

 vtc

 v0.9.0

 [image: Logo]

 Table of contents

 	vtc-ex

 	Quickstart

 	Timecode: A History

 	Modules

 	Vtc.Framerate

 	Vtc.Range

 	Vtc.Timecode

 	Vtc.FilmFormat

 	Vtc.Rates

 	Vtc.Timecode.Sections

 	Vtc.Source.Frames.FeetAndFrames

 	Vtc.Source.Frames.TimecodeStr

 	Vtc.Source.Seconds.PremiereTicks

 	Vtc.Source.Seconds.RuntimeStr

 	Vtc.Source.Frames

 	Vtc.Source.Seconds

 	Vtc.Framerate.ParseError

 	Vtc.Timecode.ParseError

vtc-ex

 Quickstart - vtc v0.9.0

Quickstart

Let's take a little peek at what Vtc can do, for you! Note that printing calls like
inspect/1 have been elided from these examples.
These are the three main modules that make up the Vtc API:
alias Vtc.Framerate
alias Vtc.Rates
alias Vtc.Timecode
Let's start with a 23.98 NTSC timecode. We use the with_frames constructor here
since timecode is really a human-readable way to represent frame count. The Vtc.Rates
module defines a number of Vtc.Framerate values found in the wild. Most common, by
far, is 23.98 NTSC, which is shorthand for video footage running at 24000/1001
frames-per-second.
iex> tc = Timecode.with_frames!("17:23:13:02", Rates.f23_98())
"<17:23:00:02 <23.98 NTSC>>"
Once we have a Vtc.Timecode struct, we can render all sorts of commonly used timecode
representations, like timecode itself.
Unit Conversions
timecode/2
iex> Timecode.timecode(tc)
"17:23:00:02"
frames/2
iex> Timecode.frames(tc)
1501922
seconds
iex> tc.seconds
"Ratio.new(751711961, 12000)"
runtime/2
iex> Timecode.runtime(tc, 3)
"17:24:15.676"
premiere_ticks/2
iex> Timecode.premiere_ticks(tc)
15915544300656000
physical film length in feet_and_frames/2
iex> Timecode.feet_and_frames(tc)
"<93889+10 :ff35mm_4perf>"
Framerate Information
ntsc
iex> tc.rate.ntsc
:non_drop
playback speed
iex> tc.rate.playback
"Ratio.new(24000, 1001)"
timebase/1 logical speed
iex> Framerate.timebase(tc.rate)
24
.
Parsing
Parsing is flexible, we can pass in partial or maformed timecode.
In Vtc, there are only two ways to parse timecode, either with
Timecode.with_frames/2 for formats that represnet a
discrete frame count, or Timecode.with_seconds/2 for
formats that represent a number of real-world, elapsed seconds were those frames to be
played back at the timecode's rate.
Examples
Frames Formats
timecode
iex> Timecode.with_frames!("3:12", Rates.f23_98())
"<03:00:00:12 <23.98 NTSC>>"
malformed timecode
iex> Timecode.with_frames!("3:12", Rates.f23_98())
"<03:00:00:12 <23.98 NTSC>>"
frame count
iex> Timecode.with_frames!(24, Rates.f23_98())
"<00:00:01:00 <23.98 NTSC>>"
physical film length in feet+frames
iex> Timecode.with_frames!("1+08", Rates.f23_98())
"<00:00:01:00 <23.98 NTSC>>"
Seconds Formats
seconds
iex> Timecode.with_seconds!(1.5, Rates.f23_98())
"<00:05:23:04 <23.98 NTSC>>"
runtime
iex> Timecode.with_seconds!("00:05:23.5", Rates.f23_98())
"<00:05:23:04 <23.98 NTSC>>"
malformed runtime
iex> Timecode.with_seconds!("5:23.5", Rates.f23_98())
"<00:05:23:04 <23.98 NTSC>>"
premiere ticks
iex> input = %PremiereTicks{in: 254_016_000_000}
iex> Timecode.with_seconds!(input, Rates.f23_98())
"<00:00:01:00 <23.98 NTSC>>"
Other film formats
By default, feet+frames is interpreted as 35mm, 4perf film. You can use the
FeetAndFrames struct to parse other film formats.
16mm feet + frames
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> {:ok, feet_and_frames} = FeetAndFrames.from_string("5400+00", film_format: :ff16mm)
iex>
iex> Timecode.with_frames(feet_and_frames, Rates.f23_98())
"{:ok, <01:15:00:00 <23.98 NTSC>>}"
Arithmatic
.
add/3
iex> a = Timecode.with_frames!("18:23:13:02", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> tc = Timecode.add(a, b)
"<18:23:13:02 <23.98 NTSC>>"
add/3 with string
iex> Timecode.add(tc, "00:10:00:00")
"<18:33:13:02 <23.98 NTSC>>"
add/3 with ints means adding frames
iex> Timecode.add(tc, 38)
"<18:33:14:16 <23.98 NTSC>>"
sub/3
iex> Timecode.sub(tc, "01:00:00:00")
"<17:33:14:16 <23.98 NTSC>>"
.
minus/1
iex> Timecode.minus(tc)
"<-17:33:14:16 <23.98 NTSC>>"
abs/1
iex> Timecode.abs(tc)
"<17:33:14:16 <23.98 NTSC>>"
mult/3
iex> Timecode.mult(tc, 2)
"<35:06:29:08 <23.98 NTSC>>"
div/3
iex> Timecode.div(tc, 2)
"<17:33:14:16 <23.98 NTSC>>"
divrem/3
iex> {dividend, remainder} = Timecode.divrem(tc, 3)
iex> {dividend, remainder}
"{<05:51:04:21 <23.98 NTSC>>, <00:00:00:01 <23.98 NTSC>>}"
Eval
Special Timecode.eval do blocks let us use native operators.
eval/2
iex> require Timecode
iex>
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("00:30:00:00", Rates.f23_98())
iex> c = Timecode.with_frames!("00:15:00:00", Rates.f23_98())
iex>
iex> Timecode.eval do
iex> a + b * 2 - c
iex> end
"<01:45:00:00 <23.98 NTSC>>"
Or even do some quick scratch calculations in a given framerate:
scratch calculation
iex> Timecode.eval at: 23.98 do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
"<01:45:00:00 <23.98 NTSC>>"
Framerates
We can make dropframe timecode for 29.97 or 59.94 using one of the pre-set
framerates.
drop-frame
iex> Timecode.with_frames!(15_000, Rates.f29_97_df())
"<00:08:20;18 <29.97 NTSC DF>>"
We can make new timecodes with arbitrary framerates if we want.
non-ntsc
iex> Timecode.with_frames!("01:00:00:00", Framerate.new!(240, nil))
"<01:00:00:00 <240.0 fps>>"
Using :non_drop indicates this is an NTSC timecode, and will convert whole-number
timebases to the correct speed.
non-drop coersion
iex> Timecode.with_frames!("01:00:00:00", Framerate.new!(48, :non_drop))
"<01:00:00:00 <47.95 NTSC>>"
We can also rebase the frames using a new framerate!
rebase
iex> Timecode.rebase(tc, Rates.f23_98())
"<02:00:00:00 <23.98 NTSC>>"
Comparisons and Sorting
It's easy to compare two timecodes.
compare/2
iex> a = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> Timecode.compare(a, b)
:lt
There a host of other specific comparison functions like eq?/2,
gt?/2 that return
booleans.
Specific comparison
iex> Timecode.lt?(a, b)
true
Like arithmatic, we can compare directly with a timecode string:
compare/2 with string
iex> Timecode.compare(a, "00:59:00:00")
:gt
Sorting is suported through the compare/2 function.
sort through Timecode
iex> tc_01 = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> tc_02 = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> data_01 = %{id: 2, tc: tc_01}
iex> data_02 = %{id: 1, tc: tc_02}
iex>
iex> Enum.sort_by([data_02, data_01], & &1.tc, Timecode)
"[%{id: 2, tc: <01:00:00:00 <23.98 NTSC>>}, %{id: 1, tc: <02:00:00:00 <23.98 NTSC>>}]"
Ranges
Range helps with common operations using in/out points. Let's set two of
those up.
new/3
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a_out = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> a = Range.new!(a_in, a_out)
"<01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>"
By default, ranges are exclusive, meaning the out point represents the boundary
where the clip ends, not the final frame that is part of the video clip. This way
will be familiar to Premiere and Final Cut editors. But fear not, our Avid bretheren,
inclusive out points like you are used to are available as well!
Just like addition, we can write a bare timecode string as the out value if we want.
new/3 with string
iex> b_in = Timecode.with_frames!("01:45:00:00", Rates.f23_98())
iex>
iex> b = Range.new!(b_in, "02:30:00:00")
"<01:45:00:00 - 02:30:00:00 :exclusive <23.98 NTSC>>"
We can get the duration of a range.
duration/1
iex> Range.duration(b)
iex> "<00:45:00:00 <23.98 NTSC>>"
... see if a specific timecode is in a range:
contains?/2
iex> Range.contains?(b, "02:00:00:00")
iex> true
... or see if it overlaps with another range.
overlaps?/2
iex> Range.overlaps?(a, b)
iex> true
We can even get the overlapping area as its own range!
intersection/2
iex> Range.intersection!(a, b)
"<01:45:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>"

