTSC: Framerate vs Timebase

To understand timecode, first we need to understand the difference between framerate,
the rate at which a piece of media is actually yielding frames, and timebase, the
rate at which we pretend that media is yielding frames when rendering a SMPTE timecode
value.
Timecode does not -- counterintuitively -- represent the TIME of a frame. Instead, it is
a human-digestable INDEX of that frame in the sequence of all frames that make up a
video clip, just like keycode before it. It's fields are NOT hours, minutes, seconds,
and milliseconds, as you might expect from a time-based format; they are "hours",
"minutes", "seconds", and frames (more on the airquotes later).
Timecode is more UUID than timestamp.
(Not) fitting neatly into seconds
For true-frame video -- that is, video where frames never cross the boundary of a
given second -- this distinction doesn't matter. When recording at 24.0fps true, the
23rd frame recorded is 00:00:00:23 and the 24th frame recorded is 00:00:01:00,
SMTPE timecode, which lines up with 00:00:01.0 in real-workd hours, minutes, and
seconds.
Here is the catch -- because there is a catch -- the vast majority of video these days
are not recorded in mathmatically convenient framerates. They are recorded at
framerates defined by the SMPTE NTSC standard. You can read a deep-dive on that
standard here, but the
long and short of it is that cinema video is almost always recorded rates commonly
referred to as 23.98, 29.97, 59.84, etc. that are fractionally slower than their
24.0, 30.0, 60.0, etc. counterparts.
When trying to figure out how to map NTSC frames to a frame-specific timestamp,
attempting to conform to the real world becomes difficult. the 24th frame of 23.98, NTSC
timecode actually occurs at 00:00:01.001. If we want a discreet 'frames' place, do we
then need to drop frames from some seconds to keep them in-line with a real world clock?
Unsuprisingly, some timecode displays do exactly that. NTSC
drop-frame timecode
takes this approach, and is a nightmare to work with outside the very specific use case
of measuring the length of an edit.
Thankfully, drop-frame conventions are out of favor these days, and only defined for
29.97 and 59.94 framerates -- the framerates that were used for anologue video and
older broadcast television.
"Seconds" aren't Seconds
NTSC non-drop timecode is the favored convention today. Non-drop timecode, as the name
suggests, does not drop frames to keep it's "timestamp" in sync with the real-world
clock. Instead, it chooses to beleive a convenient lie that all 24 frames in a "second"
actually fit in that second, and renders timecode accordingly, with each "second"
starting at frame 00 and ending at frame 23. Drift from the real-world clock is
taken as a necessary sin in exchange for not having to manage drop frames. 01:00:00:00
in 23.98 NTSC, non-drop timecode represents 01:00:03.6 in real-world hours,
minutes, and seconds.
Vtc Terminology
Vtc calles the true, real-world framerate of the media -- in this example 24000/1001
-- the playback rate of the timecode.
The rate at which timecode is calculated, -- in this example 24/1 -- is called the
timebase.
But wait -- why are we using fractions all of a sudden? That's because the common way we
refer to NTSC frameares -- i.e 23.98 NTSC -- is actually rounded shorthand for it's
actual specification: 24000/1001.
We will examine the inherently rational nature of timecode calculations in the next
section.

 The Rational Rationale - vtc v0.13.12

The Rational Rationale

Vtc uses rational (fraction) values to represent both timecode and framerate. Why?
Rational values are not oft used in computer science, and less efficient than finding a
way to represent your value as either a float or an integer scalar.
Video media programs have employed a variety of strategies to numerically representing
framerate and timecode -- that is to say frame identifiers -- with varying success.
In this document, we will lay out some of the historical approaches, and then examine
the reasoning behind Vtc's solution.
Requirements
First, a brief distillation of Vtc's goals:
	Lossless casting in and out of timecode strings
	No rounding errors when adding or subtracting, or multiplying timecode values
	Math and comparisons must be frame-accurate in mixed rate contexts
	Comparisons between timecodes should be based on the real-world time a frame was
recorded assuming jam-sync.

NTSC and Digital Computing
23.98 NTSC timecode is specifified as running at 24000/1001 frames per second, with
timecode caculated AS IF it were running at 24fps.
24000/1001 has the unfortunate propery of being an irrational number. It's digits
ride off into the sunset, never terminating:
iex> 24_000 / 1001
23.976023976023978
This unfortunate mathematical reality has a number of unfortunate knock-on effects when
attempting to model frame-accurate timecode calculations.
But wait...
If you look up the NTSC spec, you may notice that it ACTUALLY defines 23.98 NTSC with
floats: 24000.0/1001.0. So what gives? Why do we need more accuracy than the way video
equipment represents its frame identifiers internally?
When a camera or single-rate video editor is is producing frame timecodes, it is doing
so from a frame number. Because those frame numbers are being generated sequentially,
and ALWAYS in the context of a uniform frame rate, we can essentially ignore the small
amount of real-world jitter that a video stream contains, and there will never be enough
precision loss that rounding to the nearest frame will be wrong.
But when trying to do theoretical calculation between in and out points, like when
manipulating and EDL that dense data becomes sparse data, and we need to make sure
we are doing our math in a way that does not lose a frame to precision issues, that
can't misplace a frame when doing math between frames as points.
Historical Approaches
Let's review how programs have historically attempted to grapple with timecode, and
how they fail to meet the requirements above.
Frame integer: One common approach to tacking timecode is to represent it as a frame
number with 0 standing for 00:00:00:00 and 24 standing for 00:00:01:00 (at
23.98).
The problem with this approach is that in mixed-rate scenarios, these values
cannot be easily sorted by the real-world time that the frame was captured, and
therefore are not suited to tasks like syncing multicams, or audio where cameras were
recording at multiple framerates. For instance, 00:00:00:23 @ 23.98 and
00:00:00:46 @ 47.95 both represent the same real-world time, but would be represented
as 23 and 46 respectively.
Seconds float: Another common technique is to do all arithmatic in floating point,
and represent the timecode as a seconds value. So 00:00:02:00 would be represented
as 48.0 frames / (24000.0/1001.0) fps = 2.002 seconds. Most cameras calculate a their
Timecode values this way, and the official NTSC specification uses floats to define
24000.0/1001.0 as the 23.98 NTSC framerate.
This works great when you are calculating each timecode frame-by-frame. You take each
frame numebr and after 23.976023976023978 seconds, you record the frame buffer and
generate a new Timecode for that frame's index. No frames are skipped. Likewise, when
casting in and out of timecode strings, there isn't enough precision loss for errors
to occur.
But when you start adding timecodes together... errors can happen. Let's take a timecode
of 00:00:00:23. If we convert it to seconds, we get:
iex> seconds = 23 / (24_000 / 1001)
0.9592916666666667
Now let's say we have five events that we want to get the total length of, each is 23
seconds long. At the end we cast back to frames so we can construct the timecode:
iex> (seconds + seconds + seconds + seconds + seconds) * (24_000.0 / 1001.0)
115.00000000000001
We are just a little bit off. For this particular calculation, rounding gets us back
to the correct answer, but over the course of thousands of operations, say for summing
the duration of all events in an EDL, it adds up. We cannot cast back to frames to
make this correction after every operation in mixed frame contexts either.
Floats can also cause comparison errors in mixed framerate contexts. Let's imagine
we have one camera on set recording at 119.88 NTSC, and one camera recording at
23.98 NTSC.
For both cameras, 23:13:13:00 should equal the same real-world time. But if we convert
the timecode stamps to real-world seconds as a float by calculating the frame number and
dividing by the frame rate:
iex> # 23.98 NTSC
iex> 2_006_232 / (24_000 / 1001)
83676.593
iex> # 23.98 NTSC
iex> 10_031_160 / (120_000 / 1001)
83676.59300000001
Although these values SHOULD be equivalent, they are not. For applications that require
frame-accurate timeode comparisons, this appriach will not work, something video editors
have historically struggled with. Avid, for instance, disallowed mixed-rate timelines
for years, focing users to transcode their media to a uniform rate before they could edit
it together.
Quantized time
Some programs attempt to define a minimum discreet time unit, such as a millisecond,
nanosecond, etc, and capture timecode as a scalar value of that unit. Premiere, for
instance, represents timecode as a "tick", which it defines as a 254_016_000_000th of
a second. Video clip in, out, and duration values are all converted to a tick integer
value.
This approach can cause rounding issues when generating EDLs, FCP7 XMLs, AAFs and
others. Although in recent times the program has gotten much bettern, Premiere
originally had a number of off-by-one errors when it first started supporting
professional video workflows via interchange formats, ESPECIALLY when the framerate
of the media did not match the framerate of the edit sequence.
Again, 1 frame in 23.98 is equal to 0.04170833333333333 seconds. The digits value is
not easily representable as a discreet time value, and choosing an arbitraty quanta for
time means that the true frame time of a video clip of an arbitrary framearate may not
always neatly line up with the boundaries of your unit, cuasing gradual drift when you
start doing math.
On Efficiency
Lastly, it is important to note that Vtc does NOT strive to be as efficient as possible.
Timecode manipulation -- when needed -- is not an operation that most programe needs to
be done on the scale of millions of times per second, and will certainly not account for
the majority of calculations that a program will be doing at any given step.
Therefore, we believe that the loss in efficiency is worth the gain in accuracy and
ease of use that Rational values provide. However, it is good to keep in mind that each
time a rational value is produces the operation will involve multiple sub-operations.
In the case of addition: three multiplication, then recursive division to simplify the
fraction.
Conclusion
Vtc chose rational representation of timecode as a frame-accurate way to deal with
timecode values in mixed rate contexts. In short, we PUT OFF the step of casting to a
discreet value like a float, tick, millisecond, etc until AFTER we are done making
calculations, convserving -- as accurately as possible -- a true, frame-accurate
time.

 Contributing - vtc v0.13.12

Contributing

NOTE: This document is under developement.
Making a PR
Please make pull requests based off the dev branch into the dev branch. The release
CI pipleine adds additional files to the main branch whenever a PR is merged.
Running lints
To run all linters that will be run in CI:
make line
You'll need to install the following non-elixir programs:
	misspell

Running tests
To run all tests with coverage reports:
make test
Vtc offers optional Postgres extensions. If you do not have a Posgres instanve running
locally you can skip those tests like so:
mix test --exclude :postgres
Or:
mix test --exclude :ecto

 Vtc.Framerate - vtc v0.13.12

Vtc.Framerate

The rate at which a video file frames are played back, measured in frames-per-second
(24/1 = 24 frames-per-second). For more on framerate and why Vtc chooses to represent
it as a rational number, see NTSC: Framerate vs timebase
and The Rational Rationale
Struct Fields
	playback: The rational representation of the real-world playback speed as a
fraction in frames-per-second.

	ntsc: Atom representing which, if any, NTSC convention this framerate adheres to.

Using as an Ecto Type
See PgFramerate for information on how to use
Framerate in your postgres database as a native type.

 Anchor for this section

 Summary

 Types

 new_opts()

 Options for new/2 and new!/2.

 ntsc()

 Enum of Ntsc types.

 parse_result()

 Type returned by new/2

 t()

 Type of Framerate

 Parse

 new(rate, opts \\ [])

 Creates a new Framerate with a playback speed or timebase.

 new!(rate, opts \\ [])

 As new/2 but raises an error instead.

 Inspect

 ntsc?(rate)

 Returns true if the value represents and NTSC framerate.

 smpte_timebase(framerate)

 The rational representation of the SMPTE timecode's 'logical speed'. For more on
timebase and it's relationship to framerate, see:
NTSC: Framerate vs timebase.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 Anchor for this section

Types

 Link to this type

 new_opts()

 View Source

 @type new_opts() :: [ntsc: ntsc(), coerce_ntsc?: boolean(), invert?: boolean()]

Options for new/2 and new!/2.

 Link to this type

 ntsc()

 View Source

 @type ntsc() :: :non_drop | :drop | nil

Enum of Ntsc types.

 values

 Values

	:non_drop A non-drop NTSC value.
	:drop A drop-frame ntsc value.
	nil: Not an NTSC value

For more information on NTSC standards and framerate conventions, see
Frame.io's
blogpost on the subject.

 Link to this type

 parse_result()

 View Source

 @type parse_result() :: {:ok, t()} | {:error, Vtc.Framerate.ParseError.t()}

Type returned by new/2

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framerate{ntsc: ntsc(), playback: Ratio.t()}

Type of Framerate

 Anchor for this section

Parse

 Link to this function

 new(rate, opts \\ [])

 View Source

 @spec new(Ratio.t() | number() | String.t(), new_opts()) :: parse_result()

Creates a new Framerate with a playback speed or timebase.

 arguments

 Arguments

	rate: Either the playback rate or timebase. For NTSC framerates, the value will
be rounded to the nearest correct value.

 options

 Options

	ntsc: Atom representing the which (or whether an) NTSC standard is being used.
Default: :non-drop.

	invert?: If true, the resulting rational rate value will be flipped so that
1/24 becomes 24/1. This can be helpeful when you are parsing a rate given in
seconds-per-frame rather than frames-per-second. Default: false.

	coerce_ntsc?: If true -- and ntsc is non-nil -- values will be coerced to the
nearest valid NTSC rate. So 24 would be coerced to 24000/1001, as would
23.98. This option must be set to true when ntsc is non-nil and a float is
passed. Default: false

Float Precision
Only floats representing a whole number can be passed for non-NTSC rates, as there
is no fully precise way to convert fractional floats to rational values.

 Link to this function

 new!(rate, opts \\ [])

 View Source

 @spec new!(Ratio.t() | number() | String.t(), new_opts()) :: t()

As new/2 but raises an error instead.

 Anchor for this section

Inspect

 Link to this function

 ntsc?(rate)

 View Source

 @spec ntsc?(t()) :: boolean()

Returns true if the value represents and NTSC framerate.
Will return true on a Framerate with an :ntsc value of :non_drop and :drop.

 Link to this function

 smpte_timebase(framerate)

 View Source

 @spec smpte_timebase(t()) :: Ratio.t()

The rational representation of the SMPTE timecode's 'logical speed'. For more on
timebase and it's relationship to framerate, see:
NTSC: Framerate vs timebase.
Returned value is in frames-per-second.

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Vtc.Framestamp - vtc v0.13.12

Vtc.Framestamp

Represents a particular frame in a video clip.
New Framestamp values are created with the with_seconds/3 and with_frames/2, and
other function prefaced by with_*.
Vtc express a philosophy of working with Timecode that is defined by two major
conceits:
	A frame identifier is incomplete without a framerate.
More here.

	All frame identifiers commonly used in Video production boil down to being an
expression of either the real-world seconds of a frame, OR a squential index
number. More here.

What is a framestamp?
Framestamps are an expression of Vtc's philosophy about working with timecode in
application code. On a technical level, a framestamp is comprised of:
	The real-world time that a frame occurred at, as represented by a rational value,
measured in seconds since SMPTE timecode "midnight".

	The framerate of the media the framestamp was generated for, as represented by a
rational frames-per-second value.

	Any associated metadata about the source representation the framestamp was parsed
from, such as SMPTE NTSC non-drop timecode.

So a fully-formed framestamp for 01:00:00:00 at 23.98 NTSC would be
18018/5 @ 24000/1001 NTSC non-drop.
Why prefer seconds?
SMPTE timecode, shown above, is the canonical way we identify an
individual frame in professional video workflows. As a human readable data type,
timecode strings are great. You can easily locate, compare, and add timecode strings
at a glance.
Why then, does Vtc come up with a new representation?
Well, SMPTE timecode strings are not as great for computers. Let's take a quick look
at what we want from a good frame identifier:
	Uniquely identify a frame in a specific video stream.

	Sort by real-world occurrence.

	Add / subtract values.

	All of the above, in mixed-framerate contexts.

