

 vtc

 v0.4.0

 [image: Logo]

 Table of contents

 	vtc-ex

 	Timecode: A History

 	Modules

 	Vtc.Framerate

 	Vtc.Range

 	Vtc.Rates

 	Vtc.Source.Frames

 	Vtc.Source.PremiereTicks

 	Vtc.Source.Seconds

 	Vtc.Timecode

 	Vtc.Timecode.Sections

 	Vtc.Utils.Rational

 	Vtc.Framerate.ParseError

 	Vtc.Timecode.ParseError

vtc-ex

 Timecode: A History - vtc v0.4.0

Timecode: A History

But first: what is timecode?
If you're already familiar with timecode, it's history, and it's flavors, feel free to
skip this section.
Back in the days of film, a running strip of numbers ran along the edge of the film
stock to uniquely identify each frame, called
keycode
Keycode was essential to the film editing process. The raw negative of a film is
irreplaceable: you loose quality each time you make a copy. Editing film is necessarily
a destructive process, and
often required multiple iterations. It would be just a tad nerve-wracking to take a pair
of scissors and some glue to the one-of-a-kind film reels straight out of the camera
on set, then running it over and over through a flatbed.
To avoid potential disaster, editors made their cut of the film using copies of the
raw negative, called a work print, allowing
the editor to work without fear of sinking a project from slicing, dicing, and wearing
at the film.
When the edit was complete, it was necessary to know exactly where the edits had been
made, so it could be recreated with the raw negative for finishing. A cut list would
be written out, with the exact reels and keycodes for every cut, and would be used to
make an exact duplicate of the editor's work print with the mint condition raw negative.
In video and digital filmmaking, the same approach is used. Massive RAW files from a
RED, ARRI, Sony, or other cinema camera are rendered down to more manageable files an
Editor's machine won't choke on. Once the edit is complete, the raw files are
re-assembled using a digital cutlist on a powerful machine for finishing out the film.
In film, we referenced keycode to know exactly what frame was being displayed on
screen at any given time. In digital video, we reference the timecode of a given
frame.
For a technical deep-dive into the many flavors of timecode, check out
Frame.io's
excellent blogpost on
the subject.

 Vtc.Framerate - vtc v0.4.0

Vtc.Framerate

The rate at which a video file frames are played back.
Framerate is measured in frames-per-second (24/1 = 24 frames-per-second).
Struct Fields
	playback: The rational representation of the real-world playback speed as a
fraction in frames-per-second.

	ntsc: Atom representing which, if any, NTSC convention this framerate adheres to.

 Anchor for this section

 Summary

 Types

 ntsc()

 Enum of Ntsc types.

 parse_result()

 Type returned by new/2

 t()

 Type of Framerate

 Functions

 new(rate, ntsc, coerce_seconds_per_frame? \\ true)

 Creates a new Framerate with a playback speed or timebase.

 new!(rate, ntsc, coerce_seconds_per_frame? \\ true)

 As new/2 but raises an error instead.

 ntsc?(arg1)

 Returns true if the value represents and NTSC framerate, therefore will return true
on a Framerate with an :ntsc value of :non_drop and :drop.

 timebase(framerate)

 The rational representation of the timecode timebase speed as a fraction in
frames-per-second.

 Anchor for this section

Types

 Link to this type

 ntsc()

 View Source

 @type ntsc() :: :non_drop | :drop | nil

Enum of Ntsc types.

 values

 Values

	:non_drop A non-drop NTSC value.
	:drop A drop-frame ntsc value.
	nil: Not an NTSC value

For more information on NTSC standards and framerate conventions, see
Frame.io's
blogpost on the subject.

 Link to this type

 parse_result()

 View Source

 @type parse_result() :: {:ok, t()} | {:error, Vtc.Framerate.ParseError.t()}

Type returned by new/2

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framerate{ntsc: ntsc(), playback: Vtc.Utils.Rational.t()}

Type of Framerate

 Anchor for this section

Functions

 Link to this function

 new(rate, ntsc, coerce_seconds_per_frame? \\ true)

 View Source

 @spec new(Vtc.Utils.Rational.t() | float() | String.t(), ntsc(), boolean()) ::
 parse_result()

Creates a new Framerate with a playback speed or timebase.

 arguments

 Arguments

	rate: Either the playback rate or timebase. For NTSC framerates, the value will
be rounded to the nearest correct value.

	ntsc: Atom representing the which (or whether an) NTSC standard is being used.

	coerce_seconds_per_frame?: If true, then values such as 1/24 are assumed to be
in seconds-per-frame format and automatically converted to 24/1. Useful when you want
to convert strings from multiple sources when some are seconds-per-frame and others are
frames-per-second. NOTE: if you expect to be dealing with record-rate values for timelapse
use at your own risk!

NOTE: Floats cannot be passed if the rate is not NTSC and the value is not a while
number, as there is no way to know the precise time do to floating-point errors.

 Link to this function

 new!(rate, ntsc, coerce_seconds_per_frame? \\ true)

 View Source

 @spec new!(Vtc.Utils.Rational.t() | float() | String.t(), ntsc(), boolean()) :: t()

As new/2 but raises an error instead.

 Link to this function

 ntsc?(arg1)

 View Source

 @spec ntsc?(t()) :: boolean()

Returns true if the value represents and NTSC framerate, therefore will return true
on a Framerate with an :ntsc value of :non_drop and :drop.

 Link to this function

 timebase(framerate)

 View Source

 @spec timebase(t()) :: Vtc.Utils.Rational.t()

The rational representation of the timecode timebase speed as a fraction in
frames-per-second.

 Vtc.Range - vtc v0.4.0

Vtc.Range

Holds a timecode range.
Struct Fields
	in: Start TC. Must be less than or equal to out.
	out: End TC. Must be greater than or equal to in.
	inclusive: See below for more information. Default: false

Inclusive vs. Exclusive Ranges
Inclusive ranges treat the out timecode as the last visible frame of a piece of
footage. This style of tc range is most often associated with AVID.
Exclusive timecode ranges treat the out timecode as the boundary where the range
ends. This style of tc range is most often associated with Final Cut and Premiere.
In mathematical notation, inclusive ranges are [in, out], while exclusive ranges are
[in, out).