 Timecode: A History - vtc v0.9.0

Timecode: A History

But first: what is timecode?
If you're already familiar with timecode, it's history, and it's flavors, feel free to
skip this section.
Back in the days of film, a running strip of numbers ran along the edge of the film
stock to uniquely identify each frame, called
keycode
Keycode was essential to the film editing process. The raw negative of a film is
irreplaceable: you loose quality each time you make a copy. Editing film is necessarily
a destructive process, and
often required multiple iterations. It would be just a tad nerve-wracking to take a pair
of scissors and some glue to the one-of-a-kind film reels straight out of the camera
on set, then running it over and over through a flatbed.
To avoid potential disaster, editors made their cut of the film using copies of the
raw negative, called a work print, allowing
the editor to work without fear of sinking a project from slicing, dicing, and wearing
at the film.
When the edit was complete, it was necessary to know exactly where the edits had been
made, so it could be recreated with the raw negative for finishing. A cut list would
be written out, with the exact reels and keycodes for every cut, and would be used to
make an exact duplicate of the editor's work print with the mint condition raw negative.
In video and digital filmmaking, the same approach is used. Massive RAW files from a
RED, ARRI, Sony, or other cinema camera are rendered down to more manageable files an
Editor's machine won't choke on. Once the edit is complete, the raw files are
re-assembled using a digital cutlist on a powerful machine for finishing out the film.
In film, we referenced keycode to know exactly what frame was being displayed on
screen at any given time. In digital video, we reference the timecode of a given
frame.
For a technical deep-dive into the many flavors of timecode, check out
Frame.io's
excellent blogpost on
the subject.

 Vtc.Framerate - vtc v0.9.0

Vtc.Framerate

The rate at which a video file frames are played back.
Framerate is measured in frames-per-second (24/1 = 24 frames-per-second).
Struct Fields
	playback: The rational representation of the real-world playback speed as a
fraction in frames-per-second.

	ntsc: Atom representing which, if any, NTSC convention this framerate adheres to.

Playback vs Timebase
For NTSC timecode, the timebase always runs at a whole number of frames-per-second,
which the timecode pretends in the playback speed of the Media. This makes timecode
string calculations clean and accurate, rather than having partial frames at second
and minute boundaries.
So for footage shot at 23.98 NTSC, Timecode is caculated as-if the footage were
running at 24fps, which Vtc calls the 'timebase'.

 Anchor for this section

 Summary

 Types

 new_opts()

 Options for new/2 and new!/2.

 ntsc()

 Enum of Ntsc types.

 parse_result()

 Type returned by new/2

 t()

 Type of Framerate

 Parse

 new(rate, opts \\ [])

 Creates a new Framerate with a playback speed or timebase.

 new!(rate, opts \\ [])

 As new/2 but raises an error instead.

 Inspect

 ntsc?(rate)

 Returns true if the value represents and NTSC framerate.

 timebase(framerate)

 The rational representation of the timecode's 'logical speed'.

 Anchor for this section

Types

 Link to this type

 new_opts()

 View Source

 @type new_opts() :: [ntsc: ntsc(), coerce_ntsc?: boolean(), invert?: boolean()]

Options for new/2 and new!/2.

 Link to this type

 ntsc()

 View Source

 @type ntsc() :: :non_drop | :drop | nil

Enum of Ntsc types.

 values

 Values

	:non_drop A non-drop NTSC value.
	:drop A drop-frame ntsc value.
	nil: Not an NTSC value

For more information on NTSC standards and framerate conventions, see
Frame.io's
blogpost on the subject.

 Link to this type

 parse_result()

 View Source

 @type parse_result() :: {:ok, t()} | {:error, Vtc.Framerate.ParseError.t()}

Type returned by new/2

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framerate{ntsc: ntsc(), playback: Ratio.t()}

Type of Framerate

 Anchor for this section

Parse

 Link to this function

 new(rate, opts \\ [])

 View Source

 @spec new(Ratio.t() | number() | String.t(), new_opts()) :: parse_result()

Creates a new Framerate with a playback speed or timebase.

 arguments

 Arguments

	rate: Either the playback rate or timebase. For NTSC framerates, the value will
be rounded to the nearest correct value.

 options

 Options

	ntsc: Atom representing the which (or whether an) NTSC standard is being used.
Default: :non-drop.

	invert?: If true, the resulting rational rate value will be flipped so that
1/24 becomes 24/1. This can be helpeful when you are parsing a rate given in
seconds-per-frame rather than frames-per-second. Default: false.

	coerce_ntsc?: If true -- and ntsc is non-nil -- values will be coerced to the
nearest valid NTSC rate. So 24 would be coerced to 24000/1001, as would
23.98. This option must be set to true when ntsc is non-nil and a float is
passed. Default: false

Float Precision
Only floats representing a whole number can be passed for non-NTSC rates, as there
is no fully precise way to convert fractional floats to rational values.

 Link to this function

 new!(rate, opts \\ [])

 View Source

 @spec new!(Ratio.t() | number() | String.t(), new_opts()) :: t()

As new/2 but raises an error instead.

 Anchor for this section

Inspect

 Link to this function

 ntsc?(rate)

 View Source

 @spec ntsc?(t()) :: boolean()

Returns true if the value represents and NTSC framerate.
Will return true on a Framerate with an :ntsc value of :non_drop and :drop.

 Link to this function

 timebase(framerate)

 View Source

 @spec timebase(t()) :: Ratio.t()

The rational representation of the timecode's 'logical speed'.
Returned value is in frames-per-second.

 Vtc.Range - vtc v0.9.0

Vtc.Range

Holds a timecode range.
Struct Fields
	in: Start TC. Must be less than or equal to out.
	out: End TC. Must be greater than or equal to in.
	inclusive: See below for more information. Default: false

Inclusive vs. Exclusive Ranges
Inclusive ranges treat the out timecode as the last visible frame of a piece of
footage. This style of tc range is most often associated with AVID.
Exclusive timecode ranges treat the out timecode as the boundary where the range
ends. This style of tc range is most often associated with Final Cut and Premiere.
In mathematical notation, inclusive ranges are [in, out], while exclusive ranges are
[in, out).

 Anchor for this section

 Summary

 Types

 out_type()

 Whether the end point should be treated as the Range's boundary (:exclusive), or its
last element (:inclusive).

 t()

 Range struct type.

 Parse

 new(tc_in, tc_out, opts \\ [])

 Creates a new Range.

 new!(tc_in, tc_out, opts \\ [])

 As new/3, but raises on error.

 with_duration(tc_in, duration, opts \\ [])

 Returns a range with an :in value of tc_in and a duration of duration.

 with_duration!(tc_in, duration, opts \\ [])

 As with_duration/3, but raises on error.

 Manipulate

 with_exclusive_out(range)

 Adjusts range to have an exclusive out timecode.

 with_inclusive_out(range)

 Adjusts range to have an inclusive out timecode.

 Inspect

 duration(range)

 Returns the duration in Timecode of range.

 Compare

 contains?(range, timecode)

 Returns true if range contains timecode. timecode may be any value that
implements Frames.

 intersection(a, b)

 Returns the the range where a and b overlap/intersect.

 intersection!(a, b)

 As intersection, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is no overlap.

 overlaps?(a, b)

 Returns true if there is overlap between a and b.

 separation(a, b)

 Returns the range between two, non-overlapping ranges.

 separation!(a, b)

 As separation, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is overlap.