The last point is key, timecode is great... if all of your media is running at the
same framerate. For instance, when syncing footage and audio between two cameras --
one running at 24fps, and one running at 48fps -- 01:00:00:13 and 01:00:00:26 are
equivalent values, as they were captured at the same point in time, and should be
synced together. Timecode is an expression of frame index more than frame seconds,
and as such, cannot be lexically sorted in mixed-rate settings. Further,
a computer cannot add "01:30:00:00" to "01:00:00:00" without converting it to some
sort of numerical value.
Many programs convert timecode directly to an integer frame number for arithamtic and
comparison operations where each frame on the clock is issued a continuous index,
zero 0 is 00:00:00:00. Frame numbers, though, have the same issue with mixed-rate
values as timecode; 26 at 48 frames-per-second represents the same real-world time
as 13 at 24 frames-per-seconds, and preserving that equality is important for
operations like jam-syncing.
So that leaves us with real-world seconds. Convert timecode values -- even ones
captured in mixed rates -- to seconds, then add and sort to your heart's content.
Why rational numbers?
We'll avoid a deep-dive over why we use a rational value over a float or decimal, but
you can read more on that choice
[here](why we use rational values.
The short version is that many common SMPTE-specified framerates are defined as
irrational numbers. For instance, 23.98 NTSC is defined as 24000/1001
frames-per-second.
In order to avoid off-by-one errors when using seconds, we need to avoid resolving
values like 1001/24000 -- the value for frame 1 at 23.98 NTSC -- into any sort
of decimal representation, since 1001/24000 is an irrational value and cannot be
cleanly represented as a decimal. It's digits ride off into the sunset.
Why include framerate?
SMPTE timecode does not include a framerate in it's specification for frame
identifiers, i.e 01:00:00:00. So why does Vtc?
Lets say that we are working with a given video file, and you are handed the timecode
01:00:00:12. What frame does that belong to?
Without a framerate, you cannot know. If we are talking about 23.98 NTSC media, it
belongs to frame 86,400, but if we are talking about 59.94 NTSC NDF, frame then
it belongs to frame 216,000, and if we are talking about 59.94 NTSC DF media then
it belongs to frame 215,784.
What about the other direction. We need to calculate the SMPTE timecode for frame
48, which we previously parsed from a timecode. Well if it was originally parsed
using 23.98 NTSC footage, then it is TC 00:00:02:00, but if it is 59.94 NTSC
then it is TC 00:00:00:48. Framerate is implicitly required for a SMPTE timecode
to be comprehensible.
The story is the same with seconds. How many seconds does 01:00:00:00 represent?
At 23.98 NTSC, it represents 18018/5 seconds, but at 24fps true it represents
3600/1 seconds.
We cannot know what frame a seconds value represents, or what seconds value a frame
represents, without knowing that scalar value's associated framerate. It's like having
a timestamp without a timezone. Even in systems where all timestamps are converted to
UTC, we often keep the timezone information around because it's just too useful in
mixed-timezone settings, and you can't be sure what a given timezone represents
in a vacuum if you don't have the associated timezone.
Framerate -- especially in mixed rate settings, which Vtc considers a first-class use
case -- is required to sensibly execute many operations, like casting in an out of
SMPTE Timecode, adding two timecodes together, etc.
For this reason we package the framerate of our media stream together with the scalar
value that represents a frame in that stream, and take the onus of transporting these
two values together off of the caller.
Struct Fields
	seconds: The real-world seconds elapsed since 'midnight' as a rational value.

	rate: the Framerate of the Framestamp.

Parsing: Seconds.t() or Frames.t()
Parsing functions preappend with_ to their name. When you give a value to a parsing
function, it is the same value that would be returned by the euivalent unit
conversion. So a value passed to with_frames is the
same value frames would return:
iex> {:ok, framestamp} = Framestamp.with_frames(24, Rates.f23_98())
iex> inspect(framestamp)
"<00:00:01:00 <23.98 NTSC>>"
iex> Framestamp.frames(framestamp)
24
The Framestamp module only has two basic construction / parsing methods:
with_seconds and
with_frames.
At first blush, this may seem... odd. Where is with_timecode/2? Or
with_premiere_ticks/2? We can render these formats, so why isn't there a parser for
them? Well there is, sort of: the two functions above.
Vtc's second major conceit is that all of the various ways of representing a
video frame's timestamp boil down to EITHER:
	a) A representation of an index number for that frame

OR
	b) A representation of the real-world seconds the frame occurred at.

SMPTE timecode is really a human-readable way to represent a frame number. Same with
film feet+frames.
Premiere Ticks, on the other hand, represents a real-world seconds value, as broken
down in 1/254_016_000_000ths of a second.
Instead of polluting the module's namespace with a range of constructors, Vtc declares
a Frames protocol for types that represent a frame count, and a
Seconds protocol for types that represent a time-scalar.
All framestamp representations eventually get funneled through one of these
protocols. For instance, when the String implementation of the protocol detects a
SMPTE timecode string, it wraps the value in a
SMPTETimecodeStr struct which handles converting that
string to a frame number thorough implementing the Frames
protocol. That frame number is then taken by
with_frames and converted to a rational seconds
value.
Going through protocols allows callers to define their own types that work with Vtc's
parsing functions directly.
Sorting Support
Framestamp implements compare/2, and as such, can be used wherever
the standard library calls for a Sorter module. Let's see it in action:
iex> stamp_01 = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> stamp_02 = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> sorted = Enum.sort([stamp_02, stamp_01], Framestamp)
iex> inspect(sorted)
"[<01:00:00:00 <23.98 NTSC>>, <02:00:00:00 <23.98 NTSC>>]"
iex> sorted = Enum.sort([stamp_01, stamp_02], {:desc, Framestamp})
iex> inspect(sorted)
"[<02:00:00:00 <23.98 NTSC>>, <01:00:00:00 <23.98 NTSC>>]"
iex> max = Enum.max([stamp_02, stamp_01], Framestamp)
iex> inspect(max)
"<02:00:00:00 <23.98 NTSC>>"
iex> min = Enum.min([stamp_02, stamp_01], Framestamp)
iex> inspect(min)
"<01:00:00:00 <23.98 NTSC>>"
iex> data_01 = %{id: 2, tc: stamp_01}
iex> data_02 = %{id: 1, tc: stamp_02}
iex> sorted = Enum.sort_by([data_02, data_01], & &1.tc, Framestamp)
iex> inspect(sorted)
"[%{id: 2, tc: <01:00:00:00 <23.98 NTSC>>}, %{id: 1, tc: <02:00:00:00 <23.98 NTSC>>}]"
Arithmetic Autocasting
For operators that take two Framestamp values, likt add/3 or compare/2, as long
as one argument is a Framestamp value, a or b May be any value
that implements the Frames protocol, such as a timecode string,
and will be assumed to be the same framerate as the other.
Production code
Autocasting exists to support quick scratch scripts and we suggest that it not be,
relied upon in production application code.

If parsing the value fails during casting, the function raises a
Vtc.Framestamp.ParseError.
Using as an Ecto Type
See PgFramestamp for information on how to use
Framerate in your postgres database as a native type.

 Anchor for this section

 Summary

 Types

 maybe_round()

 As round/0, but includes :off option to disable rounding entirely. Not all
functions exposed by this module make logical sense without some form of rouding, so
:off will not be accepted by all functions.

 parse_result()

 Type returned by with_seconds/3 and with_frames/3.

 round()

 Valid values for rounding options.

 t()

 Framestamp type.

 Parse

 with_frames(frames, rate)

 Returns a new Framestamp with a frames/2 return value equal to the
frames arg.

 with_frames!(frames, rate)

 As Framestamp.with_frames/3, but raises on error.

 with_seconds(seconds, rate, opts \\ [])

 Returns a new Framestamp with a :seconds field value equal to the
seconds arg.

 with_seconds!(seconds, rate, opts \\ [])

 As with_seconds/3, but raises on error.

 Manipulate

 rebase(framestamp, rate)

 Rebases framestamp to a new framerate.

 rebase!(framestamp, new_rate)

 As rebase/2, but raises on error.

 Compare

 compare(a, b)

 Comapare the values of a and b.

 eq?(a, b)

 Returns true if a is eqaul to b.

 gt?(a, b)

 Returns true if a is greater than b.

 gte?(a, b)

 Returns true if a is greater than or eqaul to b.

 lt?(a, b)

 Returns true if a is less than b.

 lte?(a, b)

 Returns true if a is less than or equal to b.

 Arithmetic

 abs(framestamp)

 Returns the absolute value of tc.

 add(a, b, opts \\ [])

 Add two framestamps.

 div(dividend, divisor, opts \\ [])

 Divides dividend by divisor.

 divrem(dividend, divisor, opts \\ [])

 Divides the total frame count of dividend by divisor and returns both a quotient
and a remainder.

 eval(opts \\ [], body)

 Evalutes Framestamp mathematical expressions in a do block.

 minus(framestamp)

 As the kernel -/1 function.

 mult(a, b, opts \\ [])

 Scales a by b.

 rem(dividend, divisor, opts \\ [])

 Devides the total frame count of dividend by devisor, and returns the remainder.

 sub(a, b, opts \\ [])

 Subtract b from a.

 Convert

 feet_and_frames(framestamp, opts \\ [])

 Returns the number of physical film feet and frames framestamp represents if shot
on film.

 frames(framestamp, opts \\ [])

 Returns the number of frames that would have elapsed between 00:00:00:00 and
Framestamp.

 premiere_ticks(framestamp, opts \\ [])

 Returns the number of elapsed ticks framestamp represents in Adobe Premiere Pro.

 runtime(framestamp, opts \\ [])

 Runtime Returns the true, real-world runtime of framestamp in HH:MM:SS.FFFFFFFFF
format.

 smpte_timecode(framestamp, opts \\ [])

 Returns the the formatted SMPTE timecode for a Framestamp.

 smpte_timecode_sections(framestamp, opts \\ [])

 The individual sections of a SMPTE timecode string as i64 values.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 validate_divrem_rounding(opts)

 Anchor for this section

Types

 Link to this type

 maybe_round()

 View Source

 @type maybe_round() :: round() | :off

As round/0, but includes :off option to disable rounding entirely. Not all
functions exposed by this module make logical sense without some form of rouding, so
:off will not be accepted by all functions.

 Link to this type

 parse_result()

 View Source

 @type parse_result() ::
 {:ok, t()}
 | {:error,
 Vtc.Framestamp.ParseError.t()
 | %ArgumentError{__exception__: true, message: term()}}

Type returned by with_seconds/3 and with_frames/3.

 Link to this type

 round()

 View Source

 @type round() :: :closest | :floor | :ceil | :trunc

Valid values for rounding options.
	:closest: Round the to the closet whole frame. Rounds away from zero when
value is equidistant from two whole-frames.

	:floor: Always round down to the closest whole-frame. Negative numbers round away
 from zero

	:ciel: Always round up to the closest whole-frame. Negative numbers round towards
 zero.

	:trunc: Always round towards zero to the closest whole frame. Negative numbers
round up and positive numbers round down.

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framestamp{rate: Vtc.Framerate.t(), seconds: Ratio.t()}

Framestamp type.

 Anchor for this section

Parse

 Link to this function

 with_frames(frames, rate)

 View Source

 @spec with_frames(Vtc.Source.Frames.t(), Vtc.Framerate.t()) :: parse_result()

Returns a new Framestamp with a frames/2 return value equal to the
frames arg.

 arguments

 Arguments

	frames: A value which can be represented as a frame number / frame count. Must
implement the Frames protocol.

	rate: Frame-per-second playback value of the framestamp.

 options

 Options

	round: How to round the result with regards to whole-frames. Default: :closest.

 examples

 Examples

Accepts SMPTE timecode strings...
iex> result = Framestamp.with_frames("01:00:00:00", Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"
... feet+frames strings...
iex> result = Framestamp.with_frames("5400+00", Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"
By default, feet+frames is interpreted as 35mm, 4perf film. You can use the
FeetAndFrames struct to parse other film formats:
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> {:ok, feet_and_frames} = FeetAndFrames.from_string("5400+00", film_format: :ff16mm)
iex>
iex> result = Framestamp.with_frames(feet_and_frames, Rates.f23_98())
iex> inspect(result)
"{:ok, <01:15:00:00 <23.98 NTSC>>}"
... integers...
iex> result = Framestamp.with_frames(86_400, Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"
... and integer strings.
iex> result = Framestamp.with_frames("86400", Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"

 Link to this function

 with_frames!(frames, rate)

 View Source

 @spec with_frames!(Vtc.Source.Frames.t(), Vtc.Framerate.t()) :: t()

As Framestamp.with_frames/3, but raises on error.

 Link to this function

 with_seconds(seconds, rate, opts \\ [])

 View Source

 @spec with_seconds(
 Vtc.Source.Seconds.t(),
 Vtc.Framerate.t(),
 opts :: [round: maybe_round(), allow_partial_frames?: boolean()]
) :: parse_result()

Returns a new Framestamp with a :seconds field value equal to the
seconds arg.

 arguments

 Arguments

	seconds: A value which can be represented as a number of real-world seconds.
Must implement the Seconds protocol.

	rate: Frame-per-second playback value of the framestamp.

 options

 Options

	round: How to round the result with regards to whole-frames. Default: :closest.

	allow_partial_frames?: If true, when round is :off, will allow a seconds value
that is not cleanly divisible by rate.playback. Otherwise, will return an error.
Default: false.

 examples

 Examples

Accetps runtime strings...
iex> result = Framestamp.with_seconds("01:00:00.5", Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:22 <23.98 NTSC>>}"
... floats...
iex> result = Framestamp.with_seconds(3600.5, Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:22 <23.98 NTSC>>}"
... integers...
iex> result = Framestamp.with_seconds(3600, Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:10 <23.98 NTSC>>}"
... integer Strings...
iex> result = Framestamp.with_seconds("3600", Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:10 <23.98 NTSC>>}"
... and float strings.
iex> result = Framestamp.with_seconds("3600.5", Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:22 <23.98 NTSC>>}"

 premiere-ticks

 Premiere Ticks

The Vtc.Source.Seconds.PremiereTicks struck implements the
Seconds protocol and can be used to parse the format. This
struct is not a general-purpose Module for the unit, and only exists to hint to the
parsing function how it should be processed:
iex> alias Vtc.Source.Seconds.PremiereTicks
iex>
iex> input = %PremiereTicks{in: 254_016_000_000}
iex>
iex> result = Framestamp.with_seconds!(input, Rates.f23_98())
iex> inspect(result)
"<00:00:01:00 <23.98 NTSC>>"

 Link to this function

 with_seconds!(seconds, rate, opts \\ [])

 View Source

 @spec with_seconds!(
 Vtc.Source.Seconds.t(),
 Vtc.Framerate.t(),
 opts :: [round: maybe_round(), allow_partial_frames?: boolean()]
) :: t()

As with_seconds/3, but raises on error.

 Anchor for this section

Manipulate

 Link to this function

 rebase(framestamp, rate)

 View Source

 @spec rebase(t(), Vtc.Framerate.t()) :: parse_result()

Rebases framestamp to a new framerate.
The real-world seconds are recalculated using the same frame count as if they were
being played back at new_rate instead of framestamp.rate.

 examples

 Examples

iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> {:ok, rebased} = Framestamp.rebase(framestamp, Rates.f47_95())
iex> inspect(rebased)
"<00:30:00:00 <47.95 NTSC>>"

 Link to this function

 rebase!(framestamp, new_rate)

 View Source

 @spec rebase!(t(), Vtc.Framerate.t()) :: t()

As rebase/2, but raises on error.