 Anchor for this section

 Summary

 Types

 out_type()

 Whether the end point should be treated as the Range's boundary (:exclusive), or its
last element (:inclusive).

 t()

 Range struct type.

 Functions

 duration(range)

 Returns the duration in Timecode of range.

 intersection(a, b)

 Returns nil if the two ranges do not intersect, otherwise returns the Range
of the intersection of the two Ranges.

 intersection!(a, b)

 As intersection, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is no overlap.

 new(tc_in, tc_out, opts \\ [])

 Creates a new Range.

 new!(tc_in, tc_out, opts \\ [])

 As new/3, but raises on error.

 overlaps?(a, b)

 Returns true if there is overlap between a and b.

 separation(a, b)

 Returns nil if the two ranges do intersect, otherwise returns the Range of the space
between the intersections of the two Ranges.

 separation!(a, b)

 As separation, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is overlap.

 with_duration(tc_in, duration, opts \\ [])

 Returns a range with an :in value of tc_in and a duration of duration.
duration may be a Timecode value for any value that implements the Frames
protocol.

 with_duration!(tc_in, duration, opts \\ [])

 As with_duration/3, but raises on error.

 with_exclusive_out(range)

 Adjusts range to have an exclusive out timecode.

 with_inclusive_out(range)

 Adjusts range to have an inclusive out timecode.

 Anchor for this section

Types

 Link to this type

 out_type()

 View Source

 @type out_type() :: :inclusive | :exclusive

Whether the end point should be treated as the Range's boundary (:exclusive), or its
last element (:inclusive).

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Range{
 in: Vtc.Timecode.t(),
 out: Vtc.Timecode.t(),
 out_type: out_type()
}

Range struct type.

 Anchor for this section

Functions

 Link to this function

 duration(range)

 View Source

 @spec duration(t()) :: Vtc.Timecode.t()

Returns the duration in Timecode of range.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "01:30:00:00")
iex> Range.duration(range) |> inspect()
"<00:30:00:00 <23.98 NTSC NDF>>"

 Link to this function

 intersection(a, b)

 View Source

 @spec intersection(t(), t()) :: {:ok, t()} | {:error, :none}

Returns nil if the two ranges do not intersect, otherwise returns the Range
of the intersection of the two Ranges.
a and b do not have to have matching :out_type settings, but the result will
inherit a's setting.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.intersection(a, b) |> inspect()
"{:ok, <01:50:00:00 - 02:00:00:00 :inclusive <23.98 NTSC NDF>>}"
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.intersection(a, b)
{:error, :none}

 Link to this function

 intersection!(a, b)

 View Source

 @spec intersection!(t(), t()) :: t()

As intersection, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is no overlap.
This returned range inherets the framerate and out_type from a.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.intersection!(a, b) |> inspect()
"<00:00:00:00 - -00:00:00:01 :inclusive <23.98 NTSC NDF>>"

 Link to this function

 new(tc_in, tc_out, opts \\ [])

 View Source

 @spec new(
 in_tc :: Vtc.Timecode.t(),
 out_tc :: Vtc.Timecode.t() | Vtc.Source.Frames.t(),
 opts :: [{:out_type, out_type()}]
) :: {:ok, t()} | {:error, Exception.t() | Vtc.Timecode.ParseError.t()}

Creates a new Range.
out_tc may be a Timecode value for any value that implements the Frames
protocol.
Returns an error if the resulting range would not have a duration greater or eual to
0, or if tc_in and tc_out do not have the same rate.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> tc_out = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex> Range.new(tc_in, tc_out) |> inspect()
"{:ok, <01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC NDF>>}"
Using a timecode string as b:
iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Range.new(tc_in, "02:00:00:00") |> inspect()
"{:ok, <01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC NDF>>}"
Making a range with an inclusive out:
iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Range.new(tc_in, "02:00:00:00", out_type: :inclusive) |> inspect()
"{:ok, <01:00:00:00 - 02:00:00:00 :inclusive <23.98 NTSC NDF>>}"

 Link to this function

 new!(tc_in, tc_out, opts \\ [])

 View Source

 @spec new!(Vtc.Timecode.t(), Vtc.Timecode.t(), opts :: [{:out_type, out_type()}]) ::
 t()

As new/3, but raises on error.

 Link to this function

 overlaps?(a, b)

 View Source

 @spec overlaps?(t(), t()) :: boolean()

Returns true if there is overlap between a and b.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.overlaps?(a, b)
true
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.overlaps?(a, b)
false

 Link to this function

 separation(a, b)

 View Source

 @spec separation(t(), t()) :: {:ok, t()} | {:error, :none}

Returns nil if the two ranges do intersect, otherwise returns the Range of the space
between the intersections of the two Ranges.
a and b do not have to have matching :out_type settings, but the result will
inherit a's setting.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.separation(a, b) |> inspect()
"{:ok, <02:00:00:01 - 02:09:59:23 :inclusive <23.98 NTSC NDF>>}"
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.separation(a, b)
{:error, :none}

 Link to this function

 separation!(a, b)

 View Source

 @spec separation!(t(), t()) :: t()

As separation, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is overlap.
This returned range inherets the framerate and out_type from a.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.separation!(a, b) |> inspect()
"<00:00:00:00 - -00:00:00:01 :inclusive <23.98 NTSC NDF>>"

 Link to this function

 with_duration(tc_in, duration, opts \\ [])

 View Source

 @spec with_duration(
 tc_in :: Vtc.Timecode.t(),
 duration :: Vtc.Timecode.t() | Vtc.Source.Frames.t(),
 opts :: [{:out_type, out_type()}]
) :: {:ok, t()} | {:error, Exception.t() | Vtc.Timecode.ParseError.t()}