 Anchor for this section

Types

 Link to this type

 out_type()

 View Source

 @type out_type() :: :inclusive | :exclusive

Whether the end point should be treated as the Range's boundary (:exclusive), or its
last element (:inclusive).

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Range{
 in: Vtc.Timecode.t(),
 out: Vtc.Timecode.t(),
 out_type: out_type()
}

Range struct type.

 Anchor for this section

Parse

 Link to this function

 new(tc_in, tc_out, opts \\ [])

 View Source

 @spec new(
 in_tc :: Vtc.Timecode.t(),
 out_tc :: Vtc.Timecode.t() | Vtc.Source.Frames.t(),
 opts :: [{:out_type, out_type()}]
) :: {:ok, t()} | {:error, Exception.t() | Vtc.Timecode.ParseError.t()}

Creates a new Range.
out_tc may be a Timecode value for any value that implements the
Frames protocol.
Returns an error if the resulting range would not have a duration greater or eual to
0, or if tc_in and tc_out do not have the same rate.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> tc_out = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> result = Range.new(tc_in, tc_out)
iex> inspect(result)
"{:ok, <01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>}"
Using a timecode string as b:
iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.new(tc_in, "02:00:00:00")
iex> inspect(result)
"{:ok, <01:00:00:00 - 02:00:00:00 :exclusive <23.98 NTSC>>}"
Making a range with an inclusive out:
iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.new(tc_in, "02:00:00:00", out_type: :inclusive)
iex> inspect(result)
"{:ok, <01:00:00:00 - 02:00:00:00 :inclusive <23.98 NTSC>>}"

 Link to this function

 new!(tc_in, tc_out, opts \\ [])

 View Source

 @spec new!(Vtc.Timecode.t(), Vtc.Timecode.t(), opts :: [{:out_type, out_type()}]) ::
 t()

As new/3, but raises on error.

 Link to this function

 with_duration(tc_in, duration, opts \\ [])

 View Source

 @spec with_duration(
 tc_in :: Vtc.Timecode.t(),
 duration :: Vtc.Timecode.t() | Vtc.Source.Frames.t(),
 opts :: [{:out_type, out_type()}]
) :: {:ok, t()} | {:error, Exception.t() | Vtc.Timecode.ParseError.t()}

Returns a range with an :in value of tc_in and a duration of duration.
duration may be a Timecode value for any value that implements the
Frames protocol. Returns an error if duration is less than
0 seconds or if tc_in and tc_out do not have the same rate.

 examples

 Examples

iex> start_tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> duration = Timecode.with_frames!("00:30:00:00", Rates.f23_98())
iex>
iex> result = Range.with_duration(start_tc, duration)
iex> inspect(result)
"{:ok, <01:00:00:00 - 01:30:00:00 :exclusive <23.98 NTSC>>}"
Using a timecode string as b:
iex> start_tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.with_duration(start_tc, "00:30:00:00")
iex> inspect(result)
"{:ok, <01:00:00:00 - 01:30:00:00 :exclusive <23.98 NTSC>>}"
Making a range with an inclusive out:
iex> start_tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Range.with_duration(start_tc, "00:30:00:00", out_type: :inclusive)
iex> inspect(result)
"{:ok, <01:00:00:00 - 01:29:59:23 :inclusive <23.98 NTSC>>}"

 Link to this function

 with_duration!(tc_in, duration, opts \\ [])

 View Source

 @spec with_duration!(
 Vtc.Timecode.t(),
 Vtc.Timecode.t(),
 opts :: [{:out_type, out_type()}]
) :: t()

As with_duration/3, but raises on error.

 Anchor for this section

Manipulate

 Link to this function

 with_exclusive_out(range)

 View Source

 @spec with_exclusive_out(t()) :: t()

Adjusts range to have an exclusive out timecode.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> result = Range.with_exclusive_out(range)
iex> inspect(result)
"<01:00:00:00 - 02:00:00:01 :exclusive <23.98 NTSC>>"

 Link to this function

 with_inclusive_out(range)

 View Source

 @spec with_inclusive_out(t()) :: t()

Adjusts range to have an inclusive out timecode.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "02:00:00:00")
iex>
iex> result = Range.with_inclusive_out(range)
iex> inspect(result)
"<01:00:00:00 - 01:59:59:23 :inclusive <23.98 NTSC>>"

 Anchor for this section

Inspect

 Link to this function

 duration(range)

 View Source

 @spec duration(t()) :: Vtc.Timecode.t()

Returns the duration in Timecode of range.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "01:30:00:00")
iex>
iex> result = Range.duration(range)
iex> inspect(result)
"<00:30:00:00 <23.98 NTSC>>"

 Anchor for this section

Compare

 Link to this function

 contains?(range, timecode)

 View Source

 @spec contains?(t(), Vtc.Timecode.t() | Vtc.Source.Frames.t()) :: boolean()

Returns true if range contains timecode. timecode may be any value that
implements Frames.

 examples

 Examples

iex> tc_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> range = Range.new!(tc_in, "01:30:00:00")
iex>
iex> Range.contains?(range, "01:10:00:00")
true
iex> Range.contains?(range, "01:40:00:00")
false

 Link to this function

 intersection(a, b)

 View Source

 @spec intersection(t(), t()) :: {:ok, t()} | {:error, :none}

Returns the the range where a and b overlap/intersect.
Returns nil if the two ranges do not intersect.
a and b do not have to have matching :out_type settings, but the result will
inherit a's setting.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.intersection(a, b)
iex> inspect(result)
"{:ok, <01:50:00:00 - 02:00:00:00 :inclusive <23.98 NTSC>>}"
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.intersection(a, b)
{:error, :none}

 Link to this function

 intersection!(a, b)

 View Source

 @spec intersection!(t(), t()) :: t()

As intersection, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is no overlap.
This returned range inherets the framerate and out_type from a.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.intersection!(a, b)
iex> inspect(result)
"<00:00:00:00 - -00:00:00:01 :inclusive <23.98 NTSC>>"

 Link to this function

 overlaps?(a, b)

 View Source

 @spec overlaps?(t(), t()) :: boolean()

Returns true if there is overlap between a and b.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.overlaps?(a, b)
true
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex> Range.overlaps?(a, b)
false

 Link to this function

 separation(a, b)

 View Source

 @spec separation(t(), t()) :: {:ok, t()} | {:error, :none}

Returns the range between two, non-overlapping ranges.
Returns nil if the two ranges are not separated.
a and b do not have to have matching :out_type settings, but the result will
inherit a's setting.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("02:10:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "03:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.separation(a, b)
iex> inspect(result)
"{:ok, <02:00:00:01 - 02:09:59:23 :inclusive <23.98 NTSC>>}"
iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex> Range.separation(a, b)
{:error, :none}

 Link to this function

 separation!(a, b)

 View Source

 @spec separation!(t(), t()) :: t()

As separation, but returns a Range from 00:00:00:00 - 00:00:00:00 when there
is overlap.
This returned range inherets the framerate and out_type from a.

 examples

 Examples

iex> a_in = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> a = Range.new!(a_in, "02:00:00:00", out_type: :inclusive)
iex>
iex> b_in = Timecode.with_frames!("01:50:00:00", Rates.f23_98())
iex> b = Range.new!(b_in, "02:30:00:00", out_type: :inclusive)
iex>
iex> result = Range.separation!(a, b)
iex> inspect(result)
"<00:00:00:00 - -00:00:00:01 :inclusive <23.98 NTSC>>"

 Vtc.Timecode - vtc v0.9.0

Vtc.Timecode

Represents a particular frame in a video clip.
New Timecode values are created with the with_seconds/3 and with_frames/2, and
other function prefaced by with_*.
Struct Fields
	seconds: The real-world seconds elapsed since 01:00:00:00 as a rational value.
(Note: The Ratio module automatically will coerce itself to an integer whenever
possible, so this value may be an integer when exactly a whole-second value).

	rate: the Framerate of the timecode.

