

 waffle

 v1.1.7

 Table of contents

 	An Example for Local

 	An Example for S3

 	Processing with custom functions

 	Modules

 	Waffle

 	Waffle.Actions.Delete

 	Waffle.Actions.Store

 	Waffle.Actions.Url

 	Waffle.Definition

 	Waffle.Definition.Storage

 	Waffle.Definition.Versioning

 	Waffle.Processor

 	Waffle.Storage.Local

 	Waffle.Storage.S3

 	Waffle.MissingExecutableError

 	Mix Tasks

 	mix waffle

 	mix waffle.g

An Example for Local

Setup the storage provider:
config :waffle,
 storage: Waffle.Storage.Local,
 asset_host: "http://static.example.com" # or {:system, "ASSET_HOST"}
Define a definition module:
defmodule Avatar do
 use Waffle.Definition

 @versions [:original, :thumb]
 @extensions ~w(.jpg .jpeg .gif .png)

 def validate({file, _}) do
 file_extension = file.file_name |> Path.extname |> String.downcase

 case Enum.member?(@extensions, file_extension) do
 true -> :ok
 false -> {:error, "file type is invalid"}
 end
 end

 def transform(:thumb, _) do
 {:convert, "-thumbnail 100x100^ -gravity center -extent 100x100 -format png", :png}
 end

 def filename(version, _) do
 version
 end

 def storage_dir(_, {file, user}) do
 "uploads/avatars/#{user.id}"
 end
end
Store or Get files:
Given some current_user record
current_user = %{id: 1}

Store any accessible file
Avatar.store({"/path/to/my/selfie.png", current_user})
#=> {:ok, "selfie.png"}

..or store directly from the `params` of a file upload within your controller
Avatar.store({%Plug.Upload{}, current_user})
#=> {:ok, "selfie.png"}

and retrieve the url later
Avatar.url({"selfie.png", current_user}, :thumb)
#=> "uploads/avatars/1/thumb.png"

An Example for S3

Setup the storage provider:
config :waffle,
 storage: Waffle.Storage.S3,
 bucket: "custom_bucket", # or {:system, "AWS_S3_BUCKET"}
 asset_host: "http://static.example.com" # or {:system, "ASSET_HOST"}

config :ex_aws,
 json_codec: Jason
 # any configurations provided by https://github.com/ex-aws/ex_aws
Define a definition module:
defmodule Avatar do
 use Waffle.Definition

 @versions [:original, :thumb]
 @extension_whitelist ~w(.jpg .jpeg .gif .png)

 def acl(:thumb, _), do: :public_read

 def validate({file, _}) do
 file_extension = file.file_name |> Path.extname |> String.downcase
 Enum.member?(@extension_whitelist, file_extension)
 end

 def transform(:thumb, _) do
 {:convert, "-thumbnail 100x100^ -gravity center -extent 100x100 -format png", :png}
 end

 def filename(version, _) do
 version
 end

 def storage_dir(_, {file, user}) do
 "uploads/avatars/#{user.id}"
 end

 def default_url(:thumb) do
 "https://placehold.it/100x100"
 end
end
Store or Get files:
Given some current_user record
current_user = %{id: 1}

Store any accessible file
Avatar.store({"/path/to/my/selfie.png", current_user})
#=> {:ok, "selfie.png"}

..or store directly from the `params` of a file upload within your controller
Avatar.store({%Plug.Upload{}, current_user})
#=> {:ok, "selfie.png"}

and retrieve the url later
Avatar.url({"selfie.png", current_user}, :thumb)
#=> "https://s3.amazonaws.com/custom_bucket/uploads/avatars/1/thumb.png"

Processing with custom functions

lib =
 Regex.named_captures(~r/(?<lib>.+)documentation\/livebooks/, __DIR__)
 |> Map.get("lib")

Mix.install([
 # for local development
 # {:waffle, path: lib}
 :waffle
])
Definition
All starts from creating the definition and custom processing function
defmodule Avatar do
 use Waffle.Definition
 @versions [:original, :thumb]

 def __storage, do: Waffle.Storage.Local

 def filename(version, _), do: version

 def transform(:thumb, _) do
 &process/2
 end

 @spec process(
 atom(),
 Waffle.File.t()
) :: {:ok, Waffle.File.t()} | {:error, String.t()}
 def process(_version, original_file) do
 {:ok, file}
 end
end
Then, you can store the file by calling Avatar.store/1
image = lib <> "test/support/image.png"