Returns a range with an :in value of tc_in and a duration of duration.
duration may be a Timecode value for any value that implements the Frames
protocol.
Returns an error if duration is less than 0 seconds or if tc_in and tc_out do
not have the same rate.

 examples

 Examples

iex> start_tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> duration = Timecode.with_frames!("00:30:00:00", Rates.f23_98())
iex> Range.with_duration(start_tc, duration) |> inspect()
"{:ok, <01:00:00:00 - 01:30:00:00 :exclusive <23.98 NTSC NDF>>}"
Using a timecode string as b:
iex> start_tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Range.with_duration(start_tc, "00:30:00:00") |> inspect()
"{:ok, <01:00:00:00 - 01:30:00:00 :exclusive <23.98 NTSC NDF>>}"
Making a range with an inclusive out:
iex> start_tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Range.with_duration(start_tc, "00:30:00:00", out_type: :inclusive) |> inspect()
"{:ok, <01:00:00:00 - 01:29:59:23 :inclusive <23.98 NTSC NDF>>}"

 Link to this function

 with_duration!(tc_in, duration, opts \\ [])

 View Source

 @spec with_duration!(
 Vtc.Timecode.t(),
 Vtc.Timecode.t(),
 opts :: [{:out_type, out_type()}]
) :: t()

As with_duration/3, but raises on error.

 Link to this function

 with_exclusive_out(range)

 View Source

 @spec with_exclusive_out(t()) :: t()

Adjusts range to have an exclusive out timecode.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "02:00:00:00", out_type: :inclusive)
iex> Range.with_exclusive_out(range) |> inspect()
"<01:00:00:00 - 02:00:00:01 :exclusive <23.98 NTSC NDF>>"

 Link to this function

 with_inclusive_out(range)

 View Source

 @spec with_inclusive_out(t()) :: t()

Adjusts range to have an inclusive out timecode.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "02:00:00:00")
iex> Range.with_inclusive_out(range) |> inspect()
"<01:00:00:00 - 01:59:59:23 :inclusive <23.98 NTSC NDF>>"

 Vtc.Rates - vtc v0.4.0

Vtc.Rates

Pre-defined framerates commonly used in the wild.

 Anchor for this section

 Summary

 Functions

 f23_98()

 23.98 NTSC Non-drop

 f24()

 24 fps

 f29_97_df()

 29.97 NTSC Drop-frame

 f29_97_ndf()

 29.97 NTSC Non-drop

 f30()

 30 fps

 f47_95()

 47.95 NTSC Non-drop

 f48()

 48 fps

 f59_94_df()

 59.94 NTSC Drop-frame

 f59_94_ndf()

 59.94 NTSC Non-drop

 f60()

 60 fps

 Anchor for this section

Functions

 Link to this function

 f23_98()

 View Source

 @spec f23_98() :: Vtc.Framerate.t()

23.98 NTSC Non-drop

 Link to this function

 f24()

 View Source

 @spec f24() :: Vtc.Framerate.t()

24 fps

 Link to this function

 f29_97_df()

 View Source

 @spec f29_97_df() :: Vtc.Framerate.t()

29.97 NTSC Drop-frame

 Link to this function

 f29_97_ndf()

 View Source

 @spec f29_97_ndf() :: Vtc.Framerate.t()

29.97 NTSC Non-drop

 Link to this function

 f30()

 View Source

 @spec f30() :: Vtc.Framerate.t()

30 fps

 Link to this function

 f47_95()

 View Source

 @spec f47_95() :: Vtc.Framerate.t()

47.95 NTSC Non-drop

 Link to this function

 f48()

 View Source

 @spec f48() :: Vtc.Framerate.t()

48 fps

 Link to this function

 f59_94_df()

 View Source

 @spec f59_94_df() :: Vtc.Framerate.t()

59.94 NTSC Drop-frame

 Link to this function

 f59_94_ndf()

 View Source

 @spec f59_94_ndf() :: Vtc.Framerate.t()

59.94 NTSC Non-drop

 Link to this function

 f60()

 View Source

 @spec f60() :: Vtc.Framerate.t()

60 fps

 Vtc.Source.Frames - vtc v0.4.0

Vtc.Source.Frames protocol

Protocol which types can implement to be passed as the main value of
Timecode.with_frames/2.
Implementations
Out of the box, this protocol is implemented for the following types:
	Integer
	String & 'BitString'	timecode ("01:00:00:00")
	integer ("86400")
	Feet+Frames ("5400+00")

 Anchor for this section

 Summary

 Types

 result()

 Result type of frames/2.

 t()

 Functions

 frames(value, rate)

 Returns the value as a frame count.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() :: {:ok, integer()} | {:error, Vtc.Timecode.ParseError.t()}

Result type of frames/2.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 frames(value, rate)

 View Source

 @spec frames(t(), Vtc.Framerate.t()) :: result()

Returns the value as a frame count.
Arguments
	value: The source value.

	rate: The framerate of the timecode being parsed.

Returns
A result tuple with an integer value representing the frame count on success.

 Vtc.Source.PremiereTicks - vtc v0.4.0

Vtc.Source.PremiereTicks protocol

Protocol which types can implement to be passed as the main value of
Vtc.Timecode.with_premiere_ticks/3.
Implementations
Out of the box, this protocol is implemented for the following types:
	Integer

 Anchor for this section

 Summary

 Types

 result()

 Result type of ticks/3.

 t()

 Functions

 ticks(value, rate)

 Returns the number of Adobe Premiere Pro ticks as an integer.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() :: {:ok, integer()} | {:error, Vtc.Timecode.ParseError.t()}

Result type of ticks/3.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 ticks(value, rate)

 View Source

 @spec ticks(t(), Vtc.Framerate.t()) :: result()

Returns the number of Adobe Premiere Pro ticks as an integer.
Arguments
	value: The source value.

	rate: The framerate of the timecode being parsed.