Sorting Support
Timecode implements compare/2, and as such, can be used wherever
the standard library calls for a Sorter module. Let's see it in action:
iex> tc_01 = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> tc_02 = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> sorted = Enum.sort([tc_02, tc_01], Timecode)
iex> inspect(sorted)
"[<01:00:00:00 <23.98 NTSC>>, <02:00:00:00 <23.98 NTSC>>]"
iex> sorted = Enum.sort([tc_01, tc_02], {:desc, Timecode})
iex> inspect(sorted)
"[<02:00:00:00 <23.98 NTSC>>, <01:00:00:00 <23.98 NTSC>>]"
iex> max = Enum.max([tc_02, tc_01], Timecode)
iex> inspect(max)
"<02:00:00:00 <23.98 NTSC>>"
iex> min = Enum.min([tc_02, tc_01], Timecode)
iex> inspect(min)
"<01:00:00:00 <23.98 NTSC>>"
iex> data_01 = %{id: 2, tc: tc_01}
iex> data_02 = %{id: 1, tc: tc_02}
iex> sorted = Enum.sort_by([data_02, data_01], & &1.tc, Timecode)
iex> inspect(sorted)
"[%{id: 2, tc: <01:00:00:00 <23.98 NTSC>>}, %{id: 1, tc: <02:00:00:00 <23.98 NTSC>>}]"
Arithmatic Autocasting
For operators that take two timecode values, likt add/3 or compare/2, as long as
one argument is a Timecode value, a or b May be any value that
implements the Frames protocol, such as a timecode string, and
will be assumed to be the same framerate as the other. This is mostly to support quick
scripting.
If parsing the value fails during casting, the function raises a
Vtc.Timecode.ParseError.

 Anchor for this section

 Summary

 Types

 maybe_round()

 As round/0, but includes :off option to disable rounding entirely. Not all
functions exposed by this module make logical sense without some form of rouding, so
:off will not be accepted by all functions.

 parse_result()

 Type returned by with_seconds/3 and with_frames/3.

 round()

 Valid values for rounding options.

 t()

 Timecode type.

 Parse

 with_frames(frames, rate)

 Returns a new Timecode with a frames/2 return value equal to the
frames arg.

 with_frames!(frames, rate)

 As Timecode.with_frames/3, but raises on error.

 with_seconds(seconds, rate, opts \\ [])

 Returns a new Timecode with a :seconds field value equal to the
seconds arg.

 with_seconds!(seconds, rate, opts \\ [])

 As with_seconds/3, but raises on error.

 Manipulate

 rebase(timecode, rate)

 Rebases timecode to a new framerate.

 rebase!(timecode, new_rate)

 As rebase/2, but raises on error.

 Compare

 compare(a, b)

 Comapare the values of a and b.

 eq?(a, b)

 Returns true if a is eqaul to b.

 gt?(a, b)

 Returns true if a is greater than b.

 gte?(a, b)

 Returns true if a is greater than or eqaul to b.

 lt?(a, b)

 Returns true if a is less than b.

 lte?(a, b)

 Returns true if a is less than or equal to b.

 Arithmatic

 abs(tc)

 Returns the absolute value of tc.

 add(a, b, opts \\ [])

 Add two timecodes.

 div(dividend, divisor, opts \\ [])

 Divides dividend by divisor.

 divrem(dividend, divisor, opts \\ [])

 Divides the total frame count of dividend by divisor and returns both a quotient
and a remainder.

 eval(opts \\ [], body)

 Evalutes timecode mathematical expressions in a do block.

 minus(tc)

 As the kernel -/1 function.

 mult(a, b, opts \\ [])

 Scales a by b.

 rem(dividend, divisor, opts \\ [])

 Devides the total frame count of dividend by devisor, and returns the remainder.

 sub(a, b, opts \\ [])

 Subtract b from a.

 Convert

 feet_and_frames(timecode, opts \\ [])

 Returns the number of physical film feet and frames timecode represents if shot
on film.

 frames(timecode, opts \\ [])

 Returns the number of frames that would have elapsed between 00:00:00:00 and
timecode.

 premiere_ticks(timecode, opts \\ [])

 Returns the number of elapsed ticks timecode represents in Adobe Premiere Pro.

 runtime(timecode, opts \\ [])

 Runtime Returns the true, real-world runtime of timecode in HH:MM:SS.FFFFFFFFF
format.

 sections(timecode, opts \\ [])

 The individual sections of a timecode string as i64 values.

 timecode(timecode, opts \\ [])

 Returns the the formatted SMPTE timecode

 Anchor for this section

Types

 Link to this type

 maybe_round()

 View Source

 @type maybe_round() :: round() | :off

As round/0, but includes :off option to disable rounding entirely. Not all
functions exposed by this module make logical sense without some form of rouding, so
:off will not be accepted by all functions.

 Link to this type

 parse_result()

 View Source

 @type parse_result() ::
 {:ok, t()}
 | {:error,
 Vtc.Timecode.ParseError.t()
 | %ArgumentError{__exception__: true, message: term()}}

Type returned by with_seconds/3 and with_frames/3.

 Link to this type

 round()

 View Source

 @type round() :: :closest | :floor | :ceil

Valid values for rounding options.
	:closest: Round the to the closet whole frame.
	:floor: Always round down to the closest whole-frame.
	:ciel: Always round up to the closest whole-frame.

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Timecode{rate: Vtc.Framerate.t(), seconds: Ratio.t()}

Timecode type.

 Anchor for this section

Parse

 Link to this function

 with_frames(frames, rate)

 View Source

 @spec with_frames(Vtc.Source.Frames.t(), Vtc.Framerate.t()) :: parse_result()

Returns a new Timecode with a frames/2 return value equal to the
frames arg.

 arguments

 Arguments

	frames: A value which can be represented as a frame number / frame count. Must
implement the Frames protocol.

	rate: Frame-per-second playback value of the timecode.

 options

 Options

	round: How to round the result with regards to whole-frames.

 examples

 Examples

Accepts timecode strings...
iex> result = Timecode.with_frames("01:00:00:00", Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"
... feet+frames strings...
iex> result = Timecode.with_frames("5400+00", Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"
By default, feet+frames is interpreted as 35mm, 4perf film. You can use the
FeetAndFrames struct to parse other film formats:
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> {:ok, feet_and_frames} = FeetAndFrames.from_string("5400+00", film_format: :ff16mm)
iex>
iex> result = Timecode.with_frames(feet_and_frames, Rates.f23_98())
iex> inspect(result)
"{:ok, <01:15:00:00 <23.98 NTSC>>}"
... integers...
iex> result = Timecode.with_frames(86_400, Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"
... and integer strings.
iex> result = Timecode.with_frames("86400", Rates.f23_98())
iex> inspect(result)
"{:ok, <01:00:00:00 <23.98 NTSC>>}"

 Link to this function

 with_frames!(frames, rate)

 View Source

 @spec with_frames!(Vtc.Source.Frames.t(), Vtc.Framerate.t()) :: t()

As Timecode.with_frames/3, but raises on error.

 Link to this function

 with_seconds(seconds, rate, opts \\ [])

 View Source

 @spec with_seconds(
 Vtc.Source.Seconds.t(),
 Vtc.Framerate.t(),
 opts :: [{:round, maybe_round()}]
) ::
 parse_result()

Returns a new Timecode with a :seconds field value equal to the
seconds arg.

 arguments

 Arguments

	seconds: A value which can be represented as a number of real-world seconds.
Must implement the Seconds protocol.

	rate: Frame-per-second playback value of the timecode.

 options

 Options

	round: How to round the result with regards to whole-frames.

 examples

 Examples

Accetps runtime strings...
iex> result = Timecode.with_seconds("01:00:00.5", Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:22 <23.98 NTSC>>}"
... floats...
iex> result = Timecode.with_seconds(3600.5, Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:22 <23.98 NTSC>>}"
... integers...
iex> result = Timecode.with_seconds(3600, Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:10 <23.98 NTSC>>}"
... integer Strings...
iex> result = Timecode.with_seconds("3600", Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:10 <23.98 NTSC>>}"
... and float strings.
iex> result = Timecode.with_seconds("3600.5", Rates.f23_98())
iex> inspect(result)
"{:ok, <00:59:56:22 <23.98 NTSC>>}"

 premiere-ticks

 Premiere Ticks

The Vtc.Source.Seconds.PremiereTicks struck implements the
Seconds protocol and can be used to parse the format. This
struct is not a general-purpose Module for the unit, and only exists to hint to the
parsing function how it should be processed:
iex> alias Vtc.Source.Seconds.PremiereTicks
iex>
iex> input = %PremiereTicks{in: 254_016_000_000}
iex>
iex> result = Timecode.with_seconds!(input, Rates.f23_98())
iex> inspect(result)
"<00:00:01:00 <23.98 NTSC>>"

 Link to this function

 with_seconds!(seconds, rate, opts \\ [])

 View Source

 @spec with_seconds!(
 Vtc.Source.Seconds.t(),
 Vtc.Framerate.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

As with_seconds/3, but raises on error.