 Anchor for this section

Compare

 Link to this function

 compare(a, b)

 View Source

 @spec compare(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 :lt | :eq | :gt

Comapare the values of a and b.
Compatible with Enum.sort/2. For more on sorting non-builtin values, see
the Elixir ducumentation.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 examples

 Examples

Using two framestamps parsed from SMPTE timecode, 01:00:00:00 NTSC is greater than
01:00:00:00 true because it represents more real-world time.
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:00", Rates.f24())
iex> :gt = Framestamp.compare(a, b)
Using a framestamp and a bare string:
iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> :eq = Framestamp.compare(framestamp, "01:00:00:00")

 Link to this function

 eq?(a, b)

 View Source

 @spec eq?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is eqaul to b.
auto-casts Frames values.

 examples

 Examples

iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> true = Framestamp.eq?(a, b)
Framestamps with the same string timecofe representation, but different real-world
seconds values, are not equal:
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:00", Rates.f24())
iex> false = Framestamp.eq?(a, b)
But Framestamps with the different SMPTE timecode string representation, but the
same real-world seconds values, are equal:
iex> a = Framestamp.with_frames!("01:00:00:12", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:24", Rates.f47_95())
iex> true = Framestamp.eq?(a, b)

 Link to this function

 gt?(a, b)

 View Source

 @spec gt?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is greater than b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 Link to this function

 gte?(a, b)

 View Source

 @spec gte?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is greater than or eqaul to b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 Link to this function

 lt?(a, b)

 View Source

 @spec lt?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is less than b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 examples

 Examples

iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex> true = Framestamp.lt?(a, b)
iex> false = Framestamp.lt?(b, a)

 Link to this function

 lte?(a, b)

 View Source

 @spec lte?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is less than or equal to b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 Anchor for this section

Arithmetic

 Link to this function

 abs(framestamp)

 View Source

 @spec abs(t()) :: t()

Returns the absolute value of tc.

 examples

 Examples

iex> stamp = Framestamp.with_frames!("-01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.abs(stamp)
iex> inspect(result)
"<01:00:00:00 <23.98 NTSC>>"
iex> stamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.abs(stamp)
iex> inspect(result)
"<01:00:00:00 <23.98 NTSC>>"

 Link to this function

 add(a, b, opts \\ [])

 View Source

 @spec add(
 a :: t() | Vtc.Source.Frames.t(),
 b :: t() | Vtc.Source.Frames.t(),
 opts :: [round: maybe_round(), allow_partial_frames?: boolean()]
) :: t()

Add two framestamps.
Uses the real-world seconds representation. When the rates of a and b are not
equal, the result will inheret the framerate of a and be rounded to the seconds
representation of the nearest whole-frame at that rate.
auto-casts Frames values.

 options

 Options

	round: How to round the result with respect to whole-frames when mixing
framerates. Default: :closest.

	allow_partial_frames?: If true, when round is :off, will allow a seconds value
that is not cleanly divisible by rate.playback. Otherwise, will return an error.
Default: false.

 examples

 Examples

Two framestamps running at the same rate:
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:30:21:17", Rates.f23_98())
iex>
iex> result = Framestamp.add(a, b)
iex> inspect(result)
"<02:30:21:17 <23.98 NTSC>>"
Two framestamps running at different rates:
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("00:00:00:02", Rates.f47_95())
iex>
iex> result = Framestamp.add(a, b)
iex> inspect(result)
"<01:00:00:01 <23.98 NTSC>>"
Using a framestamps and a bare string:
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.add(a, "01:30:21:17")
iex> inspect(result)
"<02:30:21:17 <23.98 NTSC>>"

 Link to this function

 div(dividend, divisor, opts \\ [])

 View Source

 @spec div(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round: maybe_round(), allow_partial_frames?: boolean()]
) :: t()

Divides dividend by divisor.
The result will inherit the framerate of dividend and rounded to the nearest
whole-frame based on the :round option.

 options

 Options

	round: How to round the result with respect to whole-frame values. Defaults to
:trunc to match divmod and the expected meaning of div to mean integer
division in elixir.

	allow_partial_frames?: If true, when round is :off, will allow a seconds value
that is not cleanly divisible by rate.playback. Otherwise, will return an error.
Default: false.

 examples

 Examples

iex> dividend = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.div(dividend, 2)
iex> inspect(result)
"<00:30:00:00 <23.98 NTSC>>"

iex> dividend = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.div(dividend, 0.5)
iex> inspect(result)
"<02:00:00:00 <23.98 NTSC>>"

 Link to this function

 divrem(dividend, divisor, opts \\ [])

 View Source

 @spec divrem(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round_frames: round(), round_remainder: round()]
) :: {t(), t()}

Divides the total frame count of dividend by divisor and returns both a quotient
and a remainder.
The quotient returned is equivalent to Framestamp.div/3 with the :round option set
to :trunc.

 options

 Options

	round_frames: How to round the frame count before doing the divrem operation.
Default: :closest.

	round_remainder: How to round the remainder frames when a non-whole frame would
be the result. Default: :closest.

 examples

 Examples

iex> dividend = Framestamp.with_frames!("01:00:00:01", Rates.f23_98())
iex>
iex> result = Framestamp.divrem(dividend, 4)
iex> inspect(result)
"{<00:15:00:00 <23.98 NTSC>>, <00:00:00:01 <23.98 NTSC>>}"

 Link to this macro

 eval(opts \\ [], body)

 View Source

 (macro)

 @spec eval(
 [at: Vtc.Framerate.t() | number() | Ratio.t(), ntsc: Vtc.Framerate.ntsc()],
 Macro.input()
) ::
 Macro.t()

Evalutes Framestamp mathematical expressions in a do block.
Any code captured within this macro can use Kernel operators to work with
Framestamp values instead of module functions like add/2.

 options

 Options

	at: The Framerate to cast non-Framestamp values to. If this
value is not set, then at least one value in each operation must be a
Framestamp. This value can be any value accepted by
Framerate.new/2.

	ntsc: The ntsc value to use when creating a new Framerate with at. Not needed
if at is a Framerate value.

 examples

 Examples

Use eval to do some quick math. The block captures variables from the outer scope,
but contains the expression within its own scope, just like an if or with
statement.
iex> require Framestamp
iex>
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("00:30:00:00", Rates.f23_98())
iex> c = Framestamp.with_frames!("00:15:00:00", Rates.f23_98())
iex>
iex> result =
iex> Framestamp.eval do
iex> a + b * 2 - c
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
Or if you want to do it in one line:
iex> require Framestamp
iex>
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("00:30:00:00", Rates.f23_98())
iex> c = Framestamp.with_frames!("00:15:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.eval(a + b * 2 - c)
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
Just like the regular Framestamp functions, only one value in an
arithmetic expression needs to be a Framestamp value. In the case
above, since multiplication happens first, that's b:
iex> b = Framestamp.with_frames!("00:30:00:00", Rates.f23_98())
iex>
iex> result =
iex> Framestamp.eval do
iex> "01:00:00:00" + b * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
You can supply a default framerate if you just want to do some quick calculations.
This framerate is inherited by every value that implements the
Frames protocol in the block, including integers:
iex> result =
iex> Framestamp.eval at: Rates.f23_98() do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
You can use any value that can be parsed by Framerate.new/2.
iex> result =
iex> Framestamp.eval at: 23.98 do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
ntsc: :non_drop, coerce_ntsc?: true is assumed by default, but you can set a
different value with the :ntsc option:
iex> result =
iex> Framestamp.eval at: 24, ntsc: nil do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <24.0 fps>>"

 Link to this function

 minus(framestamp)

 View Source

 @spec minus(t()) :: t()

As the kernel -/1 function.
	Makes a positive tc value negative.
	Makes a negative tc value positive.

 examples

 Examples

iex> stamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.minus(stamp)
iex> inspect(result)
"<-01:00:00:00 <23.98 NTSC>>"
iex> stamp = Framestamp.with_frames!("-01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.minus(stamp)
iex> inspect(result)
"<01:00:00:00 <23.98 NTSC>>"

 Link to this function

 mult(a, b, opts \\ [])

 View Source

 @spec mult(
 a :: t(),
 b :: Ratio.t() | number(),
 opts :: [round: maybe_round(), allow_partial_frames?: boolean()]
) :: t()

Scales a by b.
The result will inheret the framerate of a and be rounded to the seconds
representation of the nearest whole-frame based on the :round option.

 options

 Options

	round: How to round the result with respect to whole-frame values. Defaults to
:closest.

	allow_partial_frames?: If true, when round is :off, will allow a seconds value
that is not cleanly divisible by rate.playback. Otherwise, will return an error.
Default: false.

 examples

 Examples

iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.mult(a, 2)
iex> inspect(result)
"<02:00:00:00 <23.98 NTSC>>"

iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.mult(a, 0.5)
iex> inspect(result)
"<00:30:00:00 <23.98 NTSC>>"

 Link to this function

 rem(dividend, divisor, opts \\ [])

 View Source

 @spec rem(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round_frames: round(), round_remainder: round()]
) :: t()

Devides the total frame count of dividend by devisor, and returns the remainder.
The quotient is truncated before the remainder is calculated.

 options

 Options

	round_frames: How to round the frame count before doing the rem operation.
Default: :closest.

	round_remainder: How to round the remainder frames when a non-whole frame would
be the result. Default: :closest.

 examples

 Examples

iex> dividend = Framestamp.with_frames!("01:00:00:01", Rates.f23_98())
iex>
iex> result = Framestamp.rem(dividend, 4)
iex> inspect(result)
"<00:00:00:01 <23.98 NTSC>>"

 Link to this function

 sub(a, b, opts \\ [])

 View Source

 @spec sub(
 a :: t(),
 b :: t() | Vtc.Source.Frames.t(),
 opts :: [round: maybe_round(), allow_partial_frames?: boolean()]
) :: t()

Subtract b from a.
Uses their real-world seconds representation. When the rates of a and b are not
equal, the result will inheret the framerate of a and be rounded to the seconds
representation of the nearest whole-frame at that rate.
auto-casts Frames values.

 options

 Options

	round: How to round the result with respect to whole-frames when mixing
framerates. Default: :closest.

 examples

 Examples

Two framestamps running at the same rate:
iex> a = Framestamp.with_frames!("01:30:21:17", Rates.f23_98())
iex> b = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.sub(a, b)
iex> inspect(result)
"<00:30:21:17 <23.98 NTSC>>"
When b is greater than a, the result is negative:
iex> a = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.sub(a, b)
iex> inspect(result)
"<-01:00:00:00 <23.98 NTSC>>"
Two framestamps running at different rates:
iex> a = Framestamp.with_frames!("01:00:00:02", Rates.f23_98())
iex> b = Framestamp.with_frames!("00:00:00:02", Rates.f47_95())
iex>
iex> result = Framestamp.sub(a, b)
iex> inspect(result)
"<01:00:00:01 <23.98 NTSC>>"
Using a framestamps and a bare string:
iex> a = Framestamp.with_frames!("01:30:21:17", Rates.f23_98())
iex>
iex> result = Framestamp.sub(a, "01:00:00:00")
iex> inspect(result)
"<00:30:21:17 <23.98 NTSC>>"

 Anchor for this section

Convert

 Link to this function

 feet_and_frames(framestamp, opts \\ [])

 View Source

 @spec feet_and_frames(t(), opts :: [fiim_format: Vtc.FilmFormat.t(), round: round()]) ::
 Vtc.Source.Frames.FeetAndFrames.t()

Returns the number of physical film feet and frames framestamp represents if shot
on film.
Ex: '5400+13'.

 options

 Options

	round: How to round the internal frame count before conversion. Default: :closest.

	fiim_format: The film format to use when doing the calculation. For more on film
formats, see Vtc.FilmFormat. Default: :ff35mm_4perf, by far the most common
format used to shoot Hollywood movies.

 what-it-is

 What it is

On physical film, each foot contains a certain number of frames. For 35mm, 4-perf film
(the most common type on Hollywood movies), this number is 16 frames per foot.
Feet-And-Frames was often used in place of Keycode to quickly reference a frame in the
edit.

 where-you-see-it

 Where you see it

For the most part, feet + frames has died out as a reference, because digital media is
not measured in feet. The most common place it is still used is Studio Sound
Departments. Many Sound Mixers and Designers intuitively think in feet + frames, and
it is often burned into the reference picture for them.
	Telecine.
	Sound turnover reference picture.
	Sound turnover change lists.

For more information on individual film formats, see the Vtc.FilmFormat module.

 examples

 Examples

Defaults to 35mm, 4perf:
iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.feet_and_frames(framestamp)
iex> inspect(result)
"<5400+00 :ff35mm_4perf>"
Use String.Chars to convert the resulting struct to a traditional F=F string:
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.feet_and_frames(framestamp)
iex> String.Chars.to_string(result)
"5400+00"
Outputting as a different film format:

 examples-1

 Examples

iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.feet_and_frames(framestamp, film_format: :ff16mm)
iex> inspect(result)
"<4320+00 :ff16mm>"

 Link to this function

 frames(framestamp, opts \\ [])

 View Source

 @spec frames(t(), opts :: [{:round, round()}]) :: integer()

Returns the number of frames that would have elapsed between 00:00:00:00 and
Framestamp.

 options

 Options

	round: How to round the resulting frame number.

 what-it-is

 What it is

Frame number / frames count is the number of a frame if the SMPTE timecode started at
00:00:00:00 and had been running until the current value. A SMPTE timecode of
'00:00:00:10' has a frame number of 10. A SMPTE timecode of '01:00:00:00' has a frame
number of 86400.

 where-you-see-it

 Where you see it

	Frame-sequence files: 'my_vfx_shot.0086400.exr'

	FCP7XML cut lists:
 <timecode>
 <rate>
 <timebase>24</timebase>
 <ntsc>TRUE</ntsc>
 </rate>
 <string>01:00:00:00</string>
 <frame>86400</frame> <!-- <====THIS LINE-->
 <displayformat>NDF</displayformat>
 </timecode>

 examples

 Examples

iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> Framestamp.frames(framestamp)
86400

 Link to this function

 premiere_ticks(framestamp, opts \\ [])

 View Source

 @spec premiere_ticks(t(), opts :: [{:round, round()}]) :: integer()

Returns the number of elapsed ticks framestamp represents in Adobe Premiere Pro.

 options

 Options

	round: How to round the resulting ticks.

 what-it-is

 What it is

Internally, Adobe Premiere Pro uses ticks to divide up a second, and keep track of how
far into that second we are. There are 254016000000 ticks in a second, regardless of
framerate in Premiere.

 where-you-see-it

 Where you see it

	Premiere Pro Panel functions and scripts.

	FCP7XML cutlists generated from Premiere:
<clipitem id="clipitem-1">
...
<in>158</in>
<out>1102</out>
<pproTicksIn>1673944272000</pproTicksIn>
<pproTicksOut>11675231568000</pproTicksOut>
...
</clipitem>

 examples

 Examples

iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> Framestamp.premiere_ticks(framestamp)
915372057600000

 Link to this function

 runtime(framestamp, opts \\ [])

 View Source

 @spec runtime(t(), precision: non_neg_integer(), trim_zeros?: boolean()) :: String.t()

Runtime Returns the true, real-world runtime of framestamp in HH:MM:SS.FFFFFFFFF
format.
Trailing zeroes are trimmed from the end of the return value. If the entire fractal
seconds value would be trimmed, '.0' is used.

 options

 Options

	precision: The number of places to round to. Extra trailing 0's will still be
trimmed. Default: 9.

	trim_zeros?: Whether to trim trailing zeroes. Default: true.

 what-it-is

 What it is

The human-readable version of seconds. It looks like timecode, but with a decimal
seconds value instead of a frame number place.

 where-you-see-it

 Where you see it

• Anywhere real-world time is used.
• FFMPEG commands:
 ffmpeg -ss 00:00:30.5 -i input.mov -t 00:00:10.25 output.mp4

 note

 Note

The true runtime will often diverge from the hours, minutes, and seconds
value of the SMPTE timecode representation when dealing with non-whole-frame
framerates. Even drop-frame timecode does not continuously adhere 1:1 to the
actual runtime. For instance, <01:00:00;00 <29.97 NTSC DF>> has a true runtime of
'00:59:59.9964', and <01:00:00:00 <23.98 NTSC>> has a true runtime of
'01:00:03.6'

 examples

 Examples

iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> Framestamp.runtime(framestamp)
"01:00:03.6"

 Link to this function

 smpte_timecode(framestamp, opts \\ [])

 View Source

 @spec smpte_timecode(t(), opts :: [{:round, round()}]) :: String.t()

Returns the the formatted SMPTE timecode for a Framestamp.
Ex: 01:00:00:00. Drop frame timecode will be rendered with a ';' sperator before the
frames field.

 options

 Options

	round: How to round the resulting frames field.

 what-it-is

 What it is

Timecode is used as a human-readable way to represent the id of a given frame. It is
formatted to give a rough sense of where to find a frame:
{HOURS}:{MINUTES}:{SECONDS}:{FRAME}. For more on timecode, see Frame.io's
excellent post on the
subject.

 where-you-see-it

 Where you see it

Timecode is ubiquitous in video editing, a small sample of places you might see
timecode:
	Source and Playback monitors in your favorite NLE.
	Burned into the footage for dailies.
	Cut lists like an EDL.

 examples

 Examples

iex> framestamp = Framestamp.with_frames!(86_400, Rates.f23_98())
iex> Framestamp.smpte_timecode(framestamp)
"01:00:00:00"

 Link to this function

 smpte_timecode_sections(framestamp, opts \\ [])

 View Source

 @spec smpte_timecode_sections(t(), opts :: [{:round, round()}]) ::
 Vtc.SMPTETimecode.Sections.t()

The individual sections of a SMPTE timecode string as i64 values.

 examples

 Examples

iex> framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Framestamp.smpte_timecode_sections(framestamp)
iex> inspect(result)
"%Vtc.SMPTETimecode.Sections{negative?: false, hours: 1, minutes: 0, seconds: 0, frames: 0}"

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 validate_divrem_rounding(opts)

 View Source

 @spec validate_divrem_rounding(round_frames: round(), round_remainder: round()) ::
 {round(), round()}

 Vtc.Framestamp.Range - vtc v0.13.12

Vtc.Framestamp.Range

Holds a framestamp range.
Struct Fields
	in: Start TC. Must be less than or equal to out.
	out: End TC. Must be greater than or equal to in.
	inclusive: See below for more information. Default: false

Inclusive vs. Exclusive Ranges
Inclusive ranges treat the out framestamp as the last visible frame of a piece of
footage. This style of timecode range is most often associated with AVID.
Exclusive framestamp ranges treat the out framestamp as the boundary where the
range ends. This style of timecode range is most often associated with Final Cut and
Premiere.
In mathematical notation, inclusive ranges are [in, out], while exclusive ranges are
[in, out).