Returns
A result tuple with a rational representation of the seconds value using Ratio on
success.

 Vtc.Source.Seconds - vtc v0.4.0

Vtc.Source.Seconds protocol

Protocol which types can implement to be passed as the main value of
Timecode.with_seconds/3.
Implementations
Out of the box, this protocol is implemented for the following types:
	Ratio
	Integer
	Float
	String	runtime ("01:00:00.0")
	decimal ("3600.0")

 Anchor for this section

 Summary

 Types

 result()

 Result type of seconds/2.

 t()

 Functions

 seconds(value, rate)

 Returns the value as a rational, real-world seconds value.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() ::
 {:ok, Vtc.Utils.Rational.t()} | {:error, Vtc.Timecode.ParseError.t()}

Result type of seconds/2.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 seconds(value, rate)

 View Source

 @spec seconds(t(), Vtc.Framerate.t()) :: result()

Returns the value as a rational, real-world seconds value.

 arguments

 Arguments

	value: The source value.

	rate: The framerate of the timecode being parsed.

 returns

 Returns

A result tuple with a rational representation of the seconds value using Ratio on
success.

 Vtc.Timecode - vtc v0.4.0

Vtc.Timecode

Represents the frame at a particular time in a video.
New Timecode values are created with the with_seconds/3 and with_frames/2, and
other function prefaced by with_*.
Struct Fields
	seconds: The real-world seconds elapsed since 01:00:00:00 as a rational value.
(Note: The Ratio module automatically will coerce itself to an integer whenever
possible, so this value may be an integer when exactly a whole-second value).

	rate: the Framerate of the timecode.

Sorting Support
Timecode implements compare/2, and as such, can be used wherever the standard
library calls for a Sorter module. Let's see it in action:
iex> tc_01 = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> tc_02 = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex>
iex> Enum.sort([tc_02, tc_01], Timecode) |> inspect()
"[<01:00:00:00 <23.98 NTSC NDF>>, <02:00:00:00 <23.98 NTSC NDF>>]"
iex>
iex>
iex> Enum.sort([tc_01, tc_02], {:desc, Timecode}) |> inspect()
"[<02:00:00:00 <23.98 NTSC NDF>>, <01:00:00:00 <23.98 NTSC NDF>>]"
iex>
iex>
iex> Enum.max([tc_02, tc_01], Timecode) |> inspect()
"<02:00:00:00 <23.98 NTSC NDF>>"
iex>
iex>
iex> Enum.min([tc_02, tc_01], Timecode) |> inspect()
"<01:00:00:00 <23.98 NTSC NDF>>"
iex>
iex>
iex> data_01 = %{id: 2, tc: tc_01}
iex> data_02 = %{id: 1, tc: tc_02}
iex> Enum.sort_by([data_02, data_01], &(&1.tc), Timecode) |> inspect()
"[%{id: 2, tc: <01:00:00:00 <23.98 NTSC NDF>>}, %{id: 1, tc: <02:00:00:00 <23.98 NTSC NDF>>}]"

 Anchor for this section

 Summary

 Types

 maybe_round()

 As round/0, but includes :off option to disable rounding entirely. Not all
functions exposed by this module make logical sense without some form of rouding, so
:off will not be accepted by all functions.

 parse_result()

 Type returned by with_seconds/3 and with_frames/3.

 round()

 Valid values for rounding options.

 t()

 Timecode type.

 Functions

 abs(tc)

 Returns the absolute value of tc.

 add(a, b, opts \\ [])

 Adds two timecodoes together using their real-world seconds representation. When the
rates of a and b are not equal, the result will inheret the framerat of a and
be rounded to the seconds representation of the nearest whole-frame at that rate.

 compare(a, b)

 Returns whether a is greater than, equal to, or less than b in terms of real-world
seconds. Compatible with Enum.sort/2.

 div(dividend, divisor, opts \\ [])

 Divides dividend by divisor. The result will inherit the framerate of dividend
and rounded to the nearest whole-frame based on the :round option.

 divrem(dividend, divisor, opts \\ [])

 Divides the total frame count of dividend by divisor and returns both a quotient
and a remainder as Timecode values.

 feet_and_frames(timecode, opts \\ [])

 Returns the number of feet and frames this timecode represents if it were shot on 35mm
4-perf film (16 frames per foot). ex: '5400+13'.

 frames(timecode, opts \\ [])

 Returns the number of frames that would have elapsed between 00:00:00:00 and this
timecode.

 mult(a, b, opts \\ [])

 Scales a by b. The result will inheret the framerat of a and be rounded to the
seconds representation of the nearest whole-frame based on the :round option.

 negate(tc)

 As the kernel -/1 function.

 premiere_ticks(timecode, opts \\ [])

 Returns the number of elapsed ticks this timecode represents in Adobe Premiere Pro.

 rebase(timecode, rate)

 Rebases the timecode to a new framerate.

 rebase!(timecode, new_rate)

 As rebase/2, but raises on error.

 rem(dividend, divisor, opts \\ [])

 Devides the total frame count of dividend by devisor, rounds the quotient down,
and returns the remainder rounded to the nearest frame.

 runtime(timecode, precision \\ 9)

 Runtime Returns the true, real-world runtime of the timecode in HH:MM:SS.FFFFFFFFF
format.

 sections(timecode, opts \\ [])

 The individual sections of a timecode string as i64 values.

 sub(a, b, opts \\ [])

 Subtracts two timecodoes together using their real-world seconds representation. When
the rates of a and b are not equal, the result will inheret the framerat of a
and be rounded to the seconds representation of the nearest whole-frame at that rate.

 timecode(timecode, opts \\ [])

 Returns the the formatted SMPTE timecode: (ex: 01:00:00:00). Drop frame timecode will
be rendered with a ';' sperator before the frames field.

 with_frames(frames, rate)

 Returns a new Timecode with a frames/1 return value equal to the frames arg.

 with_frames!(frames, rate)

 As Timecode.with_frames/3, but raises on error.

 with_premiere_ticks(ticks, rate, opts \\ [])

 Returns a new Timecode with a premiere_ticks/1 return value equal
to the ticks arg.

 with_premiere_ticks!(ticks, rate, opts \\ [])

 As with_premiere_ticks/3, but raises on error.

 with_seconds(seconds, rate, opts \\ [])

 Returns a new Timecode with a Timecode.seconds field value equal to the
seconds arg.

 with_seconds!(seconds, rate, opts \\ [])

 As with_seconds/3, but raises on error.

 with_seconds_round_to_frame(seconds, rate, round)

 Anchor for this section

Types

 Link to this type

 maybe_round()

 View Source

 @type maybe_round() :: round() | :off

As round/0, but includes :off option to disable rounding entirely. Not all
functions exposed by this module make logical sense without some form of rouding, so
:off will not be accepted by all functions.