 Anchor for this section

Manipulate

 Link to this function

 rebase(timecode, rate)

 View Source

 @spec rebase(t(), Vtc.Framerate.t()) :: parse_result()

Rebases timecode to a new framerate.
The real-world seconds are recalculated using the same frame count as if they were
being played back at new_rate instead of timecode.rate.

 examples

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> {:ok, rebased} = Timecode.rebase(timecode, Rates.f47_95())
iex> inspect(rebased)
"<00:30:00:00 <47.95 NTSC>>"

 Link to this function

 rebase!(timecode, new_rate)

 View Source

 @spec rebase!(t(), Vtc.Framerate.t()) :: t()

As rebase/2, but raises on error.

 Anchor for this section

Compare

 Link to this function

 compare(a, b)

 View Source

 @spec compare(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 :lt | :eq | :gt

Comapare the values of a and b.
Compatible with Enum.sort/2. For more on sorting non-builtin values, see
the Elixir ducumentation.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 examples

 Examples

Using two timecodes, 01:00:00:00 NTSC is greater than 01:00:00:00 true because it
represents more real-world time.
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f24())
iex> :gt = Timecode.compare(a, b)
Using a timcode and a bare string:
iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> :eq = Timecode.compare(timecode, "01:00:00:00")

 Link to this function

 eq?(a, b)

 View Source

 @spec eq?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is eqaul to b.
auto-casts Frames values.

 examples

 Examples

iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> true = Timecode.eq?(a, b)
Timecodes with the same string representation, but different real-world seconds
values, are not equal:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f24())
iex> false = Timecode.eq?(a, b)
But Timecodes with the different string representation, but the same real-world
seconds values, are equal:
iex> a = Timecode.with_frames!("01:00:00:12", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:24", Rates.f47_95())
iex> true = Timecode.eq?(a, b)

 Link to this function

 gt?(a, b)

 View Source

 @spec gt?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is greater than b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 Link to this function

 gte?(a, b)

 View Source

 @spec gte?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is greater than or eqaul to b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 Link to this function

 lt?(a, b)

 View Source

 @spec lt?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is less than b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 examples

 Examples

iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex> true = Timecode.lt?(a, b)
iex> false = Timecode.lt?(b, a)

 Link to this function

 lte?(a, b)

 View Source

 @spec lte?(a :: t() | Vtc.Source.Frames.t(), b :: t() | Vtc.Source.Frames.t()) ::
 boolean()

Returns true if a is less than or equal to b.
auto-casts Frames values.
See eq?/2 for more information on how equality is determined.

 Anchor for this section

Arithmatic

 Link to this function

 abs(tc)

 View Source

 @spec abs(t()) :: t()

Returns the absolute value of tc.

 examples

 Examples

iex> tc = Timecode.with_frames!("-01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.abs(tc)
iex> inspect(result)
"<01:00:00:00 <23.98 NTSC>>"
iex> tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.abs(tc)
iex> inspect(result)
"<01:00:00:00 <23.98 NTSC>>"

 Link to this function

 add(a, b, opts \\ [])

 View Source

 @spec add(
 a :: t() | Vtc.Source.Frames.t(),
 b :: t() | Vtc.Source.Frames.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

Add two timecodes.
Uses the real-world seconds representation. When the rates of a and b are not
equal, the result will inheret the framerat of a and be rounded to the seconds
representation of the nearest whole-frame at that rate.
auto-casts Frames values.

 options

 Options

	round: How to round the result with respect to whole-frames when mixing
framerates. Default: :closest.

 examples

 Examples

Two timecodes running at the same rate:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("01:30:21:17", Rates.f23_98())
iex>
iex> result = Timecode.add(a, b)
iex> inspect(result)
"<02:30:21:17 <23.98 NTSC>>"
Two timecodes running at different rates:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("00:00:00:02", Rates.f47_95())
iex>
iex> result = Timecode.add(a, b)
iex> inspect(result)
"<01:00:00:01 <23.98 NTSC>>"
Using a timcode and a bare string:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.add(a, "01:30:21:17")
iex> inspect(result)
"<02:30:21:17 <23.98 NTSC>>"

 Link to this function

 div(dividend, divisor, opts \\ [])

 View Source

 @spec div(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [{:round, maybe_round()}]
) :: t()

Divides dividend by divisor.
The result will inherit the framerate of dividend and rounded to the nearest
whole-frame based on the :round option.

 options

 Options

	round: How to round the result with respect to whole-frame values. Defaults to
:floor to match divmod and the expected meaning of div to mean integer
division in elixir.

 examples

 Examples

iex> dividend = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.div(dividend, 2)
iex> inspect(result)
"<00:30:00:00 <23.98 NTSC>>"

iex> dividend = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.div(dividend, 0.5)
iex> inspect(result)
"<02:00:00:00 <23.98 NTSC>>"

 Link to this function

 divrem(dividend, divisor, opts \\ [])

 View Source

 @spec divrem(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round_frames: round(), round_remainder: round()]
) :: {t(), t()}

Divides the total frame count of dividend by divisor and returns both a quotient
and a remainder.
The quotient returned is equivalent to Timecode.div/3 with the :round option set
to :floor.

 options

 Options

	round_frames: How to round the frame count before doing the divrem operation.
Default: :closest.

	round_remainder: How to round the remainder frames when a non-whole frame would
be the result. Default: :closest.

 examples

 Examples

iex> dividend = Timecode.with_frames!("01:00:00:01", Rates.f23_98())
iex>
iex> result = Timecode.divrem(dividend, 4)
iex> inspect(result)
"{<00:15:00:00 <23.98 NTSC>>, <00:00:00:01 <23.98 NTSC>>}"

 Link to this macro

 eval(opts \\ [], body)

 View Source

 (macro)

 @spec eval(
 [at: Vtc.Framerate.t() | number() | Ratio.t(), ntsc: Vtc.Framerate.ntsc()],
 Macro.input()
) ::
 Macro.t()

Evalutes timecode mathematical expressions in a do block.
Any code captured within this macro can use Kernel operators to work with timecode
values instead of module functions like add/2.

 options

 Options

	at: The Framerate to cast non-timecode values to. If this value is not set, then
at least one value in each operation must be a Timecode. This
value can be any value accepted by Framerate.new/2.

	ntsc: The ntsc value to use when creating a new Framerate with at. Not needed
if at is a Framerate value.

 examples

 Examples

Use eval to do some quick math. The block captures variables from the outer scope,
but contains the expression within its own scope, just like an if or with
statement.
iex> require Timecode
iex>
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("00:30:00:00", Rates.f23_98())
iex> c = Timecode.with_frames!("00:15:00:00", Rates.f23_98())
iex>
iex> result =
iex> Timecode.eval do
iex> a + b * 2 - c
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
Or if you want to do it in one line:
iex> require Timecode
iex>
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("00:30:00:00", Rates.f23_98())
iex> c = Timecode.with_frames!("00:15:00:00", Rates.f23_98())
iex>
iex> result = Timecode.eval(a + b * 2 - c)
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
Just like the regular Timecode functions, only one value in an
arithmatic expression needs to be a Timecode value. In the case
above, since multiplication happens first, that's b:
iex> b = Timecode.with_frames!("00:30:00:00", Rates.f23_98())
iex>
iex> result =
iex> Timecode.eval do
iex> "01:00:00:00" + b * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
You can supply a default framerate if you just want to do some quick calculations.
This framerate is inherited by every value that implements the
Frames protocol in the block, including integers:
iex> result =
iex> Timecode.eval at: Rates.f23_98() do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
You can use any value that can be parsed by Framerate.new/2.
iex> result =
iex> Timecode.eval at: 23.98 do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <23.98 NTSC>>"
ntsc: :non_drop, coerce_ntsc?: true is assumed by default, but you can set a
different value with the :ntsc option:
iex> result =
iex> Timecode.eval at: 24, ntsc: nil do
iex> "01:00:00:00" + "00:30:00:00" * 2 - "00:15:00:00"
iex> end
iex>
iex> inspect(result)
"<01:45:00:00 <24.0 fps>>"