 Anchor for this section

 Summary

 Types

 out_type()

 Whether the end point should be treated as the Range's boundary (:exclusive), or its
last element (:inclusive).

 t()

 Range struct type.

 Parse

 new(stamp_in, stamp_out, opts \\ [])

 Creates a new Range.

 new!(stamp_in, stamp_out, opts \\ [])

 As new/3, but raises on error.

 with_duration(stamp_in, duration, opts \\ [])

 Returns a range with an :in value of stamp_in and a duration of duration.

 with_duration!(stamp_in, duration, opts \\ [])

 As with_duration/3, but raises on error.

 Manipulate

 with_exclusive_out(range)

 Adjusts range to have an exclusive out framestamp.

 with_inclusive_out(range)

 Adjusts range to have an inclusive out framestamp.

 Inspect

 duration(range)

 Returns the duration in Framestamp of range.

 Compare

 contains?(range, framestamp)

 Returns true if range contains framestamp. framestamp may be any value that
implements Frames.

 intersection(a, b)

 Returns the the range where a and b overlap/intersect.

 intersection!(a, b)

 As intersection, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is no overlap.

 overlaps?(a, b)

 Returns true if there is overlap between a and b.

 separation(a, b)

 Returns the range between two, non-overlapping ranges.

 separation!(a, b)

 As separation, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is overlap.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 Anchor for this section

Types

 Link to this type

 out_type()

 View Source

 @type out_type() :: :inclusive | :exclusive

Whether the end point should be treated as the Range's boundary (:exclusive), or its
last element (:inclusive).

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framestamp.Range{
 in: Vtc.Framestamp.t(),
 out: Vtc.Framestamp.t(),
 out_type: out_type()
}

Range struct type.

 Anchor for this section

Parse

 Link to this function

 new(stamp_in, stamp_out, opts \\ [])

 View Source

 @spec new(
 stamp_in :: Vtc.Framestamp.t(),
 stamp_out :: Vtc.Framestamp.t() | Vtc.Source.Frames.t(),
 opts :: [{:out_type, out_type()}]
) :: {:ok, t()} | {:error, Exception.t() | Vtc.Framestamp.ParseError.t()}

Creates a new Range.
out_tc may be a Framestamp value for any value that implements the
Frames protocol.
Returns an error if the resulting range would not have a duration greater or eual to
0, or if stamp_in and stamp_out do not have the same rate.

 examples

 Examples

iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> stamp_out = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> result = Range.new(stamp_in, stamp_out)
iex> inspect(result)
"{:ok, <01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>}"
Using a timecode string as b:
iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.new(stamp_in, "02:00:00:00")
iex> inspect(result)
"{:ok, <01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>}"
Making a range with an inclusive out:
iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.new(stamp_in, "02:00:00:00", out_type: :inclusive)
iex> inspect(result)
"{:ok, <01:00:00:00 - 02:00:00:00 :inclusive <23.98 NTSC>>}"

 Link to this function

 new!(stamp_in, stamp_out, opts \\ [])

 View Source

 @spec new!(Vtc.Framestamp.t(), Vtc.Framestamp.t(), opts :: [{:out_type, out_type()}]) ::
 t()

As new/3, but raises on error.

 Link to this function

 with_duration(stamp_in, duration, opts \\ [])

 View Source

 @spec with_duration(
 stamp_in :: Vtc.Framestamp.t(),
 duration :: Vtc.Framestamp.t() | Vtc.Source.Frames.t(),
 opts :: [{:out_type, out_type()}]
) :: {:ok, t()} | {:error, Exception.t() | Vtc.Framestamp.ParseError.t()}

Returns a range with an :in value of stamp_in and a duration of duration.
duration may be a Framestamp value for any value that implements the
Frames protocol. Returns an error if duration is less than
0 seconds or if stamp_in and stamp_out do not have the same rate.

 examples

 Examples

iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> duration = Framestamp.with_frames!("00:30:00:00", Rates.f23_98())
iex>
iex> result = Range.with_duration(stamp_in, duration)
iex> inspect(result)
"{:ok, <01:00:00:00 - 01:30:00:00 :exclusive <23.98 NTSC>>}"
Using a timecode string as b:
iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.with_duration(stamp_in, "00:30:00:00")
iex> inspect(result)
"{:ok, <01:00:00:00 - 01:30:00:00 :exclusive <23.98 NTSC>>}"
Making a range with an inclusive out:
iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.with_duration(stamp_in, "00:30:00:00", out_type: :inclusive)
iex> inspect(result)
"{:ok, <01:00:00:00 - 01:29:59:23 :inclusive <23.98 NTSC>>}"

 Link to this function

 with_duration!(stamp_in, duration, opts \\ [])

 View Source

 @spec with_duration!(
 Vtc.Framestamp.t(),
 Vtc.Framestamp.t(),
 opts :: [{:out_type, out_type()}]
) :: t()

As with_duration/3, but raises on error.

 Anchor for this section

Manipulate

 Link to this function

 with_exclusive_out(range)

 View Source

 @spec with_exclusive_out(t()) :: t()

Adjusts range to have an exclusive out framestamp.

 examples

 Examples

iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(stamp_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> result = Range.with_exclusive_out(range)
iex> inspect(result)
"<01:00:00:00 - 02:00:00:01 :exclusive <23.98 NTSC>>"

 Link to this function

 with_inclusive_out(range)

 View Source

 @spec with_inclusive_out(t()) :: t()

Adjusts range to have an inclusive out framestamp.

 examples

 Examples

iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(stamp_in, "02:00:00:00")
iex>
iex> result = Range.with_inclusive_out(range)
iex> inspect(result)
"<01:00:00:00 - 01:59:59:23 :inclusive <23.98 NTSC>>"

 Anchor for this section

Inspect

 Link to this function

 duration(range)

 View Source

 @spec duration(t()) :: Vtc.Framestamp.t()

Returns the duration in Framestamp of range.

 examples

 Examples

iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(stamp_in, "01:30:00:00")
iex>
iex> result = Range.duration(range)
iex> inspect(result)
"<00:30:00:00 <23.98 NTSC>>"

 Anchor for this section

Compare

 Link to this function

 contains?(range, framestamp)

 View Source

 @spec contains?(t(), Vtc.Framestamp.t() | Vtc.Source.Frames.t()) :: boolean()

Returns true if range contains framestamp. framestamp may be any value that
implements Frames.

 examples

 Examples

iex> stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(stamp_in, "01:30:00:00")
iex>
iex> Range.contains?(range, "01:10:00:00")
true
iex> Range.contains?(range, "01:40:00:00")
false

 Link to this function

 intersection(a, b)

 View Source

 @spec intersection(t(), t()) :: {:ok, t()} | {:error, :none}

Returns the the range where a and b overlap/intersect.
Returns nil if the two ranges do not intersect.
a and b do not have to have matching :out_type settings, but the result will
inherit a's setting.

 examples

 Examples

iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.intersection(a, b)
iex> inspect(result)
"{:ok, <01:50:00:00 - 02:00:00:00 :inclusive <23.98 NTSC>>}"
iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.intersection(a, b)
{:error, :none}

 Link to this function

 intersection!(a, b)

 View Source

 @spec intersection!(t(), t()) :: t()

As intersection, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is no overlap.
This returned range inherets the framerate and out_type from a.

 examples

 Examples

iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.intersection!(a, b)
iex> inspect(result)
"<00:00:00:00 - -00:00:00:01 :inclusive <23.98 NTSC>>"

 Link to this function

 overlaps?(a, b)

 View Source

 @spec overlaps?(t(), t()) :: boolean()

Returns true if there is overlap between a and b.

 examples

 Examples

iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.overlaps?(a, b)
true
iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.overlaps?(a, b)
false

 Link to this function

 separation(a, b)

 View Source

 @spec separation(t(), t()) :: {:ok, t()} | {:error, :none}

Returns the range between two, non-overlapping ranges.
Returns nil if the two ranges are not separated.
a and b do not have to have matching :out_type settings, but the result will
inherit a's setting.

 examples

 Examples

iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.separation(a, b)
iex> inspect(result)
"{:ok, <02:00:00:01 - 02:09:59:23 :inclusive <23.98 NTSC>>}"
iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.separation(a, b)
{:error, :none}

 Link to this function

 separation!(a, b)

 View Source

 @spec separation!(t(), t()) :: t()

As separation, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is overlap.
This returned range inherets the framerate and out_type from a.

 examples

 Examples

iex> a_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Framestamp.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.separation!(a, b)
iex> inspect(result)
"<00:00:00:00 - -00:00:00:01 :inclusive <23.98 NTSC>>"

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Vtc.FilmFormat - vtc v0.13.12

Vtc.FilmFormat

Functions and types for working with physical film data.

 Anchor for this section

 Summary

 Types

 t()

 Enum-like type of supported film formats for Vtc.

 Perfs

 perfs_per_foot(film_format, opts \\ [])

 Perferations are the holes that run along the sides of a strip of film, and are used
by the camera's sprocket to physically pull the film in place to be exposed. For
more information, see this Wikipedia atricle.

 perfs_per_frame(film_format)

 Perferation count in a single frame of film.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :ff35mm_4perf | :ff35mm_2perf | :ff16mm

Enum-like type of supported film formats for Vtc.

 ff35mm_4perf

 ff35mm_4perf

35mm 4-perf film (16 frames per foot). ex: '5400+13'.

 what-it-is

 What it is

On physical film, each foot contains a certain number of frames. For 35mm, 4-perf film
(the most common type on Hollywood movies), this number is 16 frames per foot.
Feet-and-frames was often used in place of Keycode to quickly reference a frame in the
edit.

 where-you-see-it

 Where you see it

For the most part, feet + frames has died out as a reference, because digital media is
not measured in feet. The most common place it is still used is Studio Sound
Departments. Many Sound Mixers and Designers intuitively think in feet + frames, and
it is often burned into the reference picture for them.
	Telecine.
	Sound turnover reference picture.
	Sound turnover change lists.

 ff35mm_2perf

 ff35mm_2perf

 what-it-is-1

 What it is

35mm 2-perf film records 32 frames in a foot of film, instead of the usual 16.
This creates a negative image with a wide aspect ratio using standard spherical
lenses and consumes half the footage per minute running time as standard 35mm,
while having a grain profile somewhat better than 16mm while not as good as
standard 35mm.

 where-you-see-it-1

 Where you see it

35mm 2-perf formats are uncommon though still find occasional use, the process is
usually marketed as "Techniscope", the original trademark for Technicolor Italia's
2-perf format. It was historically very common in the Italian film industry prior
to digital filmmaking, and is used on some contemporary films to obtain a film look
while keeping stock and processing costs down.

 16mm

 16mm

 what-it-is-2

 What it is

On 16mm film, there are forty frames of film in each foot, one perforation
per frame. However, 16mm film is edge coded every six inches, with twenty
frames per code, so the footage "1+19" is succeeded by "2+0".

 where-you-see-it-2

 Where you see it

16mm telecines, 16mm edge codes.

 Anchor for this section

Perfs

 Link to this function

 perfs_per_foot(film_format, opts \\ [])

 View Source

 @spec perfs_per_foot(t(), [{:physical?, boolean()}]) :: pos_integer()

Perferations are the holes that run along the sides of a strip of film, and are used
by the camera's sprocket to physically pull the film in place to be exposed. For
more information, see this Wikipedia atricle.
By default, returns the count in a 'logical' foot.

 logical-feet-and-16mm

 Logical feet and 16mm

'Logicial foot' means each time XX rolls over when annotated in the XX+YY
format. Threre are 40 perfs in a foot of 16mm film, but when annotated as XX+YY,
XX rolls over every 6 inches rather than every foot.

 options

 Options

	physical?: Return the physical number of feet rather than the logical number.

 Link to this function

 perfs_per_frame(film_format)

 View Source

 @spec perfs_per_frame(t()) :: pos_integer()

Perferation count in a single frame of film.

 Vtc.Rates - vtc v0.13.12

Vtc.Rates

Pre-defined framerates commonly found in the wild.

 Anchor for this section

 Summary

 Consts

 f23_98()

 23.98 NTSC, non-drop.

 f24()

 24 fps.

 f29_97_df()

 29.97 NTSC, drop-frame.

 f29_97_ndf()

 29.97 NTSC, non-drop.

 f30()

 30 fps.

 f47_95()

 47.95 NTSC non-drop.

 f48()

 48 fps.

 f59_94_df()

 59.94 NTSC drop-frame.

 f59_94_ndf()

 59.94 NTSC non-drop.

 f60()

 60 fps.

 Anchor for this section

Consts

 Link to this function

 f23_98()

 View Source

 @spec f23_98() :: Vtc.Framerate.t()

23.98 NTSC, non-drop.

 Link to this function

 f24()

 View Source

 @spec f24() :: Vtc.Framerate.t()

24 fps.

 Link to this function

 f29_97_df()

 View Source

 @spec f29_97_df() :: Vtc.Framerate.t()

29.97 NTSC, drop-frame.

 Link to this function

 f29_97_ndf()

 View Source

 @spec f29_97_ndf() :: Vtc.Framerate.t()

29.97 NTSC, non-drop.

 Link to this function

 f30()

 View Source

 @spec f30() :: Vtc.Framerate.t()

30 fps.

 Link to this function

 f47_95()

 View Source

 @spec f47_95() :: Vtc.Framerate.t()

47.95 NTSC non-drop.

 Link to this function

 f48()

 View Source

 @spec f48() :: Vtc.Framerate.t()

48 fps.

 Link to this function

 f59_94_df()

 View Source

 @spec f59_94_df() :: Vtc.Framerate.t()

59.94 NTSC drop-frame.

 Link to this function

 f59_94_ndf()

 View Source

 @spec f59_94_ndf() :: Vtc.Framerate.t()

59.94 NTSC non-drop.

 Link to this function

 f60()

 View Source

 @spec f60() :: Vtc.Framerate.t()

60 fps.