 Link to this type

 parse_result()

 View Source

 @type parse_result() ::
 {:ok, t()}
 | {:error,
 Vtc.Timecode.ParseError.t()
 | %ArgumentError{__exception__: true, message: term()}}

Type returned by with_seconds/3 and with_frames/3.

 Link to this type

 round()

 View Source

 @type round() :: :closest | :floor | :ceil

Valid values for rounding options.
	:closest: Round the to the closet whole frame.
	:floor: Always round down to the closest whole-frame.
	:ciel: Always round up to the closest whole-frame.

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Timecode{rate: Vtc.Framerate.t(), seconds: Vtc.Utils.Rational.t()}

Timecode type.

 Anchor for this section

Functions

 Link to this function

 abs(tc)

 View Source

 @spec abs(t()) :: t()

Returns the absolute value of tc.

 examples

 Examples

iex> tc = Timecode.with_frames!("-01:00:00:00", Rates.f23_98())
iex> Timecode.abs(tc) |> inspect()
"<01:00:00:00 <23.98 NTSC NDF>>"
iex> tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.abs(tc) |> inspect()
"<01:00:00:00 <23.98 NTSC NDF>>"

 Link to this function

 add(a, b, opts \\ [])

 View Source

 @spec add(
 a :: t(),
 b :: t() | Vtc.Source.Frames.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

Adds two timecodoes together using their real-world seconds representation. When the
rates of a and b are not equal, the result will inheret the framerat of a and
be rounded to the seconds representation of the nearest whole-frame at that rate.
b May be any value that implements the Frames protocol, such as a timecode string,
and will be assumed to be the same framerate as a. This is mostly to support quick
scripting. This function will raise if there is an error parsing b.

 options

 Options

	round: How to round the result with respect to whole-frames when mixing
framerates. Default: :closest.

 examples

 Examples

Two timecodes running at the same rate:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:30:21:17", Rates.f23_98())
iex> Timecode.add(a, b) |> inspect()
"<02:30:21:17 <23.98 NTSC NDF>>"
Two timecodes running at different rates:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("00:00:00:02", Rates.f47_95())
iex> Timecode.add(a, b) |> inspect()
"<01:00:00:01 <23.98 NTSC NDF>>"
Using a timcode and a bare string:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.add(a, "01:30:21:17") |> inspect()
"<02:30:21:17 <23.98 NTSC NDF>>"

 Link to this function

 compare(a, b)

 View Source

 @spec compare(a :: t(), b :: t() | Vtc.Source.Frames.t()) :: :lt | :eq | :gt

Returns whether a is greater than, equal to, or less than b in terms of real-world
seconds. Compatible with Enum.sort/2.
b May be any value that implements the Frames protocol, such as a timecode string,
and will be assumed to be the same framerate as a. This is mostly to support quick
scripting. This function will raise if there is an error parsing b.
This function can be used anyware the standard library expexts a sorter.

 examples

 Examples

Using two timecodes, 01:00:00:00 NTSC is greater than 01:00:00:00 true because it
represents more real-world time.
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f24())
iex> :gt = Timecode.compare(a, b)
Using a timcode and a bare string:
iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> :eq = Timecode.compare(timecode, "01:00:00:00")

 Link to this function

 div(dividend, divisor, opts \\ [])

 View Source

 @spec div(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [{:round, maybe_round()}]
) :: t()

Divides dividend by divisor. The result will inherit the framerate of dividend
and rounded to the nearest whole-frame based on the :round option.

 options

 Options

	round: How to round the result with respect to whole-frame values. Defaults to
:floor to match divmod and the expected meaning of div to mean integer
division in elixir.

 examples

 Examples

iex> dividend = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.div(dividend, 2) |> inspect()
"<00:30:00:00 <23.98 NTSC NDF>>"

iex> dividend = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.div(dividend, 0.5) |> inspect()
"<02:00:00:00 <23.98 NTSC NDF>>"

 Link to this function

 divrem(dividend, divisor, opts \\ [])

 View Source

 @spec divrem(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round_frames: round(), round_remainder: round()]
) :: {t(), t()}

Divides the total frame count of dividend by divisor and returns both a quotient
and a remainder as Timecode values.
The quotient returned is equivalent to Timecode.div/3 with the :round option set
to :floor.

 options

 Options

	round_frames: How to round the frame count before doing the divrem operation.
Default: :closest.

	round_remainder: How to round the remainder frames when a non-whole frame would
be the result. Default: :closest.

 examples

 Examples

iex> dividend = Timecode.with_frames!("01:00:00:01", Rates.f23_98())
iex> Timecode.divrem(dividend, 4) |> inspect()
"{<00:15:00:00 <23.98 NTSC NDF>>, <00:00:00:01 <23.98 NTSC NDF>>}"

 Link to this function

 feet_and_frames(timecode, opts \\ [])

 View Source

 @spec feet_and_frames(t(), opts :: [{:round, round()}]) :: String.t()

Returns the number of feet and frames this timecode represents if it were shot on 35mm
4-perf film (16 frames per foot). ex: '5400+13'.

 options

 Options

	round: How to round the internal frame count before conversion.

 what-it-is

 What it is

On physical film, each foot contains a certain number of frames. For 35mm, 4-perf film
(the most common type on Hollywood movies), this number is 16 frames per foot.
Feet-And-Frames was often used in place of Keycode to quickly reference a frame in the
edit.

 where-you-see-it

 Where you see it

For the most part, feet + frames has died out as a reference, because digital media is
not measured in feet. The most common place it is still used is Studio Sound
Departments. Many Sound Mixers and Designers intuitively think in feet + frames, and it
is often burned into the reference picture for them.
	Telecine.