 Link to this function

 minus(tc)

 View Source

 @spec minus(t()) :: t()

As the kernel -/1 function.
	Makes a positive tc value negative.
	Makes a negative tc value positive.

 examples

 Examples

iex> tc = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.minus(tc)
iex> inspect(result)
"<-01:00:00:00 <23.98 NTSC>>"
iex> tc = Timecode.with_frames!("-01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.minus(tc)
iex> inspect(result)
"<01:00:00:00 <23.98 NTSC>>"

 Link to this function

 mult(a, b, opts \\ [])

 View Source

 @spec mult(a :: t(), b :: Ratio.t() | number(), opts :: [{:round, maybe_round()}]) ::
 t()

Scales a by b.
The result will inheret the framerat of a and be rounded to the seconds
representation of the nearest whole-frame based on the :round option.

 options

 Options

	round: How to round the result with respect to whole-frame values. Defaults to
:closest.

 examples

 Examples

iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.mult(a, 2)
iex> inspect(result)
"<02:00:00:00 <23.98 NTSC>>"

iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.mult(a, 0.5)
iex> inspect(result)
"<00:30:00:00 <23.98 NTSC>>"

 Link to this function

 rem(dividend, divisor, opts \\ [])

 View Source

 @spec rem(
 dividend :: t(),
 divisor :: Ratio.t() | number(),
 opts :: [round_frames: round(), round_remainder: round()]
) :: t()

Devides the total frame count of dividend by devisor, and returns the remainder.
The quotient is floored before the remainder is calculated.

 options

 Options

	round_frames: How to round the frame count before doing the rem operation.
Default: :closest.

	round_remainder: How to round the remainder frames when a non-whole frame would
be the result. Default: :closest.

 examples

 Examples

iex> dividend = Timecode.with_frames!("01:00:00:01", Rates.f23_98())
iex>
iex> result = Timecode.rem(dividend, 4)
iex> inspect(result)
"<00:00:00:01 <23.98 NTSC>>"

 Link to this function

 sub(a, b, opts \\ [])

 View Source

 @spec sub(
 a :: t(),
 b :: t() | Vtc.Source.Frames.t(),
 opts :: [{:round, maybe_round()}]
) :: t()

Subtract b from a.
Uses their real-world seconds representation. When the rates of a and b are not
equal, the result will inheret the framerat of a and be rounded to the seconds
representation of the nearest whole-frame at that rate.
auto-casts Frames values.

 options

 Options

	round: How to round the result with respect to whole-frames when mixing
framerates. Default: :closest.

 examples

 Examples

Two timecodes running at the same rate:
iex> a = Timecode.with_frames!("01:30:21:17", Rates.f23_98())
iex> b = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.sub(a, b)
iex> inspect(result)
"<00:30:21:17 <23.98 NTSC>>"
When b is greater than a, the result is negative:
iex> a = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> b = Timecode.with_frames!("02:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.sub(a, b)
iex> inspect(result)
"<-01:00:00:00 <23.98 NTSC>>"
Two timecodes running at different rates:
iex> a = Timecode.with_frames!("01:00:00:02", Rates.f23_98())
iex> b = Timecode.with_frames!("00:00:00:02", Rates.f47_95())
iex>
iex> result = Timecode.sub(a, b)
iex> inspect(result)
"<01:00:00:01 <23.98 NTSC>>"
Using a timcode and a bare string:
iex> a = Timecode.with_frames!("01:30:21:17", Rates.f23_98())
iex>
iex> result = Timecode.sub(a, "01:00:00:00")
iex> inspect(result)
"<00:30:21:17 <23.98 NTSC>>"

 Anchor for this section

Convert

 Link to this function

 feet_and_frames(timecode, opts \\ [])

 View Source

 @spec feet_and_frames(t(), opts :: [fiim_format: Vtc.FilmFormat.t(), round: round()]) ::
 Vtc.Source.Frames.FeetAndFrames.t()

Returns the number of physical film feet and frames timecode represents if shot
on film.
Ex: '5400+13'.

 options

 Options

	round: How to round the internal frame count before conversion. Default: :closest.

	fiim_format: The film format to use when doing the calculation. For more on film
formats, see Vtc.FilmFormat. Default: :ff35mm_4perf, by far the most common
format used to shoot Hollywood movies.

 what-it-is

 What it is

On physical film, each foot contains a certain number of frames. For 35mm, 4-perf film
(the most common type on Hollywood movies), this number is 16 frames per foot.
Feet-And-Frames was often used in place of Keycode to quickly reference a frame in the
edit.

 where-you-see-it

 Where you see it

For the most part, feet + frames has died out as a reference, because digital media is
not measured in feet. The most common place it is still used is Studio Sound
Departments. Many Sound Mixers and Designers intuitively think in feet + frames, and
it is often burned into the reference picture for them.
	Telecine.
	Sound turnover reference picture.
	Sound turnover change lists.

For more information on individual film formats, see the Vtc.FilmFormat module.

 examples

 Examples

Defaults to 35mm, 4perf:
iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.feet_and_frames(timecode)
iex> inspect(result)
"<5400+00 :ff35mm_4perf>"
Use String.Chars to convert the resulting struct to a traditional F=F string:
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.feet_and_frames(timecode)
iex> String.Chars.to_string(result)
"5400+00"
Outputting as a different film format:

 examples-1

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.feet_and_frames(timecode, film_format: :ff16mm)
iex> inspect(result)
"<4320+00 :ff16mm>"

 Link to this function

 frames(timecode, opts \\ [])

 View Source

 @spec frames(t(), opts :: [{:round, round()}]) :: integer()

Returns the number of frames that would have elapsed between 00:00:00:00 and
timecode.

 options

 Options

	round: How to round the resulting frame number.

 what-it-is

 What it is

Frame number / frames count is the number of a frame if the timecode started at
00:00:00:00 and had been running until the current value. A timecode of '00:00:00:10'
has a frame number of 10. A timecode of '01:00:00:00' has a frame number of 86400.

 where-you-see-it

 Where you see it

	Frame-sequence files: 'my_vfx_shot.0086400.exr'

	FCP7XML cut lists:
 <timecode>
 <rate>
 <timebase>24</timebase>
 <ntsc>TRUE</ntsc>
 </rate>
 <string>01:00:00:00</string>
 <frame>86400</frame> <!-- <====THIS LINE-->
 <displayformat>NDF</displayformat>
 </timecode>

 examples

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.frames(timecode)
86400

 Link to this function

 premiere_ticks(timecode, opts \\ [])

 View Source

 @spec premiere_ticks(t(), opts :: [{:round, round()}]) :: integer()

Returns the number of elapsed ticks timecode represents in Adobe Premiere Pro.

 options

 Options

	round: How to round the resulting ticks.

 what-it-is

 What it is

Internally, Adobe Premiere Pro uses ticks to divide up a second, and keep track of how
far into that second we are. There are 254016000000 ticks in a second, regardless of
framerate in Premiere.

 where-you-see-it

 Where you see it

	Premiere Pro Panel functions and scripts.