 Vtc.SMPTETimecode.Sections - vtc v0.13.12

Vtc.SMPTETimecode.Sections

Holds the individual sections of a SMPTE timecode for formatting / manipulation.
Struct Fields
	negative: Whether the timecode is less than 0.
	hours: Hours place value.
	minutes: Minutes place value. This is not the toal minutes, but the minutes added
to hours to get a final time.
	seconds: Seconds place value. As minutes, remainder value rather than total
value.
	frames: Frames place value. As seconds, remainder value rather than total
value.

 Anchor for this section

 Summary

 Types

 t()

 Struct type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.SMPTETimecode.Sections{
 frames: integer(),
 hours: integer(),
 minutes: integer(),
 negative?: boolean(),
 seconds: integer()
}

Struct type.

 Vtc.Source.Frames.FeetAndFrames - vtc v0.13.12

Vtc.Source.Frames.FeetAndFrames

Holds Feet+Frames information.
Fields
	feet: The amount of film in Feet that would run through the camera in a given
amount of time.
	feet: The number of frames left over after feet of film has run.
	film_format: The type of film this value represents. Default: :ff35mm_4perf.

String Conversion
FeetAndFrames can be converted into a string
through the String.Chars.to_string/1 function.
Examples
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> String.Chars.to_string(%FeetAndFrames{feet: 10, frames: 4})
"10+04"

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying string.

 Functions

 from_string(ff_string, opts \\ [])

 Parses a FeetAndFrames value from a string.

 from_string!(ff_string, opts \\ [])

 Parses a FeetAndFrames value from a string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Frames.FeetAndFrames{
 feet: integer(),
 film_format: Vtc.FilmFormat.t(),
 frames: integer()
}

Contains only a single field for wrapping the underlying string.

 Anchor for this section

Functions

 Link to this function

 from_string(ff_string, opts \\ [])

 View Source

 @spec from_string(String.t(), [{:film_format, Vtc.FilmFormat.t()}]) ::
 {:ok, t()} | {:error, Vtc.Framestamp.ParseError.t()}

Parses a FeetAndFrames value from a string.

 Link to this function

 from_string!(ff_string, opts \\ [])

 View Source

 @spec from_string!(String.t(), [{:film_format, Vtc.FilmFormat.t()}]) :: t()

Parses a FeetAndFrames value from a string.

 Vtc.Source.Frames.SMPTETimecodeStr - vtc v0.13.12

Vtc.Source.Frames.SMPTETimecodeStr

Implementation of Frames for timecode string. See
Vtc.Framestamp.smpte_timecode/2 for more information on this format.
This struct is used as an input wrapper only, not as the general-purpose Premiere
ticks unit.
By default, this wrapper does not need to be used by callers, as the string
implementation of the frames protocol calls this type's impl automatically. Only use
this type if you do not wish for the parser to fall back to feet+frames parsing as
well.

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Frames.SMPTETimecodeStr{in: String.t()}

Contains only a single field for wrapping the underlying string.

 Vtc.Source.Seconds.PremiereTicks - vtc v0.13.12

Vtc.Source.Seconds.PremiereTicks

Implements Seconds protocol for Premiere ticks. See
Vtc.Framestamp.premiere_ticks/2 for more information on this unit.
This struct is used as an input wrapper only, not as the general-purpose Premiere
ticks unit.

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying integer.

 Functions

 per_second()

 Returns the number of ticks in a second.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Seconds.PremiereTicks{in: integer()}

Contains only a single field for wrapping the underlying integer.

 Anchor for this section

Functions

 Link to this function

 per_second()

 View Source

 @spec per_second() :: pos_integer()

Returns the number of ticks in a second.

 Vtc.Source.Seconds.RuntimeStr - vtc v0.13.12

Vtc.Source.Seconds.RuntimeStr

Implementation of Seconds for runtime strings. See
Vtc.Framestamp.runtime/2 for more information on this format.
By default, this wrapper does not need to be used by callers, as the string
implementation of the Seconds protocol calls this type's impl
automatically. Only use this type if you do not wish for the parser to fall back to
other type parsing as well.

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Seconds.RuntimeStr{in: String.t()}

Contains only a single field for wrapping the underlying string.

 Vtc.Source.Frames - vtc v0.13.12

Vtc.Source.Frames protocol

Protocol which types can implement to be passed as the main value of
Framestamp.with_frames/2.
Implementations
Out of the box, this protocol is implemented for the following types:
	Integer

	String & BitString
	timecode ("01:00:00:00")

	integer ("86400")

	Feet+Frames ("5400+00")

	SMPTETimecodeStr

	FeetAndFrames

 Anchor for this section

 Summary

 Types

 result()

 Result type of frames/2.

 t()

 Functions

 frames(value, rate)

 Returns the value as a frame count.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() :: {:ok, integer()} | {:error, Vtc.Framestamp.ParseError.t()}

Result type of frames/2.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 frames(value, rate)

 View Source

 @spec frames(t(), Vtc.Framerate.t()) :: result()

Returns the value as a frame count.
Arguments
	value: The source value.

	rate: The framerate of the framestamp being parsed.

Returns
A result tuple with an integer value representing the frame count on success.

 Vtc.Source.Seconds - vtc v0.13.12

Vtc.Source.Seconds protocol

Protocol which types can implement to be passed as the main value of
Framestamp.with_seconds/3.
Implementations
Out of the box, this protocol is implemented for the following types:
	Integer
	Float
	Ratio
	String	runtime ("01:00:00.0")
	decimal ("3600.0")

	Vtc.Source.Seconds.RuntimeStr
	Vtc.Source.Seconds.PremiereTicks

 Anchor for this section

 Summary

 Types

 result()

 Result type of seconds/2.

 t()

 Functions

 seconds(value, rate)

 Returns the value as a rational, real-world seconds value.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() :: {:ok, Ratio.t()} | {:error, Vtc.Framestamp.ParseError.t()}

Result type of seconds/2.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 seconds(value, rate)

 View Source

 @spec seconds(t(), Vtc.Framerate.t()) :: result()

Returns the value as a rational, real-world seconds value.

 arguments

 Arguments

	value: The source value.

	rate: The framerate of the framestamp being parsed.

 returns

 Returns

A result tuple with a rational representation of the seconds value using Ratio on
success.

 Vtc.Ecto.Postgres.Migrations - vtc v0.13.12

Vtc.Ecto.Postgres.Migrations

Top-level migrations for creating all Vtc ecto types.

 Anchor for this section

 Summary

 Functions

 migrate(opts \\ [])

 Runs all migrations. Safe to run multiple times when updates are required.

 Anchor for this section

Functions

 Link to this function

 migrate(opts \\ [])

 View Source

 @spec migrate(Keyword.t()) :: :ok

Runs all migrations. Safe to run multiple times when updates are required.
Migrations are run for:
	PgRational
	PgFramerate
	PgFramestamp
	PgFramestamp.Range

Required Permissions
To add the framestamp_range
canonical,
function, we must directly add it to the framestamp_range type in the pg_catalog
table. In most databases, this will require elevated permissions. See the
PgFramestamp.Range.Migrations.inject_canonical_function/0 for more information on
why this is required.
You can choose to skip this step if you wish my setting the inject_canonical?
op to false, but operations that require discreet nudging of in and out points will
not return correct results, and ranges with different upper/lowwer bound types will
not be comparable.

 Vtc.Ecto.Postgres.PgFramerate - vtc v0.13.12

Vtc.Ecto.Postgres.PgFramerate

Defines a composite type for storing rational values as a
PgRational + list of tags. These values are cast to
Framerate structs for use in application code.
The composite types are defined as follows:
CREATE TYPE framerate_tags AS ENUM (
 "drop",
 "non_drop"
)
CREATE TYPE framerate as (
 playback rational,
 tags framerate_tags[]
)
framerate_tags is designed as such to guarantee forwards-compatibility with future
support for features like interlaced timecode.
Framerate values can be cast in SQL expressions like so:
SELECT ((24000, 1001), '{non_drop}')::framerate
Framerate tags
The following values are valid tags:
	drop: Indicates NTSC, drop-frame timecode
	non_drop: Indicated NTSC, non-drop timecode

Field migrations
You can create framerate fields during a migration like so:
alias Vtc.Framerate

create table("rationals") do
 add(:a, Framerate.type())
 add(:b, Framerate.type())
end
Framerate re-exports the Ecto.Type implementation of this module,
and can be used any place this module would be used.
Schema fields
Then in your schema module:
defmodule MyApp.Framerates do
@moduledoc false
use Ecto.Schema

alias Vtc.Framerate

@type t() :: %__MODULE__{
 a: Framerate.t(),
 b: Framerate.t()
 }

schema "rationals_01" do
 field(:a, Framerate)
 field(:b, Framerate)
end
Changesets
With the above setup, changesets should just work:
def changeset(schema, attrs) do
 schema
 |> Changeset.cast(attrs, [:a, :b])
 |> Changeset.validate_required([:a, :b])
end
Framerate values can be cast from the following values in changesets:
	Framerate structs.

	Maps with the following format:
{
 "playback": [24000, 1001],
 "ntsc": "non_drop"
}
Where playback is a value supported by
PgRational casting and ntsc can be null,
"drop" or "non_drop".

Fragments
Framerate values must be explicitly cast using
type/2:
framerate = Rates.f23_98()
query = Query.from(f in fragment("SELECT ? as r", type(^framerate, Framerate)), select: f.r)

 Anchor for this section

 Summary

 Types

 db_record()

 Type of the raw composite value that will be sent to / received from the database.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 type()

 The database type for PgFramerate.

 Anchor for this section

Types

 Link to this type

 db_record()

 View Source

 @type db_record() :: {Vtc.Ecto.Postgres.PgRational.db_record(), [String.t()]}

Type of the raw composite value that will be sent to / received from the database.

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 type()

 View Source

 @spec type() :: atom()

The database type for PgFramerate.
Can be used in migrations as the fields type.

 Vtc.Ecto.Postgres.PgFramerate.Migrations - vtc v0.13.12

Vtc.Ecto.Postgres.PgFramerate.Migrations

Migrations for adding framerate types, functions and constraints to a
Postgres database.

 Anchor for this section

 Summary

 Full

 create_all()

 Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.

 Pg Constraints

 create_field_constraints(table, field_name, sql_value \\ nil)

 Creates basic constraints for a PgFramerate /
Framerate database field.

 Pg Types

 create_function_schemas()

 Creates function schema as described by the
Configuring Database Objects
section above.

 create_type_framerate()

 Adds framerate composite type.

 create_type_framerate_tags()

 Adds framerate_tgs enum type.

 Pg Operators

 create_op_strict_eq()

 Creates a custom :framerate, :framerate === operator that returns true if both
the playback rate AND tags of a framerate are equal.

 create_op_strict_neq()

 Creates a custom :framerate, :framerate === operator that returns true if both
the playback rate AND tags of a framerate are equal.

 Pg Functions

 create_func_is_ntsc()

 Creates framerate.is_ntsc(rat) function that returns true if the framerate
is and NTSC drop or non-drop rate.

 create_func_strict_eq()

 Creates framerate.__private__strict_eq(a, b) that backs the === operator.

 create_func_strict_neq()

 Creates framerate.__private__strict_eq(a, b) that backs the === operator.

 Functions

 function(name, repo)

 Returns the config-qualified name of the function for this type.

 Anchor for this section

Full

 Link to this function

 create_all()

 View Source

 @spec create_all() :: :ok

Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.
Safe to run multiple times when new functionality is added in updates to this library.
Existing values will be skipped.

 types-created

 Types Created

Calling this macro creates the following type definitions:
CREATE TYPE framerate_tags AS ENUM (
 'drop',
 'non_drop'
);
CREATE TYPE framerate AS (
 playback rational,
 tags framerate_tags[]
);

 schemas-created

 Schemas Created

Up to two schemas are created as detailed by the
Configuring Database Objects
section below.

 configuring-database-objects

 Configuring Database Objects

To change where supporting functions are created, add the following to your
Repo confiugration:
config :vtc, Vtc.Test.Support.Repo,
 adapter: Ecto.Adapters.Postgres,
 ...
 vtc: [
 framerate: [
 functions_schema: :framerate,
 functions_prefix: "framerate"
]
]
Option definitions are as follows:
	functions_schema: The postgres schema to store framerate-related custom functions.

	functions_prefix: A prefix to add before all functions. Defaults to "framestamp"
for any function created in the :public schema, and "" otherwise.

 private-functions

 Private Functions

Some custom function names are prefaced with __private__. These functions should
not be called by end-users, as they are not subject to any API staility guarantees.

 examples

 Examples

defmodule MyMigration do
 use Ecto.Migration

 alias Vtc.Ecto.Postgres.PgFramerate
 require PgFramerate.Migrations

 def change do
 PgFramerate.Migrations.create_all()
 end
end

 Anchor for this section

Pg Constraints

 Link to this function

 create_field_constraints(table, field_name, sql_value \\ nil)

 View Source

 @spec create_field_constraints(atom(), atom() | String.t(), atom() | String.t()) ::
 :ok

Creates basic constraints for a PgFramerate /
Framerate database field.

 arguments

 Arguments

	table: The table to make the constraint on.

	target_value: The target value to check. Can be be any sql fragment that resolves
to a framerate value.

	field: The name of the field being validated. Can be omitted if target_value
is itself a field on table. This name is not used for anything but the constraint
names.

 constraints-created

 Constraints created:

	{field}_positive: Checks that the playback speed is positive.

	{field}_ntsc_tags: Checks that both drop and non_drop are not set at the same
time.

	{field}_ntsc_valid: Checks that NTSC framerates are mathematically sound, i.e.,
that the rate is equal to (round(rate.playback) * 1000) / 1001.

	{field}_ntsc_drop_valid: Checks that NTSC, drop-frame framerates are valid, i.e,
are cleanly divisible by 30_000/1001.

 examples

 Examples

create table("my_table", primary_key: false) do
 add(:id, :uuid, primary_key: true, null: false)
 add(:a, Framerate.type())
 add(:b, Framerate.type())
end

PgRational.migration_add_field_constraints(:my_table, :a)
PgRational.migration_add_field_constraints(:my_table, :b)

 Anchor for this section

Pg Types

 Link to this function

 create_function_schemas()

 View Source

 @spec create_function_schemas() :: :ok

Creates function schema as described by the
Configuring Database Objects
section above.

 Link to this function

 create_type_framerate()

 View Source

 @spec create_type_framerate() :: :ok

Adds framerate composite type.

 Link to this function

 create_type_framerate_tags()

 View Source

 @spec create_type_framerate_tags() :: :ok

Adds framerate_tgs enum type.

 Anchor for this section

Pg Operators

 Link to this function

 create_op_strict_eq()

 View Source

 @spec create_op_strict_eq() :: :ok

Creates a custom :framerate, :framerate === operator that returns true if both
the playback rate AND tags of a framerate are equal.

 Link to this function

 create_op_strict_neq()

 View Source

 @spec create_op_strict_neq() :: :ok

Creates a custom :framerate, :framerate === operator that returns true if both
the playback rate AND tags of a framerate are equal.

 Anchor for this section

Pg Functions

 Link to this function

 create_func_is_ntsc()

 View Source

 @spec create_func_is_ntsc() :: :ok

Creates framerate.is_ntsc(rat) function that returns true if the framerate
is and NTSC drop or non-drop rate.

 Link to this function

 create_func_strict_eq()

 View Source

 @spec create_func_strict_eq() :: :ok

Creates framerate.__private__strict_eq(a, b) that backs the === operator.

 Link to this function

 create_func_strict_neq()

 View Source

 @spec create_func_strict_neq() :: :ok

Creates framerate.__private__strict_eq(a, b) that backs the === operator.

 Anchor for this section

Functions

 Link to this function

 function(name, repo)

 View Source

 @spec function(atom(), Ecto.Repo.t()) :: String.t()

Returns the config-qualified name of the function for this type.