	Sound turnover reference picture.

	Sound turnover change lists.

 Link to this function

 frames(timecode, opts \\ [])

 View Source

 @spec frames(t(), opts :: [{:round, round()}]) :: integer()

Returns the number of frames that would have elapsed between 00:00:00:00 and this
timecode.

 options

 Options

	round: How to round the resulting frame number.

 what-it-is

 What it is

Frame number / frames count is the number of a frame if the timecode started at
00:00:00:00 and had been running until the current value. A timecode of '00:00:00:10'
has a frame number of 10. A timecode of '01:00:00:00' has a frame number of 86400.

 where-you-see-it

 Where you see it

	Frame-sequence files: 'my_vfx_shot.0086400.exr'

	FCP7XML cut lists:
 <timecode>
 <rate>
 <timebase>24</timebase>
 <ntsc>TRUE</ntsc>
 </rate>
 <string>01:00:00:00</string>
 <frame>86400</frame> <!-- <====THIS LINE-->
 <displayformat>NDF</displayformat>
 </timecode>

 Link to this function

 mult(a, b, opts \\ [])

 View Source

 @spec mult(a :: t(), b :: Ratio.t() | number(), opts :: [{:round, maybe_round()}]) ::
 t()

Scales a by b. The result will inheret the framerat of a and be rounded to the
seconds representation of the nearest whole-frame based on the :round option.

 options

 Options

	round: How to round the result with respect to whole-frame values. Defaults to
:closest.

 examples

 Examples

iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.mult(a, 2) |> inspect()
"<02:00:00:00 <23.98 NTSC NDF>>"

iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.mult(a, 0.5) |> inspect()
"<00:30:00:00 <23.98 NTSC NDF>>"

 Link to this function

 negate(tc)

 View Source

 @spec negate(t()) :: t()

As the kernel -/1 function.
	Makes a positive tc value negative.
	Makes a negative tc value positive.

 examples

 Examples

iex> tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.negate(tc) |> inspect()
"<-01:00:00:00 <23.98 NTSC NDF>>"
iex> tc = Timecode.with_frames!("-01:00:00:00", Rates.f23_98())
iex> Timecode.negate(tc) |> inspect()
"<01:00:00:00 <23.98 NTSC NDF>>"

 Link to this function

 premiere_ticks(timecode, opts \\ [])

 View Source

 @spec premiere_ticks(t(), opts :: [{:round, round()}]) :: integer()

Returns the number of elapsed ticks this timecode represents in Adobe Premiere Pro.

 options

 Options

	round: How to round the resulting ticks.

 what-it-is

 What it is

Internally, Adobe Premiere Pro uses ticks to divide up a second, and keep track of how
far into that second we are. There are 254016000000 ticks in a second, regardless of
framerate in Premiere.

 where-you-see-it

 Where you see it

	Premiere Pro Panel functions and scripts.

	FCP7XML cutlists generated from Premiere:
<clipitem id="clipitem-1">
...
<in>158</in>
<out>1102</out>
<pproTicksIn>1673944272000</pproTicksIn>
<pproTicksOut>11675231568000</pproTicksOut>
...
</clipitem>

 Link to this function

 rebase(timecode, rate)

 View Source

 @spec rebase(t(), Vtc.Framerate.t()) :: parse_result()

Rebases the timecode to a new framerate.
The real-world seconds are recalculated using the same frame count as if they were
being played back at new_rate instead of timecode.rate.

 examples

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> {:ok, rebased} = Timecode.rebase(timecode, Rates.f47_95())
iex> inspect(rebased)
"<00:30:00:00 <47.95 NTSC NDF>>"

 Link to this function

 rebase!(timecode, new_rate)

 View Source

 @spec rebase!(t(), Vtc.Framerate.t()) :: t()

As rebase/2, but raises on error.

 Link to this function

 rem(dividend, divisor, opts \\ [])

 View Source

 @spec rem(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round_frames: round(), round_remainder: round()]
) :: t()

Devides the total frame count of dividend by devisor, rounds the quotient down,
and returns the remainder rounded to the nearest frame.

 options

 Options

	round_frames: How to round the frame count before doing the rem operation.
Default: :closest.

	round_remainder: How to round the remainder frames when a non-whole frame would
be the result.

 examples

 Examples

iex> dividend = Timecode.with_frames!("01:00:00:01", Rates.f23_98())
iex> Timecode.rem(dividend, 4) |> inspect()
"<00:00:00:01 <23.98 NTSC NDF>>"

 Link to this function

 runtime(timecode, precision \\ 9)

 View Source

 @spec runtime(t(), integer()) :: String.t()

Runtime Returns the true, real-world runtime of the timecode in HH:MM:SS.FFFFFFFFF
format.
Arguments
	precision: The number of places to round to. Extra trailing 0's will still be
trimmed.

 what-it-is

 What it is

The formatted version of seconds. It looks like timecode, but with a decimal seconds
value instead of a frame number place.

 where-you-see-it

 Where you see it

• Anywhere real-world time is used.
• FFMPEG commands:
 ffmpeg -ss 00:00:30.5 -i input.mov -t 00:00:10.25 output.mp4

 note

 Note

The true runtime will often diverge from the hours, minutes, and seconds
value of the timecode representation when dealing with non-whole-frame
framerates. Even drop-frame timecode does not continuously adhere 1:1 to the
actual runtime. For instance, <01:00:00;00 <29.97 NTSC DF>> has a true runtime of
'00:59:59.9964', and <01:00:00:00 <23.98 NTSC NDF>> has a true runtime of
'01:00:03.6'

 Link to this function

 sections(timecode, opts \\ [])

 View Source

 @spec sections(t(), opts :: [{:round, round()}]) :: Vtc.Timecode.Sections.t()

The individual sections of a timecode string as i64 values.