	FCP7XML cutlists generated from Premiere:
<clipitem id="clipitem-1">
...
<in>158</in>
<out>1102</out>
<pproTicksIn>1673944272000</pproTicksIn>
<pproTicksOut>11675231568000</pproTicksOut>
...
</clipitem>

 examples

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.premiere_ticks(timecode)
915372057600000

 Link to this function

 runtime(timecode, opts \\ [])

 View Source

 @spec runtime(t(), precision: non_neg_integer(), trim_zeros?: boolean()) :: String.t()

Runtime Returns the true, real-world runtime of timecode in HH:MM:SS.FFFFFFFFF
format.
Trailing zeroes are trimmed from the end of the return value. If the entire fractal
seconds value would be trimmed, '.0' is used.

 options

 Options

	precision: The number of places to round to. Extra trailing 0's will still be
trimmed. Default: 9.

	trim_zeros?: Whether to trim trailing zeroes. Default: true.

 what-it-is

 What it is

The formatted version of seconds. It looks like timecode, but with a decimal seconds
value instead of a frame number place.

 where-you-see-it

 Where you see it

• Anywhere real-world time is used.
• FFMPEG commands:
 ffmpeg -ss 00:00:30.5 -i input.mov -t 00:00:10.25 output.mp4

 note

 Note

The true runtime will often diverge from the hours, minutes, and seconds
value of the timecode representation when dealing with non-whole-frame
framerates. Even drop-frame timecode does not continuously adhere 1:1 to the
actual runtime. For instance, <01:00:00;00 <29.97 NTSC DF>> has a true runtime of
'00:59:59.9964', and <01:00:00:00 <23.98 NTSC>> has a true runtime of
'01:00:03.6'

 examples

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex> Timecode.runtime(timecode)
"01:00:03.6"

 Link to this function

 sections(timecode, opts \\ [])

 View Source

 @spec sections(t(), opts :: [{:round, round()}]) :: Vtc.Timecode.Sections.t()

The individual sections of a timecode string as i64 values.

 examples

 Examples

iex> timecode = Timecode.with_frames!("01:00:00:00", Rates.f23_98())
iex>
iex> result = Timecode.sections(timecode)
iex> inspect(result)
"%Vtc.Timecode.Sections{negative?: false, hours: 1, minutes: 0, seconds: 0, frames: 0}"

 Link to this function

 timecode(timecode, opts \\ [])

 View Source

 @spec timecode(t(), opts :: [{:round, round()}]) :: String.t()

Returns the the formatted SMPTE timecode
Ex: 01:00:00:00. Drop frame timecode will be rendered with a ';' sperator before the
frames field.

 options

 Options

	round: How to round the resulting frames field.

 what-it-is

 What it is

Timecode is used as a human-readable way to represent the id of a given frame. It is
formatted to give a rough sense of where to find a frame:
{HOURS}:{MINUTES}:{SECONDS}:{FRAME}. For more on timecode, see Frame.io's
excellent post on the
subject.

 where-you-see-it

 Where you see it

Timecode is ubiquitous in video editing, a small sample of places you might see
timecode:
	Source and Playback monitors in your favorite NLE.
	Burned into the footage for dailies.
	Cut lists like an EDL.

 examples

 Examples

iex> timecode = Timecode.with_frames!(86_400, Rates.f23_98())
iex> Timecode.timecode(timecode)
"01:00:00:00"

 Vtc.FilmFormat - vtc v0.9.0

Vtc.FilmFormat

Functions and types for working with physical film data.

 Anchor for this section

 Summary

 Types

 t()

 Enum-like type of supported film formats for Vtc.

 Perfs

 perfs_per_foot(film_format, opts \\ [])

 Perferations are the holes that run along the sides of a strip of film, and are used
by the camera's sprocket to physically pull the film in place to be exposed. For
more information, see this Wikipedia atricle.

 perfs_per_frame(film_format)

 Perferation count in a single frame of film.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :ff35mm_4perf | :ff35mm_2perf | :ff16mm

Enum-like type of supported film formats for Vtc.

 ff35mm_4perf

 ff35mm_4perf

35mm 4-perf film (16 frames per foot). ex: '5400+13'.

 what-it-is

 What it is

On physical film, each foot contains a certain number of frames. For 35mm, 4-perf film
(the most common type on Hollywood movies), this number is 16 frames per foot.
Feet-and-frames was often used in place of Keycode to quickly reference a frame in the
edit.

 where-you-see-it

 Where you see it

For the most part, feet + frames has died out as a reference, because digital media is
not measured in feet. The most common place it is still used is Studio Sound
Departments. Many Sound Mixers and Designers intuitively think in feet + frames, and
it is often burned into the reference picture for them.
	Telecine.
	Sound turnover reference picture.
	Sound turnover change lists.

 ff35mm_2perf

 ff35mm_2perf

 what-it-is-1

 What it is

35mm 2-perf film records 32 frames in a foot of film, instead of the usual 16.
This creates a negative image with a wide aspect ratio using standard spherical
lenses and consumes half the footage per minute running time as standard 35mm,
while having a grain profile somewhat better than 16mm while not as good as
standard 35mm.

 where-you-see-it-1

 Where you see it

35mm 2-perf formats are uncommon though still find occasional use, the process is
usually marketed as "Techniscope", the original trademark for Technicolor Italia's
2-perf format. It was historically very common in the Italian film industry prior
to digital filmmaking, and is used on some contemporary films to obtain a film look
while keeping stock and processing costs down.

 16mm

 16mm

 what-it-is-2

 What it is

On 16mm film, there are forty frames of film in each foot, one perforation
per frame. However, 16mm film is edge coded every six inches, with twenty
frames per code, so the footage "1+19" is succeeded by "2+0".

 where-you-see-it-2

 Where you see it

16mm telecines, 16mm edge codes.

 Anchor for this section

Perfs

 Link to this function

 perfs_per_foot(film_format, opts \\ [])

 View Source

 @spec perfs_per_foot(t(), [{:physical?, boolean()}]) :: pos_integer()

Perferations are the holes that run along the sides of a strip of film, and are used
by the camera's sprocket to physically pull the film in place to be exposed. For
more information, see this Wikipedia atricle.
By default, returns the count in a 'logical' foot.

 logical-feet-and-16mm

 Logical feet and 16mm

'Logicial foot' means each time XX rolls over when annotated in the XX+YY
format. Threre are 40 perfs in a foot of 16mm film, but when annotated as XX+YY,
XX rolls over every 6 inches rather than every foot.

 options

 Options

	physical?: Return the physical number of feet rather than the logical number.

 Link to this function

 perfs_per_frame(film_format)

 View Source

 @spec perfs_per_frame(t()) :: pos_integer()

Perferation count in a single frame of film.

 Vtc.Rates - vtc v0.9.0

Vtc.Rates

Pre-defined framerates commonly found in the wild.

 Anchor for this section

 Summary

 Consts

 f23_98()

 23.98 NTSC, non-drop.

 f24()

 24 fps.

 f29_97_df()

 29.97 NTSC, drop-frame.

 f29_97_ndf()

 29.97 NTSC, non-drop.

 f30()

 30 fps.

 f47_95()

 47.95 NTSC non-drop.

 f48()

 48 fps.

 f59_94_df()

 59.94 NTSC drop-frame.

 f59_94_ndf()

 59.94 NTSC non-drop.

 f60()

 60 fps.

 Anchor for this section

Consts

 Link to this function

 f23_98()

 View Source

 @spec f23_98() :: Vtc.Framerate.t()

23.98 NTSC, non-drop.

 Link to this function

 f24()

 View Source

 @spec f24() :: Vtc.Framerate.t()

24 fps.

 Link to this function

 f29_97_df()

 View Source

 @spec f29_97_df() :: Vtc.Framerate.t()

29.97 NTSC, drop-frame.

 Link to this function

 f29_97_ndf()

 View Source

 @spec f29_97_ndf() :: Vtc.Framerate.t()

29.97 NTSC, non-drop.

 Link to this function

 f30()

 View Source

 @spec f30() :: Vtc.Framerate.t()

30 fps.

 Link to this function

 f47_95()

 View Source

 @spec f47_95() :: Vtc.Framerate.t()

47.95 NTSC non-drop.

 Link to this function

 f48()

 View Source

 @spec f48() :: Vtc.Framerate.t()

48 fps.

 Link to this function

 f59_94_df()

 View Source

 @spec f59_94_df() :: Vtc.Framerate.t()

59.94 NTSC drop-frame.

 Link to this function

 f59_94_ndf()

 View Source

 @spec f59_94_ndf() :: Vtc.Framerate.t()

59.94 NTSC non-drop.

 Link to this function

 f60()

 View Source

 @spec f60() :: Vtc.Framerate.t()

60 fps.

 Vtc.Timecode.Sections - vtc v0.9.0

Vtc.Timecode.Sections

Holds the individual sections of a timecode for formatting / manipulation.
Struct Fields
	negative: Whether the timecode is less than 0.
	hours: Hours place value.
	minutes: Minutes place value. This is not the toal minutes, but the minutes added
to hours to get a final time.
	seconds: Seconds place value. As minutes, remainder value rather than total
value.
	frames: Frames place value. As seconds, remainder value rather than total
value.