 Vtc.Ecto.Postgres.PgFramestamp - vtc v0.13.12

Vtc.Ecto.Postgres.PgFramestamp

Defines a composite type for storing rational values as a
PgRational real-world playbck seconds,
PgFramerate pair.
These values are cast to
Framestamp structs for use in application code.
The composite types is defined as follows:
CREATE TYPE framestamp as (
 seconds rational,
 rate framerate
)
SELECT ((18018, 5), ((24000, 1001), '{non_drop}'))::framestamp
Field migrations
You can create framerate fields during a migration like so:
alias Vtc.Framestamp

create table("events") do
 add(:in, Framestamp.type())
 add(:out, Framestamp.type())
end
Framestamp re-exports the Ecto.Type implementation of this module,
and can be used any place this module would be used.
Schema fields
Then in your schema module:
defmodule MyApp.Event do
@moduledoc false
use Ecto.Schema

alias Vtc.Framestamp

@type t() :: %__MODULE__{
 in: Framestamp.t(),
 out: Framestamp.t()
 }

schema "events" do
 field(:in, Framestamp)
 field(:out, Framestamp)
end
Changesets
With the above setup, changesets should just work:
def changeset(schema, attrs) do
 schema
 |> Changeset.cast(attrs, [:in, :out])
 |> Changeset.validate_required([:in, :out])
end
Framerate values can be cast from the following values in changesets:
	Framestamp structs.

	Maps with the following format:
{
 "smpte_timecode": "01:00:00:00",
 "rate": {
 "playback": [24000, 1001],
 "ntsc": "non_drop"
 }
}
Where smpte_timecode is properly formatted SMPTE timecode string and playback
is a map value supported by PgFramerate changeset
casts.

Fragments
Framestamp values must be explicitly cast using
type/2:
framestamp = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
query = Query.from(f in fragment("SELECT ? as r", type(^framestamp, Framestamp)), select: f.r)

 Anchor for this section

 Summary

 Types

 db_record()

 Type of the raw composite value that will be sent to / received from the database.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 type()

 The database type for PgFramerate.

 Anchor for this section

Types

 Link to this type

 db_record()

 View Source

 @type db_record() ::
 {Vtc.Ecto.Postgres.PgRational.db_record(),
 Vtc.Ecto.Postgres.PgFramerate.db_record()}

Type of the raw composite value that will be sent to / received from the database.

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 type()

 View Source

 @spec type() :: atom()

The database type for PgFramerate.
Can be used in migrations as the fields type.

 Vtc.Ecto.Postgres.PgFramestamp.Migrations - vtc v0.13.12

Vtc.Ecto.Postgres.PgFramestamp.Migrations

Migrations for adding framestamp types, functions and constraints to a
Postgres database.

 Anchor for this section

 Summary

 Full

 create_all()

 Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.

 Pg Constraints

 create_field_constraints(table, field)

 Creates basic constraints for a PgFramestamp /
Framestamp database field.

 Pg Types

 create_function_schemas()

 Creates function schema as described by the
Configuring Database Objects
section above.

 create_type_framestamp()

 Adds framestamp composite type.

 Pg Operators

 create_op_add()

 Creates a custom :framestamp, :framestamp + operator.

 create_op_div_rational()

 Creates a custom :framestamp, :rational / operator.

 create_op_eq()

 Creates a custom :framestamp, :framestamp = operator that returns true if the
real-world seconds values for both framestamps are equal.

 create_op_gt()

 Creates a custom :framestamp, :framestamp > operator.

 create_op_gte()

 Creates a custom :framestamp, :framestamp >= operator.

 create_op_lt()

 Creates a custom :framestamp, :framestamp < operator.

 create_op_lte()

 Creates a custom :framestamp, :framestamp <= operator.

 create_op_modulo_rational()

 Creates a custom :framestamp, :rational % operator.

 create_op_mult_rational()

 Creates a custom :framestamp, :rational * operator.

 create_op_neq2()

 Creates a custom :framestamp, :framestamp != operator that returns true if the
real-world seconds values for both framestamps are not equal.

 create_op_neq()

 Creates a custom :framestamp, :framestamp <> operator that returns true if the
real-world seconds values for both framestamps are not equal.

 create_op_strict_eq()

 Creates a custom :framestamp, :framestamp === operator that returns true if both
the real-world seconds values and the framerates for both framestamps are equal.

 create_op_strict_neq()

 Creates a custom :framestamp, :framestamp !=== operator that returns true if a and
b do not have the same real-world-seconds, framerate playback, or framerate tags.

 create_op_sub()

 Creates a custom :framestamp, :framestamp - operator.

 Pg Operator Classes

 create_op_class_btree()

 Creates a B-tree operator class to support indexing on comparison operations.

 Pg Functions

 create_func_floor_div_rational()

 Creates DIV(:framestamp, :rational) that returns a floored :framestamp to match
Postgres' DIV(real, real) behavior.

 create_func_frames()

 Converts framestamp to a frame number by the frame's index in the timecode
stream, with 0 as SMPTE midnight.

 create_func_with_frames()

 Creates framestamp.with_frames(frames, rate) that creates a framestamp for the
given frame count.

 create_func_with_seconds()

 framestamp.with_seconds(seconds, rate)

 Pg Private Functions

 create_func_add()

 Creates framestamp.__private__add(a, b) that backs the + operator.

 create_func_cmp()

 Creates framestamp.__private__cmp(a, b) used in the PgTimecode b-tree operator class.

 create_func_div_rational()

 Creates framestamp.__private__div(:framestamp, :rational) that backs the / operator.

 create_func_eq()

 framestamp.__private__eq(framestamp, framestamp)

 create_func_gt()

 Creates framestamp.__private__gt(a, b) that backs the > operator.

 create_func_gte()

 Creates framestamp.__private__gte(a, b) that backs the >= operator.

 create_func_lt()

 Creates framestamp.__private__lt(a, b) that backs the < operator.

 create_func_lte()

 Creates framestamp.__private__lte(a, b) that backs the <= operator.

 create_func_modulo_rational()

 Creates framestamp.__private__modulo(:framestamp, :rational) that backs the %
operator.

 create_func_mult_rational()

 Creates framestamp.__private__mult(:framestamp, :rational) that backs the * operator.

 create_func_neq()

 Creates framestamp.__private__neq(a, b) that backs the <> operator.

 create_func_strict_eq()

 Creates framestamp.__private__strict_eq(a, b) that backs the === operator.

 create_func_strict_neq()

 Creates framestamp.__private__strict_neq(a, b) that backs the !=== operator.

 create_func_sub()

 framestamp.__private__sub(a, b).

 Functions

 function(name, repo)

 Returns the config-qualified name of the function for this type.

 Anchor for this section

Full

 Link to this function

 create_all()

 View Source

 @spec create_all() :: :ok

Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.
Safe to run multiple times when new functionality is added in updates to this library.
Existing values will be skipped.

 types-created

 Types Created

Calling this macro creates the following type definitions:
CREATE TYPE framestamp AS (
 seconds rational,
 rate framerate
);

 schemas-created

 Schemas Created

Up to two schemas are created as detailed by the
Configuring Database Objects
section below.

 configuring-database-objects

 Configuring Database Objects

To change where supporting functions are created, add the following to your
Repo confiugration:
config :vtc, Vtc.Test.Support.Repo,
 adapter: Ecto.Adapters.Postgres,
 ...
 vtc: [
 framestamp: [
 functions_schema: :framestamp,
 functions_prefix: "framestamp"
]
]
Option definitions are as follows:
	functions_schema: The postgres schema to store framestamp-related custom
 functions.

	functions_prefix: A prefix to add before all functions. Defaults to "framestamp"
for any function created in the :public schema, and "" otherwise.

 private-functions

 Private Functions

Some custom function names are prefaced with __private__. These functions should
not be called by end-users, as they are not subject to any API staility guarantees.

 examples

 Examples

defmodule MyMigration do
 use Ecto.Migration

 alias Vtc.Ecto.Postgres.PgFramestamp
 require PgFramestamp.Migrations

 def change do
 PgFramestamp.Migrations.create_all()
 end
end

 Anchor for this section

Pg Constraints

 Link to this function

 create_field_constraints(table, field)

 View Source

 @spec create_field_constraints(atom(), atom()) :: :ok

Creates basic constraints for a PgFramestamp /
Framestamp database field.

 constraints-created

 Constraints created:

	{field}_rate_positive: Checks that the playback speed is positive.

	{field}_rate_ntsc_tags: Checks that both drop and non_drop are not set at the
same time.

	{field}_rate_ntsc_valid: Checks that NTSC framerates are mathematically sound,
i.e., that the rate is equal to (round(rate.playback) * 1000) / 1001.

	{field}_rate_ntsc_drop_valid: Checks that NTSC, drop-frame framerates are valid,
i.e, are cleanly divisible by 30_000/1001.

	{field_name}_seconds_divisible_by_rate: Checks that the seconds value of the
framestamp is cleanly divisible by the rate.playback value.

 examples

 Examples

create table("my_table", primary_key: false) do
 add(:id, :uuid, primary_key: true, null: false)
 add(:a, Framestamp.type())
 add(:b, Framestamp.type())
end

PgRational.migration_add_field_constraints(:my_table, :a)
PgRational.migration_add_field_constraints(:my_table, :b)

 Anchor for this section

Pg Types

 Link to this function

 create_function_schemas()

 View Source

 @spec create_function_schemas() :: :ok

Creates function schema as described by the
Configuring Database Objects
section above.

 Link to this function

 create_type_framestamp()

 View Source

 @spec create_type_framestamp() :: :ok

Adds framestamp composite type.

 Anchor for this section

Pg Operators

 Link to this function

 create_op_add()

 View Source

 @spec create_op_add() :: :ok

Creates a custom :framestamp, :framestamp + operator.
Just like Framestamp.add/3, if the rate of a and b
are not equal, the result will inheret a's framerate, and the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.

 Link to this function

 create_op_div_rational()

 View Source

 @spec create_op_div_rational() :: :ok

Creates a custom :framestamp, :rational / operator.
Just like Framestamp.div/3, a's the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.
Unlike Framestamp.div/3, the result is rounded to the
closest frame, rather than truncating ala integer division.

 Link to this function

 create_op_eq()

 View Source

 @spec create_op_eq() :: :ok

Creates a custom :framestamp, :framestamp = operator that returns true if the
real-world seconds values for both framestamps are equal.

 Link to this function

 create_op_gt()

 View Source

 @spec create_op_gt() :: :ok

Creates a custom :framestamp, :framestamp > operator.

 Link to this function

 create_op_gte()

 View Source

 @spec create_op_gte() :: :ok

Creates a custom :framestamp, :framestamp >= operator.

 Link to this function

 create_op_lt()

 View Source

 @spec create_op_lt() :: :ok

Creates a custom :framestamp, :framestamp < operator.

 Link to this function

 create_op_lte()

 View Source

 @spec create_op_lte() :: :ok

Creates a custom :framestamp, :framestamp <= operator.

 Link to this function

 create_op_modulo_rational()

 View Source

 @spec create_op_modulo_rational() :: :ok

Creates a custom :framestamp, :rational % operator.
Just like Framestamp.rem/3, this operation is done on the
frame count representation of the Framestamp, which is then used as the basis of a new
framestamp.

 Link to this function

 create_op_mult_rational()

 View Source

 @spec create_op_mult_rational() :: :ok

Creates a custom :framestamp, :rational * operator.
Just like Framestamp.add/3, a's the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.

 Link to this function

 create_op_neq2()

 View Source

 @spec create_op_neq2() :: :ok

Creates a custom :framestamp, :framestamp != operator that returns true if the
real-world seconds values for both framestamps are not equal.

 Link to this function

 create_op_neq()

 View Source

 @spec create_op_neq() :: :ok

Creates a custom :framestamp, :framestamp <> operator that returns true if the
real-world seconds values for both framestamps are not equal.

 Link to this function

 create_op_strict_eq()

 View Source

 @spec create_op_strict_eq() :: :ok

Creates a custom :framestamp, :framestamp === operator that returns true if both
the real-world seconds values and the framerates for both framestamps are equal.

 Link to this function

 create_op_strict_neq()

 View Source

 @spec create_op_strict_neq() :: :ok

Creates a custom :framestamp, :framestamp !=== operator that returns true if a and
b do not have the same real-world-seconds, framerate playback, or framerate tags.

 Link to this function

 create_op_sub()

 View Source

 @spec create_op_sub() :: :ok

Creates a custom :framestamp, :framestamp - operator.
Just like Framestamp.add/3, if the rate of a and b
are not equal, the result will inheret a's framerate, and the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.

 Anchor for this section

Pg Operator Classes

 Link to this function

 create_op_class_btree()

 View Source

 @spec create_op_class_btree() :: :ok

Creates a B-tree operator class to support indexing on comparison operations.

 Anchor for this section

Pg Functions

 Link to this function

 create_func_floor_div_rational()

 View Source

 @spec create_func_floor_div_rational() :: :ok

Creates DIV(:framestamp, :rational) that returns a floored :framestamp to match
Postgres' DIV(real, real) behavior.
Just like Framestamp.div/3, this operation is done on the
frame count representation of the Framestamp, which is then used as the basis of a new
framestamp.

 Link to this function

 create_func_frames()

 View Source

 @spec create_func_frames() :: :ok

Converts framestamp to a frame number by the frame's index in the timecode
stream, with 0 as SMPTE midnight.
Equivalent to Framestamp.frames/2 with :round set to
trunc.

 Link to this function

 create_func_with_frames()

 View Source

 @spec create_func_with_frames() :: :ok

Creates framestamp.with_frames(frames, rate) that creates a framestamp for the
given frame count.

 Link to this function

 create_func_with_seconds()

 View Source

 @spec create_func_with_seconds() :: :ok

framestamp.with_seconds(seconds, rate)
Rounds seconds to the nearest whole frame based on rate and returns a constructed
framestamp.

 Anchor for this section

Pg Private Functions

 Link to this function

 create_func_add()

 View Source

 @spec create_func_add() :: :ok

Creates framestamp.__private__add(a, b) that backs the + operator.
Just like Framestamp.add/3, if the rate of a and b
are not equal, the result will inheret a's framerate, and the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.

 Link to this function

 create_func_cmp()

 View Source

 @spec create_func_cmp() :: :ok

Creates framestamp.__private__cmp(a, b) used in the PgTimecode b-tree operator class.

 Link to this function

 create_func_div_rational()

 View Source

 @spec create_func_div_rational() :: :ok

Creates framestamp.__private__div(:framestamp, :rational) that backs the / operator.
Just like Framestamp.div/3, a's the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.
Unlike Framestamp.div/3, the result is rounded to the
closest frame, rather than truncating ala integer division.

 Link to this function

 create_func_eq()

 View Source

 @spec create_func_eq() :: :ok

framestamp.__private__eq(framestamp, framestamp)
Backs the = operator.

 Link to this function

 create_func_gt()

 View Source

 @spec create_func_gt() :: :ok

Creates framestamp.__private__gt(a, b) that backs the > operator.

 Link to this function

 create_func_gte()

 View Source

 @spec create_func_gte() :: :ok

Creates framestamp.__private__gte(a, b) that backs the >= operator.

 Link to this function

 create_func_lt()

 View Source

 @spec create_func_lt() :: :ok

Creates framestamp.__private__lt(a, b) that backs the < operator.

 Link to this function

 create_func_lte()

 View Source

 @spec create_func_lte() :: :ok

Creates framestamp.__private__lte(a, b) that backs the <= operator.

 Link to this function

 create_func_modulo_rational()

 View Source

 @spec create_func_modulo_rational() :: :ok

Creates framestamp.__private__modulo(:framestamp, :rational) that backs the %
operator.
Just like Framestamp.rem/3, this operation is done on the
frame count representation of the Framestamp, which is then used as the basis of a new
framestamp.

 Link to this function

 create_func_mult_rational()

 View Source

 @spec create_func_mult_rational() :: :ok

Creates framestamp.__private__mult(:framestamp, :rational) that backs the * operator.
Just like Framestamp.add/3, a's the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.

 Link to this function

 create_func_neq()

 View Source

 @spec create_func_neq() :: :ok

Creates framestamp.__private__neq(a, b) that backs the <> operator.