Avatar.store(image)
Understanding custom transformations
def process(_version, original_file) do
 {:ok, file}
end
To generate a temporary path for the new file version
tmp_path = Waffle.File.generate_temporary_path(file)
or if the new version is going to have a new extension
tmp_path = Waffle.File.generate_temporary_path("png")
then, you can process your file and put the result into tmp_path.
To return the processed tmp file into the pipeline and clean it afterwards, create a new file struct
{:ok, %Waffle.File{file | path: tmp_path, is_tempfile?: true}}
You can combine it all together to use ExOptimizer library
def process(_version, original_file) do
 tmp_path = Waffle.File.generate_temporary_path(original_file)

 File.cp!(original_file.path, tmp_path)

 with {:ok, _} <- ExOptimizer.optimize(tmp_path) do
 {
 :ok,
 %Waffle.File{original_file | path: tmp_path, is_tempfile?: true}
 }
 end
end
All together
We can create a bit more complex example, where we combine transformation done by external binary with transformation done by existing elixir library.
defmodule Avatar do
 use Waffle.Definition
 @versions [:original, :thumb]

 def __storage, do: Waffle.Storage.Local

 def filename(version, _), do: version

 def transform(:thumb, _) do
 &process/2
 end

 @spec process(
 atom(),
 Waffle.File.t()
) :: {:ok, Waffle.File.t()} | {:error, String.t()}
 def process(_version, original_file) do
 # convert .jpg to .png
 args = "-strip -thumbnail 100x100^ -gravity center -extent 100x100 -format png"

 with {:ok, file} <-
 Waffle.Transformations.Convert.apply(
 :convert,
 original_file,
 args,
 :png
),
 {:ok, _} <- ExOptimizer.optimize(file.path) do
 {:ok, file}
 end
 end
end

Waffle

Waffle [image: Sponsored by Evrone]
[image: Hex.pm Version][hex-img]]
[[image: waffle documentation]
<img align="right" width="176" height="120"
 alt="Waffle is a flexible file upload library for Elixir"
 src="https://elixir-waffle.github.io/waffle/assets/logo.svg">
Waffle is a flexible file upload library for Elixir with straightforward integrations for Amazon S3 and ImageMagick.
Documentation
Installation
Add the latest stable release to your mix.exs file, along with the
required dependencies for ExAws if appropriate:
defp deps do
 [
 {:waffle, "~> 1.1"},

 # If using S3:
 {:ex_aws, "~> 2.1.2"},
 {:ex_aws_s3, "~> 2.0"},
 {:hackney, "~> 1.9"},
 {:sweet_xml, "~> 0.6"}
]
end
Then run mix deps.get in your shell to fetch the dependencies.
Usage
After installing Waffle, another two things should be done:
	setup a storage provider
	define a definition module

Setup a storage provider
Waffle has two built-in storage providers:
	Waffle.Storage.Local
	Waffle.Storage.S3

Other available storage providers
are supported by the community.
An example for setting up Waffle.Storage.Local:
config :waffle,
 storage: Waffle.Storage.Local,
 asset_host: "http://static.example.com" # or {:system, "ASSET_HOST"}
An example for setting up Waffle.Storage.S3:
config :waffle,
 storage: Waffle.Storage.S3,
 bucket: "custom_bucket", # or {:system, "AWS_S3_BUCKET"}
 asset_host: "http://static.example.com" # or {:system, "ASSET_HOST"}

config :ex_aws,
 json_codec: Jason
 # any configurations provided by https://github.com/ex-aws/ex_aws
Define a definition module
Waffle requires a definition module which contains the relevant
functions to store and retrieve files:
	Optional transformations of the uploaded file
	Where to put your files (the storage directory)
	How to name your files
	How to secure your files (private? Or publicly accessible?)
	Default placeholders

This module can be created manually or generated by mix waffle.g
automatically.
As an example, we will generate a definition module for handling
avatars:
mix waffle.g avatar
This should generate a file at lib/[APP_NAME]_web/uploaders/avatar.ex.
Check this file for descriptions of configurable options.
Examples
	An example for Local storage driver
	An example for S3 storage driver

Usage with Ecto
Waffle comes with a companion package for use with Ecto. If you
intend to use Waffle with Ecto, it is highly recommended you also
add the
waffle_ecto
dependency. Benefits include:
	Changeset integration
	Versioned urls for cache busting (.../thumb.png?v=63601457477)

Other Storage Providers
	Rackspace - arc_rackspace

	Manta - arc_manta

	OVH - arc_ovh

	Google Cloud Storage - waffle_gcs

	Microsoft Azure Storage - arc_azure

	Aliyun OSS Storage - waffle_aliyun_oss

Testing
The basic test suite can be run with without supplying any S3 information:
mix test
In order to test S3 capability, you must have access to an S3/equivalent bucket. For
S3 buckets, the bucket must be configured to allow ACLs and it must allow public
access.
The following environment variables will be used by the test suite:
	WAFFLE_TEST_BUCKET
	WAFFLE_TEST_BUCKET2
	WAFFLE_TEST_S3_KEY
	WAFFLE_TEST_S3_SECRET
	WAFFLE_TEST_REGION