 Anchor for this section

 Summary

 Types

 t()

 Struct type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Timecode.Sections{
 frames: integer(),
 hours: integer(),
 minutes: integer(),
 negative?: boolean(),
 seconds: integer()
}

Struct type.

 Vtc.Source.Frames.FeetAndFrames - vtc v0.9.0

Vtc.Source.Frames.FeetAndFrames

Holds Feet+Frames information.
Fields
	feet: The amount of film in Feet that would run through the camera in a given
amount of time.
	feet: The number of frames left over after feet of film has run.
	film_format: The type of film this value represents. Default: :ff35mm_4perf.

String Conversion
FeetAndFrames can be converted into a string
through the String.Chars.to_string/1 function.
Examples
iex> alias Vtc.Source.Frames.FeetAndFrames
iex>
iex> String.Chars.to_string(%FeetAndFrames{feet: 10, frames: 4})
"10+04"

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying string.

 Functions

 from_string(ff_string, opts \\ [])

 Parses a FeetAndFrames value from a string.

 from_string!(ff_string, opts \\ [])

 Parses a FeetAndFrames value from a string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Frames.FeetAndFrames{
 feet: integer(),
 film_format: Vtc.FilmFormat.t(),
 frames: integer()
}

Contains only a single field for wrapping the underlying string.

 Anchor for this section

Functions

 Link to this function

 from_string(ff_string, opts \\ [])

 View Source

 @spec from_string(String.t(), [{:film_format, Vtc.FilmFormat.t()}]) ::
 {:ok, t()} | {:error, Vtc.Timecode.ParseError.t()}

Parses a FeetAndFrames value from a string.

 Link to this function

 from_string!(ff_string, opts \\ [])

 View Source

 @spec from_string!(String.t(), [{:film_format, Vtc.FilmFormat.t()}]) :: t()

Parses a FeetAndFrames value from a string.

 Vtc.Source.Frames.TimecodeStr - vtc v0.9.0

Vtc.Source.Frames.TimecodeStr

Implementation of Frames for timecode string. See
Vtc.Timecode.timecode/2 for more information on this format.
This struct is used as an input wrapper only, not as the general-purpose Premiere
ticks unit.
By default, this wrapper does not need to be used by callers, as the string
implementation of the frames protocol calls this type's impl automatically. Only use
this type if you do not wish for the parser to fall back to feet+frames parsing as
well.

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Frames.TimecodeStr{in: String.t()}

Contains only a single field for wrapping the underlying string.

 Vtc.Source.Seconds.PremiereTicks - vtc v0.9.0

Vtc.Source.Seconds.PremiereTicks

Implements Seconds protocol for Premiere ticks. See
Vtc.Timecode.premiere_ticks/2 for more information on this unit.
This struct is used as an input wrapper only, not as the general-purpose Premiere
ticks unit.

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying integer.

 Functions

 per_second()

 Returns the number of ticks in a second.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Seconds.PremiereTicks{in: integer()}

Contains only a single field for wrapping the underlying integer.

 Anchor for this section

Functions

 Link to this function

 per_second()

 View Source

 @spec per_second() :: pos_integer()

Returns the number of ticks in a second.

 Vtc.Source.Seconds.RuntimeStr - vtc v0.9.0

Vtc.Source.Seconds.RuntimeStr

Implementation of Seconds for runtime strings. See
Vtc.Timecode.runtime/2 for more information on this format.
By default, this wrapper does not need to be used by callers, as the string
implementation of the Seconds protocol calls this type's impl
automatically. Only use this type if you do not wish for the parser to fall back to
other type parsing as well.

 Anchor for this section

 Summary

 Types

 t()

 Contains only a single field for wrapping the underlying string.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Source.Seconds.RuntimeStr{in: String.t()}

Contains only a single field for wrapping the underlying string.

 Vtc.Source.Frames - vtc v0.9.0

Vtc.Source.Frames protocol

Protocol which types can implement to be passed as the main value of
Timecode.with_frames/2.
Implementations
Out of the box, this protocol is implemented for the following types:
	Integer

	String & BitString
	timecode ("01:00:00:00")

	integer ("86400")

	Feet+Frames ("5400+00")

	TimecodeStr

	FeetAndFrames

 Anchor for this section

 Summary

 Types

 result()

 Result type of frames/2.

 t()

 Functions

 frames(value, rate)

 Returns the value as a frame count.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() :: {:ok, integer()} | {:error, Vtc.Timecode.ParseError.t()}

Result type of frames/2.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 frames(value, rate)

 View Source

 @spec frames(t(), Vtc.Framerate.t()) :: result()

Returns the value as a frame count.
Arguments
	value: The source value.

	rate: The framerate of the timecode being parsed.

Returns
A result tuple with an integer value representing the frame count on success.

 Vtc.Source.Seconds - vtc v0.9.0

Vtc.Source.Seconds protocol

Protocol which types can implement to be passed as the main value of
Timecode.with_seconds/3.
Implementations
Out of the box, this protocol is implemented for the following types:
	Integer
	Float
	Ratio
	String	runtime ("01:00:00.0")
	decimal ("3600.0")

	Vtc.Source.Seconds.RuntimeStr
	Vtc.Source.Seconds.PremiereTicks

 Anchor for this section

 Summary

 Types

 result()

 Result type of seconds/2.

 t()

 Functions

 seconds(value, rate)

 Returns the value as a rational, real-world seconds value.

 Anchor for this section

Types

 Link to this type

 result()

 View Source

 @type result() :: {:ok, Ratio.t()} | {:error, Vtc.Timecode.ParseError.t()}

Result type of seconds/2.

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 seconds(value, rate)

 View Source

 @spec seconds(t(), Vtc.Framerate.t()) :: result()

Returns the value as a rational, real-world seconds value.

 arguments

 Arguments

	value: The source value.

	rate: The framerate of the timecode being parsed.

 returns

 Returns

A result tuple with a rational representation of the seconds value using Ratio on
success.

 Vtc.Framerate.ParseError - vtc v0.9.0

Vtc.Framerate.ParseError exception

Exception returned when a framerate cannot be parsed.
Struct Fields
	reason: The reason the error occurred.

Failure Reasons
The following values can appear in the :reason fields:
	:bad_drop_rate: Returned when the playback speed of a framerate with an ntsc
 value of :drop is not divisible by 3000/1001 (29.97), for more on why drop-frame
 framerates must be a multiple of 29.97, see:
 https://www.davidheidelberger.com/2010/06/10/drop-frame-timecode/

	:invalid_ntsc: Returned when the ntsc value is not one of the allowed atom
values.

	:unrecognized_format: Returned when a string value is not a recognized format.

	:imprecise - Returned when a float was passed with an NTSC value of nil.
Without the ability to round to the nearest valid NTSC value, floats are not
precise enough to build an arbitrary framerate.

 Anchor for this section

 Summary

 Types

 t()

 Type of ParseError

 Functions

 message(map)

 Returns a message for the error reason.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Framerate.ParseError{
 __exception__: true,
 reason:
 :bad_drop_rate
 | :invalid_ntsc
 | :invalid_ntsc_rate
 | :unrecognized_format
 | :imprecise
}

Type of ParseError

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

 @spec message(t()) :: String.t()

Returns a message for the error reason.

 Vtc.Timecode.ParseError - vtc v0.9.0

Vtc.Timecode.ParseError exception

Exception returned when there is an error parsing a Timecode value.
Struct Fields
	reason: The reason the error occurred.

Failure Reasons
The following values can appear in the :reason fields:
	:unrecognized_format: Returned when a string value is not a recognized
 timecode, runtime, etc. format.

	:bad_drop_frames: The field value cannot exist in properly formatted
 drop-frame timecode.

 Anchor for this section

 Summary

 Types

 t()

 Type of Timecode.ParseError.

 Functions

 message(map)

 Returns a message for the error reason.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Vtc.Timecode.ParseError{
 __exception__: true,
 reason: :unrecognized_format | :bad_drop_frames
}

Type of Timecode.ParseError.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

 @spec message(t()) :: String.t()

Returns a message for the error reason.

OEBPS/dist/epub-75RCTLK3.js