 Link to this function

 create_func_strict_eq()

 View Source

 @spec create_func_strict_eq() :: :ok

Creates framestamp.__private__strict_eq(a, b) that backs the === operator.

 Link to this function

 create_func_strict_neq()

 View Source

 @spec create_func_strict_neq() :: :ok

Creates framestamp.__private__strict_neq(a, b) that backs the !=== operator.

 Link to this function

 create_func_sub()

 View Source

 @spec create_func_sub() :: :ok

framestamp.__private__sub(a, b).
Backs the - operator.
Just like Framestamp.sub/3, if the rate of a and b
are not equal, the result will inheret a's framerate, and the internal seconds
field will be rounded to the nearest whole-frame to ensure data integrity.

 Anchor for this section

Functions

 Link to this function

 function(name, repo)

 View Source

 @spec function(atom(), Ecto.Repo.t()) :: String.t()

Returns the config-qualified name of the function for this type.

 Vtc.Ecto.Postgres.PgFramestamp.Range - vtc v0.13.12

Vtc.Ecto.Postgres.PgFramestamp.Range

Defines a custom Range type for dealing with Framestamp ranges.
The new range types are defined as follows:
CREATE TYPE framestamp_range AS RANGE (
 subtype = framestamp,
 subtype_diff = framestamp_range_private.subtype_diff
 canonical = framestamp_range_private.canonicalization
);
Framestamp ranges can be created in SQL expressions like so:
SELECT framestamp_range(stamp_1, stamp_2, '[)')
Framestamp fastranges can be created in SQL expressions like so:
SELECT framestamp_fastrange(stamp_1, stamp_2)
Indexing
framestamp_range is currently VERY slow when using a GiST index, consider using
a framestamp_fastrange
instead.

Canonicalization
Postgres framestamp_range values are ALWAYS coerced to exclusive out ranges. That
means that even if a Framestamp.Range has :out_type set to
:inclusive when it is sent to the database, it will come back from the database
with :out_type set to :exclusive, and the :out field will be adjusted
accordingly.
Further, when a Range operation, like a union, would result in an in and out point
with different framerates, the higher rate will always be selected.
This unlike the application behavior of Vtc.Framestamp.Range, which always inherets
the rate of the value that apears on the left side. This behavior may be updated to
match Vtc's application behavior in the future.
Framestamp Fast Range
In addition to framestamp_range, a framestamp_fastrange type is defined as well:
CREATE TYPE framestamp_fastrange AS RANGE (
 subtype = double precision,
 subtype_diff = float8mi
);
Fast ranges are meant to support GiST indexing, as in most cases, framestamp_range
will be VERY slow to index.
Frame-accurate
Unlike framestamp_range, framestamp_fastrange is NOT frame-accurate and should
not be used where frame-accuracy is desired or required.

Field migrations
You can create framestamp_range fields during a migration like so:
alias Vtc.Framerate

create table("framestamp_ranges") do
 add(:a, Framestamp.Range.type())
 add(:b, Framestamp.Range.type())
end
Framestamp.Range re-exports the Ecto.Type implementation
of this module, and can be used any place this module would be used.
Schema fields
Then in your schema module:
defmodule MyApp.FramestampRanges do
@moduledoc false
use Ecto.Schema

alias Vtc.Framestamp

@type t() :: %__MODULE__{
 a: Framestamp.Range.t(),
 b: Framestamp.Range.t()
 }

schema "rationals_01" do
 field(:a, Framestamp.Range)
 field(:b, Framestamp.Range)
end
Changesets
With the above setup, changesets should just work:
def changeset(schema, attrs) do
 schema
 |> Changeset.cast(attrs, [:a, :b])
 |> Changeset.validate_required([:a, :b])
end
Framestamp.Range values can be cast from the following values in changesets:
	Framerate structs.

Fragments
Framerate values must be explicitly cast using
type/2:
stamp_in = Framestamp.with_frames!("01:00:00:00", Rates.f23_98())
stamp_out = Framestamp.with_frames!("02:00:00:00", Rates.f23_98())
stamp_range = Framestamp.new!(stamp_in, stamp_out)

query = Query.from(
 f in fragment("SELECT ? as r", type(^stamp_range, Framerate.Range)), select: f.r
)

 Anchor for this section

 Summary

 Types

 db_record()

 Type of the raw composite value that will be sent to / received from the database.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 type()

 The database type for PgFramerate.

 Anchor for this section

Types

 Link to this type

 db_record()

 View Source

 @type db_record() :: %Postgrex.Range{
 lower: Vtc.Ecto.Postgres.PgFramestamp.db_record(),
 lower_inclusive: boolean(),
 upper: Vtc.Ecto.Postgres.PgFramestamp.db_record(),
 upper_inclusive: boolean()
}

Type of the raw composite value that will be sent to / received from the database.

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 type()

 View Source

 @spec type() :: atom()

The database type for PgFramerate.
Can be used in migrations as the fields type.

 Vtc.Ecto.Postgres.PgFramestamp.Range.Migrations - vtc v0.13.12

Vtc.Ecto.Postgres.PgFramestamp.Range.Migrations

Migrations for adding framestamp range types, functions and constraints to a
Postgres database.

 Anchor for this section

 Summary

 Full

 create_all(opts \\ [])

 Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.

 Pg Types

 create_function_schemas()

 Creates function schema as described by the
Configuring Database Objects
section above.

 create_type_framestamp_fastrange()

 Adds framestamp_fastrange RANGE type that uses double-precision floats under the
hood.

 create_type_framestamp_range()

 Adds framestamp_range RANGE type.

 inject_canonical_function()

 There is a limitation with PL/pgSQL where shell-types cannot be used as either
arguments OR return types.

 Pg Functions

 create_func_framestamp_fastrange_from_range()

 Creates framestamp_fastrange(:framestamp_range) to construct fast ranges out
of the slower framestamp_range type.

 create_func_framestamp_fastrange_from_stamps()

 Creates framestamp_fastrange(:framestamp, framestamp) to construct fast ranges out
of framestamps.

 Pg Private Functions

 create_func_canonical()

 Creates framestamp.__private__canonicalization(a, b, type) used by the range
constructor to normalize ranges.

 create_func_subtype_diff()

 Creates framestamp.__private__subtype_diff(a, b) used by the range type for more
efficient GiST indexes.

 Anchor for this section

Full

 Link to this function

 create_all(opts \\ [])

 View Source

 @spec create_all(Keyword.t()) :: :ok

Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.
Safe to run multiple times when new functionality is added in updates to this library.
Existing values will be skipped.
Required Permissions
To add the framestamp_range
canonical,
function, we must directly add it to the framestamp_range type in the pg_catalog
table. In most databases, this will require elevated permissions. See the
inject_canonical_function/0 for more information on why this is required.
You can choose to skip this step if you wish my setting the inject_canonical?
op to false, but operations that require discreet nudging of in and out points will
not return correct results, and ranges with different upper/lowwer bound types will
not be comparable.

 types-created

 Types Created

Calling this macro creates the following type definitions:
CREATE TYPE framestamp_range AS RANGE (
 subtype = framestamp,
 subtype_diff = framestamp_range_private.subtype_diff
 canonical = framestamp_range_private.canonicalization
);
CREATE TYPE framestamp_fastrange AS RANGE (
 subtype = double precision,
 subtype_diff = float8mi
);

 schemas-created

 Schemas Created

Up to two schemas are created as detailed by the
Configuring Database Objects
section below.

 configuring-database-objects

 Configuring Database Objects

To change where supporting functions are created, add the following to your
Repo confiugration:
config :vtc, Vtc.Test.Support.Repo,
 adapter: Ecto.Adapters.Postgres,
 ...
 vtc: [
 framestamp_range: [
 functions_schema: :framestamp_range,
 functions_prefix: "framestamp_range"
]
]
Option definitions are as follows:
	functions_schema: The postgres schema to store framestamp_range-related custom
 functions.

	functions_prefix: A prefix to add before all functions. Defaults to
"framestamp_range" for any function created in the :public schema, and ""
otherwise.

 examples

 Examples

defmodule MyMigration do
 use Ecto.Migration

 alias Vtc.Ecto.Postgres.PgFramestamp
 require PgFramestamp.Migrations

 def change do
 PgFramestamp.Range.Migrations.create_all()
 end
end

 Anchor for this section

Pg Types

 Link to this function

 create_function_schemas()

 View Source

 @spec create_function_schemas() :: :ok

Creates function schema as described by the
Configuring Database Objects
section above.

 Link to this function

 create_type_framestamp_fastrange()

 View Source

 @spec create_type_framestamp_fastrange() :: :ok

Adds framestamp_fastrange RANGE type that uses double-precision floats under the
hood.

 Link to this function

 create_type_framestamp_range()

 View Source

 @spec create_type_framestamp_range() :: :ok

Adds framestamp_range RANGE type.

 Link to this function

 inject_canonical_function()

 View Source

 @spec inject_canonical_function() :: :ok

There is a limitation with PL/pgSQL where shell-types cannot be used as either
arguments OR return types.
However, in the user-facing API flow, the canonical function must be created
before the range type with a shell type, then passed to the range type upon
construction. Further, ALTER TYPE does not work on range functions out-of-the
gate, so we cannot add it later... through the public API.
Instead this function edits the pg_catalog directly and supply the function
after-the-fact ourselves. Since this will all happen in a single transaction
it should be functionally equivalent to creating it on the type as part of the
initial call.
Permissions
In most databases, directly editing the pg_catalog will require elevated
permissions.

 Anchor for this section

Pg Functions

 Link to this function

 create_func_framestamp_fastrange_from_range()

 View Source

 @spec create_func_framestamp_fastrange_from_range() :: :ok

Creates framestamp_fastrange(:framestamp_range) to construct fast ranges out
of the slower framestamp_range type.

 Link to this function

 create_func_framestamp_fastrange_from_stamps()

 View Source

 @spec create_func_framestamp_fastrange_from_stamps() :: :ok

Creates framestamp_fastrange(:framestamp, framestamp) to construct fast ranges out
of framestamps.

 Anchor for this section

Pg Private Functions

 Link to this function

 create_func_canonical()

 View Source

 @spec create_func_canonical() :: :ok

Creates framestamp.__private__canonicalization(a, b, type) used by the range
constructor to normalize ranges.
Output ranges have an inclusive lower bound and an exclusive upper bound.

 Link to this function

 create_func_subtype_diff()

 View Source

 @spec create_func_subtype_diff() :: :ok

Creates framestamp.__private__subtype_diff(a, b) used by the range type for more
efficient GiST indexes.

 Vtc.Ecto.Postgres.PgRational - vtc v0.13.12

Vtc.Ecto.Postgres.PgRational

Defines a composite type for storing rational values as dual int64s. These values
are cast to %Ratio{} structs for use in application code, provided by the Ratio
library.
The composite type is defined as follows:
CREATE TYPE rational as (
 numerator bigint,
 denominator bigint
)
Rational values can be cast in SQL expressions like so:
SELECT (1, 2)::rational
See Vtc.Ecto.Postgres.PgRational.Migrations for more information on how to create
rational and it's supporting functions in your database.
Field migrations
You can create a field as a rational during a migration like so:
create table("rationals") do
 add(:a, PgRational.type())
 add(:b, PgRational.type())
end
Schema fields
Then in your schema module:
defmodule MyApp.Rationals do
@moduledoc false
use Ecto.Schema

alias Vtc.Ecto.Postgres.PgRational

@type t() :: %__MODULE__{
 a: Ratio.t(),
 b: Ratio.t()
 }

schema "rationals_01" do
 field(:a, PgRational)
 field(:b, PgRational)
end
... notice that the schema field type is PgRational, but the type-spec field uses
Ratio.t(), the type that our DB fields will be deserialized into.
Changesets
With the above setup, changesets should just work:
def changeset(schema, attrs) do
 schema
 |> Changeset.cast(attrs, [:a, :b])
 |> Changeset.validate_required([:a, :b])
end
Rational values can be cast from the following values in changesets:
	%Ratio{} structs.

	[numerator, denominator] integer arrays. Useful for non-text JSON values that can
be set in a single field.

	Strings formatted as 'numerator/denominator'. Useful for casting from a JSON
string.

 Anchor for this section

 Summary

 Types

 db_record()

 Type of the raw composite value that will be sent to / received from the database.

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 type()

 The database type for PgRational.

 Anchor for this section

Types

 Link to this type

 db_record()

 View Source

 @type db_record() :: {non_neg_integer(), pos_integer()}

Type of the raw composite value that will be sent to / received from the database.

 Anchor for this section

Functions

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 type()

 View Source

 @spec type() :: atom()

The database type for PgRational.
Can be used in migrations as the fields type.

 Vtc.Ecto.Postgres.PgRational.Migrations - vtc v0.13.12

Vtc.Ecto.Postgres.PgRational.Migrations

Migrations for adding rational types, casts, functions and constraints to a
Postgres database.

 Anchor for this section

 Summary

 Full

 create_all()

 Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.

 Pg Constraints

 create_field_constraints(table, field_name)

 Creates basic constraints for a PgRational database field.

 Pg Types

 create_function_schemas()

 Creates function schema as described by the
Configuring Database Objects
section above.

 create_type()

 Adds

 Pg Casts

 create_cast_bigint_to_rational()

 Creates a native cast for

 create_cast_double_precision()

 Creates a native cast for

 Pg Operators

 create_op_add()

 Creates a custom :rational, :rational + operator.

 create_op_div()

 Creates a custom :rational, :rational / operator.

 create_op_eq()

 Creates a custom :rational, :rational = operator.

 create_op_gt()

 Creates a custom :rational, :rational < operator.

 create_op_gte()

 Creates a custom :rational, :rational < operator.

 create_op_lt()

 Creates a custom :rational, :rational < operator.

 create_op_lte()

 Creates a custom :rational, :rational < operator.

 create_op_modulo()

 Creates a custom :rational, :rational % operator.

 create_op_mult()

 Creates a custom :rational, :rational * operator.

 create_op_neq2()

 Creates a custom :rational, :rational != operator.

 create_op_neq()

 Creates a custom :rational, :rational <> operator.

 create_op_sub()

 Creates a custom :rational, :rational - operator.

 Pg Operator Classes

 create_op_class_btree()

 Creates a B-tree operator class to support indexing on comparison operations.

 Pg Functions

 create_func_abs()

 Creates ABS(rational) function that returns the absolute value of the rational
value.

 create_func_floor()

 Creates FLOOR(rational) function that returns the rational input as a bigint,
rounded towards zero, to match Postgres FLOOR(real) behavior.

 create_func_minus()

 Creates rational.minus(rat) function that flips the sign of the input value --
makes a positive value negative and a negative value positive.

 create_func_round()

 Creates ROUND(rational) function that returns the rational input, rounded to the
nearest :bigint.

 Pg Private Functions

 create_func_add()

 Creates rational.__private__add(a, b) backing function for the + operator
between two rationals.

 create_func_cast_bigint_to_rational()

 Creates a native CAST from bigint to rational.

 create_func_cast_to_double_precison()

 Creates a native CAST from rational to double precision.

 create_func_cmp()

 Creates rational.__private__cmp(a, b) that returns

 create_func_div()

 Creates rational.__private__div(a, b) backing function for the / operator
between two rationals.

 create_func_eq()

 Creates rational.__private__eq(a, b) that backs the = operator.

 create_func_floor_div()

 Creates rational.__private__div(a, b) backing function for the / operator
between two rationals.

 create_func_gt()

 Creates rational.__private__gt(a, b) that backs the > operator.

 create_func_gte()

 Creates rational.__private__gte(a, b) that backs the >= operator.

 create_func_lt()

 Creates rational.__private__lt(a, b) that backs the < operator.

 create_func_lte()

 Creates rational.__private__lte(a, b) that backs the <= operator.

 create_func_modulo()

 Creates rational.__private__modulo(a, b) backing function for the % operator
between two rationals.

 create_func_mult()

 Creates rational.__private__mult(a, b) backing function for the * operator
between two rationals.

 create_func_neq()

 Creates rational.__private__neq(a, b) that backs the <> operator.

 create_func_simplify()

 Creates rational.__private__simplify(rat) function that simplifies a rational. Used at
the end of every rational operation to avoid overflows.

 create_func_sub()

 Creates rational.__private__sub(a, b) backing function for the - operator
between two rationals.