 Link to this function

 sub(a, b, opts \\ [])

 View Source

 @spec sub(
 a :: t(),
 b :: t() | Vtc.Source.Frames.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

Subtracts two timecodoes together using their real-world seconds representation. When
the rates of a and b are not equal, the result will inheret the framerat of a
and be rounded to the seconds representation of the nearest whole-frame at that rate.
b May be any value that implements the Frames protocol, such as a timecode string,
and will be assumed to be the same framerate as a. This is mostly to support quick
scripting. This function will raise if there is an error parsing b.

 options

 Options

	round: How to round the result with respect to whole-frames when mixing
framerates. Default: :closest.

 examples

 Examples

Two timecodes running at the same rate:
iex> a = Timecode.with_frames!("01:30:21:17", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.sub(a, b) |> inspect()
"<00:30:21:17 <23.98 NTSC NDF>>"
When b is greater than a, the result is negative:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex> Timecode.sub(a, b) |> inspect()
"<-01:00:00:00 <23.98 NTSC NDF>>"
Two timecodes running at different rates:
iex> a = Timecode.with_frames!("01:00:00:02", Rates.f23_98())
iex> b = Timecode.with_frames!("00:00:00:02", Rates.f47_95())
iex> Timecode.sub(a, b) |> inspect()
"<01:00:00:01 <23.98 NTSC NDF>>"
Using a timcode and a bare string:
iex> a = Timecode.with_frames!("01:30:21:17", Rates.f23_98())
iex> Timecode.sub(a, "01:00:00:00") |> inspect()
"<00:30:21:17 <23.98 NTSC NDF>>"

 Link to this function

 timecode(timecode, opts \\ [])

 View Source

 @spec timecode(t(), opts :: [{:round, round()}]) :: String.t()

Returns the the formatted SMPTE timecode: (ex: 01:00:00:00). Drop frame timecode will
be rendered with a ';' sperator before the frames field.

 options

 Options

	round: How to round the resulting frames field.

 what-it-is

 What it is

Timecode is used as a human-readable way to represent the id of a given frame. It is formatted
to give a rough sense of where to find a frame: {HOURS}:{MINUTES}:{SECONDS}:{FRAME}. For more on
timecode, see Frame.io's
excellent post on the subject.

 where-you-see-it

 Where you see it

Timecode is ubiquitous in video editing, a small sample of places you might see timecode:
	Source and Playback monitors in your favorite NLE.
	Burned into the footage for dailies.
	Cut lists like an EDL.

 Link to this function

 with_frames(frames, rate)

 View Source

 @spec with_frames(Vtc.Source.Frames.t(), Vtc.Framerate.t()) :: parse_result()

Returns a new Timecode with a frames/1 return value equal to the frames arg.

 arguments

 Arguments

	frames: A value which can be represented as a frame number / frame count. Must
implement the Frames protocol.

	rate: Frame-per-second playback value of the timecode.

 options

 Options

	round: How to round the result with regards to whole-frames.

 examples

 Examples

Accepts timecode strings...
iex> Timecode.with_frames("01:00:00:00", Rates.f23_98) |> inspect()
"{:ok, <01:00:00:00 <23.98 NTSC NDF>>}"
... feet+frames strings...
iex> Timecode.with_frames("5400+00", Rates.f23_98) |> inspect()
"{:ok, <01:00:00:00 <23.98 NTSC NDF>>}"
... integers...
iex> Timecode.with_frames(86400, Rates.f23_98) |> inspect()
"{:ok, <01:00:00:00 <23.98 NTSC NDF>>}"
... and integer strings.
iex> Timecode.with_frames("86400", Rates.f23_98) |> inspect()
"{:ok, <01:00:00:00 <23.98 NTSC NDF>>}"

 Link to this function

 with_frames!(frames, rate)

 View Source

 @spec with_frames!(Vtc.Source.Frames.t(), Vtc.Framerate.t()) :: t()

As Timecode.with_frames/3, but raises on error.

 Link to this function

 with_premiere_ticks(ticks, rate, opts \\ [])

 View Source

 @spec with_premiere_ticks(
 Vtc.Source.PremiereTicks.t(),
 Vtc.Framerate.t(),
 opts :: [{:round, maybe_round()}]
) :: parse_result()

Returns a new Timecode with a premiere_ticks/1 return value equal
to the ticks arg.

 arguments

 Arguments

	ticks: Any value that can represent the number of ticks for a given timecode.
Must implement the PremiereTicks protocol.

	rate: Frame-per-second playback value of the timecode.

 options

 Options

	round: How to round the result with regards to whole-frames.

 examples

 Examples

Accetps integers.
iex> Timecode.with_premiere_ticks(254_016_000_000, Rates.f23_98) |> inspect()
"{:ok, <00:00:01:00 <23.98 NTSC NDF>>}"

 Link to this function

 with_premiere_ticks!(ticks, rate, opts \\ [])

 View Source

 @spec with_premiere_ticks!(
 Vtc.Source.PremiereTicks.t(),
 Vtc.Framerate.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

As with_premiere_ticks/3, but raises on error.