After setting these variables, you can run the full test suite with mix test --include s3:true.
Attribution
Great thanks to Sean Stavropoulos (@stavro) for the original awesome work on the library.
This project is forked from Arc from the version v0.11.0.
License
Copyright 2019 Boris Kuznetsov me@achempion.com
Copyright 2015 Sean Stavropoulos
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Waffle.Actions.Delete

Delete files from a defined adapter.
After an object is stored through Waffle, you may optionally remove
it. To remove a stored object, pass the same path identifier and
scope from which you stored the object.
Without a scope:
{:ok, original_filename} = Avatar.store("/Images/me.png")
:ok = Avatar.delete(original_filename)

With a scope:
user = Repo.get!(User, 1)
{:ok, original_filename} = Avatar.store({"/Images/me.png", user})
example 1
:ok = Avatar.delete({original_filename, user})
example 2
user = Repo.get!(User, 1)
:ok = Avatar.delete({user.avatar, user})

 Anchor for this section

 Summary

 Functions

 delete(definition, filepath)

 Anchor for this section

Functions

 Link to this function

 delete(definition, filepath)

Waffle.Actions.Store

Store files to a defined adapter.
The definition module responds to Avatar.store/1 which
accepts either:
	A path to a local file

	A path to a remote http or https file

	A map with a filename and path keys (eg, a %Plug.Upload{})

	A map with a filename and binary keys (eg, %{filename: "image.png", binary: <<255,255,255,...>>})

	A two-element tuple consisting of one of the above file formats as well as a scope map

Example usage as general file store:
Store any locally accessible file
Avatar.store("/path/to/my/file.png") #=> {:ok, "file.png"}

Store any remotely accessible file
Avatar.store("http://example.com/file.png") #=> {:ok, "file.png"}

Store a file directly from a `%Plug.Upload{}`
Avatar.store(%Plug.Upload{filename: "file.png", path: "/a/b/c"}) #=> {:ok, "file.png"}

Store a file from a connection body
{:ok, data, _conn} = Plug.Conn.read_body(conn)
Avatar.store(%{filename: "file.png", binary: data})
Example usage as a file attached to a scope:
scope = Repo.get(User, 1)
Avatar.store({%Plug.Upload{}, scope}) #=> {:ok, "file.png"}
This scope will be available throughout the definition module to be
used as an input to the storage parameters (eg, store files in
/uploads/#{scope.id}).

 Anchor for this section

 Summary

 Functions

 store(definition, filepath)

 Anchor for this section

Functions

 Link to this function

 store(definition, filepath)

Waffle.Actions.Url

Url generation.
Saving your files is only the first half of any decent storage
solution. Straightforward access to your uploaded files is equally
as important as storing them in the first place.
Often times you will want to regain access to the stored files. As
such, Waffle facilitates the generation of urls.
Given some user record
user = %{id: 1}

Avatar.store({%Plug.Upload{}, user}) #=> {:ok, "selfie.png"}

To generate a regular, unsigned url (defaults to the first version):
Avatar.url({"selfie.png", user})
#=> "https://bucket.s3.amazonaws.com/uploads/1/original.png"

To specify the version of the upload:
Avatar.url({"selfie.png", user}, :thumb)
#=> "https://bucket.s3.amazonaws.com/uploads/1/thumb.png"

To generate a signed url:
Avatar.url({"selfie.png", user}, :thumb, signed: true)
#=> "https://bucket.s3.amazonaws.com/uploads/1/thumb.png?AWSAccessKeyId=AKAAIPDF14AAX7XQ&Signature=5PzIbSgD1V2vPLj%2B4WLRSFQ5M%3D&Expires=1434395458"

To generate urls for all versions:
Avatar.urls({"selfie.png", user})
#=> %{original: "https://.../original.png", thumb: "https://.../thumb.png"}
Default url
In cases where a placeholder image is desired when an uploaded file
is not present, Waffle allows the definition of a default image to
be returned gracefully when requested with a nil file.
def default_url(version) do
 MyApp.Endpoint.url <> "/images/placeholders/profile_image.png"
end

Avatar.url(nil) #=> "http://example.com/images/placeholders/profile_image.png"
Avatar.url({nil, scope}) #=> "http://example.com/images/placeholders/profile_image.png"
Virtual Host
To support AWS regions other than US Standard, it may be required to
generate urls in the
virtual_host
style. This will generate urls in the style:
https://#{bucket}.s3.amazonaws.com instead of
https://s3.amazonaws.com/#{bucket}.
To use this style of url generation, your bucket name must be DNS
compliant.
This can be enabled with:
config :waffle,
 virtual_host: true
When using virtual hosted–style buckets with SSL, the SSL wild card certificate only matches buckets that do not contain periods. To work around this, use HTTP or write your own certificate verification logic.