 Functions

 function(name, repo)

 Returns the config-qualified name of the function for this type.

 Anchor for this section

Full

 Link to this function

 create_all()

 View Source

 @spec create_all() :: :ok

Adds raw SQL queries to a migration for creating the database types, associated
functions, casts, operators, and operator families.
This migration included all migraitons under the
Pg Types,
Pg Operators,
Pg Operator Classes,
Pg Functions, and
Pg Private Functions,
headings.
Safe to run multiple times when new functionality is added in updates to this library.
Existing values will be skipped.

 types-created

 Types Created

Calling this macro creates the following type definitions:
CREATE TYPE public.rational AS (
 numerator bigint,
 denominator bigint
);

 schemas-created

 Schemas Created

Up to two schemas are created as detailed by the
Configuring Database Objects
section below.

 configuring-database-objects

 Configuring Database Objects

To change where supporting functions are created, add the following to your
Repo confiugration:
config :vtc, Vtc.Test.Support.Repo,
 adapter: Ecto.Adapters.Postgres,
 ...
 vtc: [
 rational: [
 functions_schema: :rational,
 functions_prefix: "rational"
]
]
Option definitions are as follows:
	functions_schema: The postgres schema to store rational-related custom functions.

	functions_prefix: A prefix to add before all functions. Defaults to "rational"
for any function created in the :public schema, and "" otherwise.

 private-functions

 Private Functions

Some custom function names are prefaced with __private__. These functions should
not be called by end-users, as they are not subject to any API staility guarantees.

 functions-created

 Functions Created

See PgFunctions
section of these docs for details on native database functions
created.

 operators-created

 Operators Created

See PgOperators
section of these docs for details on native database operators
created.

 casts-created

 Casts Created

See PgCasts
section of these docs for details on native database operators
created.

 examples

 Examples

defmodule MyMigration do
 use Ecto.Migration

 alias Vtc.Ecto.Postgres.PgRational
 require PgRational.Migrations

 def change do
 PgRational.Migrations.create_all()
 end
end

 Anchor for this section

Pg Constraints

 Link to this function

 create_field_constraints(table, field_name)

 View Source

 @spec create_field_constraints(atom(), atom()) :: :ok

Creates basic constraints for a PgRational database field.

 constraints-created

 Constraints created:

	{field_name}_denominator_positive: Checks that the denominator of the field is
positive.

 examples

 Examples

create table("rationals", primary_key: false) do
 add(:id, :uuid, primary_key: true, null: false)
 add(:a, PgRational.type())
 add(:b, PgRational.type())
end

PgRational.migration_add_field_constraints(:rationals, :a)
PgRational.migration_add_field_constraints(:rationals, :b)

 Anchor for this section

Pg Types

 Link to this function

 create_function_schemas()

 View Source

 @spec create_function_schemas() :: :ok

Creates function schema as described by the
Configuring Database Objects
section above.

 Link to this function

 create_type()

 View Source

 @spec create_type() :: :ok

Adds:
	rational composite type
	rationals schema
	rationals_helpers schema

 Anchor for this section

Pg Casts

 Link to this function

 create_cast_bigint_to_rational()

 View Source

 @spec create_cast_bigint_to_rational() :: :ok

Creates a native cast for:
bigint AS rational

 Link to this function

 create_cast_double_precision()

 View Source

 @spec create_cast_double_precision() :: :ok

Creates a native cast for:
rational AS double precision

 Anchor for this section

Pg Operators

 Link to this function

 create_op_add()

 View Source

 @spec create_op_add() :: :ok

Creates a custom :rational, :rational + operator.

 Link to this function

 create_op_div()

 View Source

 @spec create_op_div() :: :ok

Creates a custom :rational, :rational / operator.

 Link to this function

 create_op_eq()

 View Source

 @spec create_op_eq() :: :ok

Creates a custom :rational, :rational = operator.

 Link to this function

 create_op_gt()

 View Source

 @spec create_op_gt() :: :ok

Creates a custom :rational, :rational < operator.

 Link to this function

 create_op_gte()

 View Source

 @spec create_op_gte() :: :ok

Creates a custom :rational, :rational < operator.

 Link to this function

 create_op_lt()

 View Source

 @spec create_op_lt() :: :ok

Creates a custom :rational, :rational < operator.

 Link to this function

 create_op_lte()

 View Source

 @spec create_op_lte() :: :ok

Creates a custom :rational, :rational < operator.

 Link to this function

 create_op_modulo()

 View Source

 @spec create_op_modulo() :: :ok

Creates a custom :rational, :rational % operator.

 Link to this function

 create_op_mult()

 View Source

 @spec create_op_mult() :: :ok

Creates a custom :rational, :rational * operator.

 Link to this function

 create_op_neq2()

 View Source

 @spec create_op_neq2() :: :ok

Creates a custom :rational, :rational != operator.

 Link to this function

 create_op_neq()

 View Source

 @spec create_op_neq() :: :ok

Creates a custom :rational, :rational <> operator.

 Link to this function

 create_op_sub()

 View Source

 @spec create_op_sub() :: :ok

Creates a custom :rational, :rational - operator.

 Anchor for this section

Pg Operator Classes

 Link to this function

 create_op_class_btree()

 View Source

 @spec create_op_class_btree() :: :ok

Creates a B-tree operator class to support indexing on comparison operations.

 Anchor for this section

Pg Functions

 Link to this function

 create_func_abs()

 View Source

 @spec create_func_abs() :: :ok

Creates ABS(rational) function that returns the absolute value of the rational
value.

 Link to this function

 create_func_floor()

 View Source

 @spec create_func_floor() :: :ok

Creates FLOOR(rational) function that returns the rational input as a bigint,
rounded towards zero, to match Postgres FLOOR(real) behavior.

 Link to this function

 create_func_minus()

 View Source

 @spec create_func_minus() :: :ok

Creates rational.minus(rat) function that flips the sign of the input value --
makes a positive value negative and a negative value positive.

 Link to this function

 create_func_round()

 View Source

 @spec create_func_round() :: :ok

Creates ROUND(rational) function that returns the rational input, rounded to the
nearest :bigint.

 Anchor for this section

Pg Private Functions

 Link to this function

 create_func_add()

 View Source

 @spec create_func_add() :: :ok

Creates rational.__private__add(a, b) backing function for the + operator
between two rationals.

 Link to this function

 create_func_cast_bigint_to_rational()

 View Source

 @spec create_func_cast_bigint_to_rational() :: :ok

Creates a native CAST from bigint to rational.

 Link to this function

 create_func_cast_to_double_precison()

 View Source

 @spec create_func_cast_to_double_precison() :: :ok

Creates a native CAST from rational to double precision.

 Link to this function

 create_func_cmp()

 View Source

 @spec create_func_cmp() :: :ok

Creates rational.__private__cmp(a, b) that returns:
	1 if a > b
	0 if a == b
	-1 if a < b

Used to back equality operators.

 Link to this function

 create_func_div()

 View Source

 @spec create_func_div() :: :ok

Creates rational.__private__div(a, b) backing function for the / operator
between two rationals.

 Link to this function

 create_func_eq()

 View Source

 @spec create_func_eq() :: :ok

Creates rational.__private__eq(a, b) that backs the = operator.

 Link to this function

 create_func_floor_div()

 View Source

 @spec create_func_floor_div() :: :ok

Creates rational.__private__div(a, b) backing function for the / operator
between two rationals.

 Link to this function

 create_func_gt()

 View Source

 @spec create_func_gt() :: :ok

Creates rational.__private__gt(a, b) that backs the > operator.

 Link to this function

 create_func_gte()

 View Source

 @spec create_func_gte() :: :ok

Creates rational.__private__gte(a, b) that backs the >= operator.

 Link to this function

 create_func_lt()

 View Source

 @spec create_func_lt() :: :ok

Creates rational.__private__lt(a, b) that backs the < operator.

 Link to this function

 create_func_lte()

 View Source

 @spec create_func_lte() :: :ok

Creates rational.__private__lte(a, b) that backs the <= operator.

 Link to this function

 create_func_modulo()

 View Source

 @spec create_func_modulo() :: :ok

Creates rational.__private__modulo(a, b) backing function for the % operator
between two rationals.

 Link to this function

 create_func_mult()

 View Source

 @spec create_func_mult() :: :ok

Creates rational.__private__mult(a, b) backing function for the * operator
between two rationals.

 Link to this function

 create_func_neq()

 View Source

 @spec create_func_neq() :: :ok

Creates rational.__private__neq(a, b) that backs the <> operator.

 Link to this function

 create_func_simplify()

 View Source

 @spec create_func_simplify() :: :ok

Creates rational.__private__simplify(rat) function that simplifies a rational. Used at
the end of every rational operation to avoid overflows.

 Link to this function

 create_func_sub()

 View Source

 @spec create_func_sub() :: :ok

Creates rational.__private__sub(a, b) backing function for the - operator
between two rationals.

 Anchor for this section

Functions

 Link to this function

 function(name, repo)

 View Source

 @spec function(atom(), Ecto.Repo.t()) :: String.t()

Returns the config-qualified name of the function for this type.

 Vtc.TestUtls.StreamDataVtc - vtc v0.13.12

Vtc.TestUtls.StreamDataVtc

StreamData generators for use in tests that involve custom Ecto types. For use in
property tests.
This module is only available in :test and :dev envs.

 Anchor for this section

 Summary

 Types

 framerate_opts()

 Describes the opts that can be passed to framerate/1.

 framestamp_opts()

 Functions

 framerate(opts \\ [])

 Yields Vtc.Framerates, always yields true-frame or NTSC; never a mixture of the two.

 framestamp(opts \\ [])

 Yields Vtc.Framestamp values.

 framestamp_range(opts \\ [])

 Yields Vtc.Framestamp.Range values.

 rational(opts \\ [])

 Yields rational values as %Ratio{} structs.

 run_test_rescue_drop_overflow(test_runner)

 Runs a test, but does not fail if the operation causes a drop-frame overflow
exception to occur.

 Anchor for this section

Types

 Link to this type

 framerate_opts()

 View Source

 @type framerate_opts() :: [{:type, :whole | :fractional | :drop | :non_drop}]

Describes the opts that can be passed to framerate/1.

 Link to this type

 framestamp_opts()

 View Source

 @type framestamp_opts() :: [
 non_negative?: boolean(),
 rate: Vtc.Framerate.t(),
 rate_opts: framerate_opts()
]

 Anchor for this section

Functions

 Link to this function

 framerate(opts \\ [])

 View Source

 @spec framerate(framerate_opts()) :: StreamData.t(Vtc.Framerate.t())

Yields Vtc.Framerates, always yields true-frame or NTSC; never a mixture of the two.

 options

 Options

	type: The ntsc value all framerates should be generated with. Can be any of the
following:
	:whole: All yielded framerates will be non-ntsc, whole-frame rates. Ex: 24/1
fps.
	:fractional: All yielded framerates will be a random non-drop rate.
	:non_drop: All yielded framerates will be NTSC, non-drop values.
	:drop: All yielded framerates will be NTSC, drop-frame values.

 A list of the above options may be passed and each value yielded from this
 generator will pick randomly from them.
 Defaults to [:whole, :fractional, :non_drop, :drop]

 examples

 Examples

property "prop test" do
 check all(framerate <- StreamDataVtc.framerate()) do
 ...
 end
end

 Link to this function

 framestamp(opts \\ [])

 View Source

 @spec framestamp(framestamp_opts()) :: StreamData.t(Vtc.Framestamp.t())

Yields Vtc.Framestamp values.

 options

 Options

	non_negative?: Will only return values greater than or equal to 00:00:00:00.

	rate: A framerate to use for this test. If one is not provided, a random one will
be used.

	rate_opts: Opts that should be passed to framerate/1 when generating the
framerate. Has no effect if rate is set.

 examples

 Examples

property "returns input of negate/1" do
 check all(positive <- StreamDataVtc.framestamp(non_negative?: true)) do
 negative = Framestamp.minus(positive)
 assert Framestamp.abs(positive) == Framestamp.abs(negative)
 end
end

 Link to this function

 framestamp_range(opts \\ [])

 View Source

 @spec framestamp_range(
 rate_opts: framerate_opts(),
 stamp_opts: framestamp_opts(),
 filter_empty?: boolean()
) :: StreamData.t(Vtc.Framestamp.Range.t())

 Yields Vtc.Framestamp.Range values.

 options

 Options

	rate_opts: The options to pass to the framerate/1 generator for this range.

	stamp_opts: The options to pass to the framestamp/1 generators for this range.

	filter_empty?: If true, filters 0-length ranges from the output.
Default: false.

 examples

 Examples

property "returns input of negate/1" do
 check all(positive <- StreamDataVtc.framestamp_range()) do
 ...
 end
end

 Link to this function

 rational(opts \\ [])

 View Source

 @spec rational(numerator: integer(), denominator: pos_integer(), positive?: boolean()) ::
 StreamData.t(Ratio.t())

Yields rational values as %Ratio{} structs.

 options

 Options

	numerator: A static value to use for the numerator of all genrated rationals.
Default: nil.

	denominator: A static value to use for the denominator of all genrated rationals.
Default: nil.

	positive?: If true, only positive values (greater than 0) are generated.
Default: false.

 examples

 Examples

property "prop test" do
 check all(fraction <- StreamDataVtc.rational()) do
 ...
 end
end

 Link to this function

 run_test_rescue_drop_overflow(test_runner)

 View Source

 @spec run_test_rescue_drop_overflow((() -> term())) :: term()

Runs a test, but does not fail if the operation causes a drop-frame overflow
exception to occur.

 Vtc.Framerate.ParseError - vtc v0.13.12

Vtc.Framerate.ParseError exception

Exception returned when a framerate cannot be parsed.
Struct Fields
	reason: The reason the error occurred.

Failure Reasons
The following values can appear in the :reason fields:
	:bad_drop_rate: Returned when the playback speed of a framerate with an ntsc
 value of :drop is not divisible by 3000/1001 (29.97), for more on why drop-frame
 framerates must be a multiple of 29.97, see:
 https://www.davidheidelberger.com/2010/06/10/drop-frame-timecode/

	:invalid_ntsc: Returned when the ntsc value is not one of the allowed atom
values.

	:unrecognized_format: Returned when a string value is not a recognized format.

	:imprecise - Returned when a float was passed with an NTSC value of nil.
Without the ability to round to the nearest valid NTSC value, floats are not
precise enough to build an arbitrary framerate.

 Anchor for this section

 Summary

 Types

 t()

 Type of ParseError

 Functions

 message(map)

 Returns a message for the error reason.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framerate.ParseError{
 __exception__: true,
 reason:
 :non_positive
 | :bad_drop_rate
 | :invalid_ntsc
 | :invalid_ntsc_rate
 | :unrecognized_format
 | :imprecise
}

Type of ParseError

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

 @spec message(t()) :: String.t()

Returns a message for the error reason.

 Vtc.Framestamp.ParseError - vtc v0.13.12

Vtc.Framestamp.ParseError exception

Exception returned when there is an error parsing a Timecode value.
Struct Fields
	reason: The reason the error occurred.

Failure Reasons
The following values can appear in the :reason fields:
	:unrecognized_format: Returned when a string value is not a recognized
 timecode, runtime, etc. format.

	:bad_drop_frames: Returned when parsing SMPTE, drop-frame timecode. Indicates that
 the 'frames' field represents a frame that should have been dropped.

 Anchor for this section

 Summary

 Types

 t()

 Type of Framestamp.ParseError.

 Functions

 message(map)

 Returns a message for the error reason.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framestamp.ParseError{
 __exception__: true,
 reason:
 :unrecognized_format
 | :bad_drop_frames
 | :drop_frame_maximum_exceeded
 | :partial_frame
}

Type of Framestamp.ParseError.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

 @spec message(t()) :: String.t()

Returns a message for the error reason.

OEBPS/dist/epub-75RCTLK3.js