 Link to this function

 with_seconds(seconds, rate, opts \\ [])

 View Source

 @spec with_seconds(
 Vtc.Source.Seconds.t(),
 Vtc.Framerate.t(),
 opts :: [{:round, maybe_round()}]
) ::
 parse_result()

Returns a new Timecode with a Timecode.seconds field value equal to the
seconds arg.

 arguments

 Arguments

	seconds: A value which can be represented as a number of real-world seconds.
Must implement the Seconds protocol.

	rate: Frame-per-second playback value of the timecode.

 options

 Options

	round: How to round the result with regards to whole-frames.

 examples

 Examples

Accetps runtime strings...
iex> Timecode.with_seconds("01:00:00.5", Rates.f23_98) |> inspect()
"{:ok, <00:59:56:22 <23.98 NTSC NDF>>}"
... floats...
iex> Timecode.with_seconds(3600.5, Rates.f23_98) |> inspect()
"{:ok, <00:59:56:22 <23.98 NTSC NDF>>}"
... integers...
iex> Timecode.with_seconds(3600, Rates.f23_98) |> inspect()
"{:ok, <00:59:56:10 <23.98 NTSC NDF>>}"
... integer Strings...
iex> Timecode.with_seconds("3600", Rates.f23_98) |> inspect()
"{:ok, <00:59:56:10 <23.98 NTSC NDF>>}"
... and float strings.
iex> Timecode.with_seconds("3600.5", Rates.f23_98) |> inspect()
"{:ok, <00:59:56:22 <23.98 NTSC NDF>>}"

 Link to this function

 with_seconds!(seconds, rate, opts \\ [])

 View Source

 @spec with_seconds!(
 Vtc.Source.Seconds.t(),
 Vtc.Framerate.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

As with_seconds/3, but raises on error.

 Link to this function

 with_seconds_round_to_frame(seconds, rate, round)

 View Source

 @spec with_seconds_round_to_frame(
 Vtc.Utils.Rational.t(),
 Vtc.Framerate.t(),
 maybe_round()
) ::
 Vtc.Utils.Rational.t()

 Vtc.Timecode.Sections - vtc v0.4.0

Vtc.Timecode.Sections

Holds the individual sections of a timecode for formatting / manipulation.
Struct Fields
	negative: Whether the timecode is less than 0.
	hours: Hours place value.
	minutes: Minutes place value. This is not the toal minutes, but the minutes added
to hours to get a final time.
	seconds: Seconds place value. As minutes, remainder value rather than total
value.
	frames: Frames place value. As seconds, remainder value rather than total
value.

 Anchor for this section

 Summary

 Types

 t()

 Struct type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Timecode.Sections{
 frames: integer(),
 hours: integer(),
 minutes: integer(),
 negative?: boolean(),
 seconds: integer()
}

Struct type.

 Vtc.Utils.Rational - vtc v0.4.0

Vtc.Utils.Rational

Utilities for working with Ratio vales.

 Anchor for this section

 Summary

 Types

 t()

 The Ratio module will often convert itself to an integer value if the result would be
a whole number, but otherwise return a %Ratio{} struct.

 Functions

 divrem(x, divisor)

 Does the divrem operation on a rational vale, returns a
{whole_dividend, rational_remainder} tuple.

 round(x, method \\ :closest)

 Rounds x based on method.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: Ratio.t() | integer()

The Ratio module will often convert itself to an integer value if the result would be
a whole number, but otherwise return a %Ratio{} struct.
This type can be used when working with such a value.

 Anchor for this section

Functions

 Link to this function

 divrem(x, divisor)

 View Source

 @spec divrem(t(), t()) :: {integer(), t()}

Does the divrem operation on a rational vale, returns a
{whole_dividend, rational_remainder} tuple.

 Link to this function

 round(x, method \\ :closest)

 View Source

 @spec round(t(), :closest | :floor | :ceil) :: integer()

 @spec round(t(), :off) :: t()

Rounds x based on method.

 arguments

 Arguments

	x: The Rational value to round.

	method: Rounding strategy. Defaults to :closest.
	:closest: Round the to the closet whole frame, rounding up when fractional
remainder is equal to 1/2.

	:floor: Always round down to the closest whole-frame.

	:ciel: Always round up to the closest whole-frame.

	:off: Pass value through without rounding.

 Vtc.Framerate.ParseError - vtc v0.4.0

Vtc.Framerate.ParseError exception

Exception returned when a framerate cannot be parsed.
Struct Fields
	reason: The reason the error occurred.

Failure Reasons
The following values can appear in the :reason fields:
	:bad_drop_rate: Returned when the playback speed of a framerate with an ntsc
 value of :drop is not divisible by 3000/1001 (29.97), for more on why drop-frame
 framerates must be a multiple of 29.97, see:
 https://www.davidheidelberger.com/2010/06/10/drop-frame-timecode/

	:invalid_ntsc: Returned when the ntsc value is not one of the allowed atom
values.

	:unrecognized_format: Returned when a string value is not a recognized format.

	:imprecise - Returned when a float was passed with an NTSC value of nil.
Without the ability to round to the nearest valid NTSC value, floats are not
precise enough to build an arbitrary framerate.

 Anchor for this section

 Summary

 Types

 t()

 Type of ParseError

 Functions

 message(map)

 Returns a message for the error reason.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framerate.ParseError{
 __exception__: true,
 reason: :bad_drop_rate | :invalid_ntsc | :unrecognized_format | :imprecise
}

Type of ParseError

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

 @spec message(t()) :: String.t()

Returns a message for the error reason.

 Vtc.Timecode.ParseError - vtc v0.4.0

Vtc.Timecode.ParseError exception

Exception returned when there is an error parsing a Timecode value.
Struct Fields
	reason: The reason the error occurred.

Failure Reasons
The following values can appear in the :reason fields:
	:unrecognized_format: Returned when a string value is not a recognized
 timecode, runtime, etc. format.

	:bad_drop_frames: The field value cannot exist in properly formatted
 drop-frame timecode.

 Anchor for this section

 Summary

 Types

 t()

 Type of Timecode.ParseError

 Functions

 message(map)

 Returns a message for the error reason.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Timecode.ParseError{
 __exception__: true,
 reason: :unrecognized_format | :bad_drop_frames
}

Type of Timecode.ParseError

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

 @spec message(t()) :: String.t()

Returns a message for the error reason.

OEBPS/dist/epub-75RCTLK3.js