Asset Host
You may optionally specify an asset host rather than using the
default bucket.s3.amazonaws.com format.
In your application configuration, you'll need to provide an asset_host value:
config :waffle,
 asset_host: "https://d3gav2egqolk5.cloudfront.net", # For a value known during compilation
 asset_host: {:system, "ASSET_HOST"} # For a value not known until runtime

 Anchor for this section

 Summary

 Functions

 url(definition, file, version, options)

 Anchor for this section

Functions

 Link to this function

 url(definition, file, version, options)

Waffle.Definition

Defines uploader to manage files.
defmodule Avatar do
 use Waffle.Definition
end
Consists of several components to manage different parts of file
managing process.
	Waffle.Definition.Versioning

	Waffle.Definition.Storage

	Waffle.Actions.Store

	Waffle.Actions.Delete

	Waffle.Actions.Url

Waffle.Definition.Storage

Uploader configuration.
Add use Waffle.Definition inside your module to use it as uploader.
Storage directory
By default, the storage directory is uploads. But, it can be customized
in two ways.
By setting up configuration
Customize storage directory via configuration option :storage_dir.
config :waffle,
 storage_dir: "my/dir"
By overriding the relevant functions in definition modules
Every definition module has a default storage_dir/2 which is overridable.
For example, a common pattern for user avatars is to store each user's
uploaded images in a separate subdirectory based on primary key:
def storage_dir(version, {file, scope}) do
 "uploads/users/avatars/#{scope.id}"
end
Note: If you are "attaching" a file to a record on creation (eg, while inserting the record at the same time), then you cannot use the model's id as a path component. You must either (1) use a different storage path format, such as UUIDs, or (2) attach and update the model after an id has been given. Read more about how to integrate it with Ecto

Note: The storage directory is used for both local filestorage (as the relative or absolute directory), and S3 storage, as the path name (not including the bucket).

Asynchronous File Uploading
If you specify multiple versions in your definition module, each
version is processed and stored concurrently as independent Tasks.
To prevent an overconsumption of system resources, each Task is
given a specified timeout to wait, after which the process will
fail. By default, the timeout is 15_000 milliseconds.
If you wish to change the time allocated to version transformation
and storage, you can add a configuration option:
config :waffle,
 :version_timeout, 15_000 # milliseconds
To disable asynchronous processing, add @async false to your
definition module.
Storage of files
Waffle currently supports:
	Waffle.Storage.Local
	Waffle.Storage.S3

Override the __storage function in your definition module if you
want to use a different type of storage for a particular uploader.
File Validation
While storing files on S3 eliminates some malicious attack vectors,
it is strongly encouraged to validate the extensions of uploaded
files as well.
Waffle delegates validation to a validate/1 function with a tuple
of the file and scope. As an example, in order to validate that an
uploaded file conforms to popular image formats, you can use:
defmodule Avatar do
 use Waffle.Definition
 @extension_whitelist ~w(.jpg .jpeg .gif .png)

 def validate({file, _}) do
 file_extension = file.file_name |> Path.extname() |> String.downcase()

 case Enum.member?(@extension_whitelist, file_extension) do
 true -> :ok
 false -> {:error, "invalid file type"}
 end
 end
end
Validation will be considered successful if the function returns true or :ok.
A customized error message can be returned in the form of {:error, message}.
Any other return value will return {:error, :invalid_file} when passed through
to Avatar.store.
Passing custom headers when downloading from remote path
By default, when downloading files from remote path request headers are empty,
but if you wish to provide your own, you can override the remote_file_headers/1
function in your definition module. For example:
defmodule Avatar do
 use Waffle.Definition

 def remote_file_headers(%URI{host: "elixir-lang.org"}) do
 credentials = Application.get_env(:my_app, :avatar_credentials)
 token = Base.encode64(credentials[:username] <> ":" <> credentials[:password])

 [{"Authorization", "Basic #{token}")}]
 end
end
This code would authenticate request only for specific domain. Otherwise, it would send
empty request headers.

Waffle.Definition.Versioning

Define proper name for a version.
It may be undesirable to retain original filenames (eg, it may
contain personally identifiable information, vulgarity,
vulnerabilities with Unicode characters, etc).
You may specify the destination filename for uploaded versions
through your definition module.
A common pattern is to combine directories scoped to a particular
model's primary key, along with static filenames. (eg:
user_avatars/1/thumb.png).
To retain the original filename, but prefix the version and user id:
def filename(version, {file, scope}) do
 file_name = Path.basename(file.file_name, Path.extname(file.file_name))
 "#{scope.id}_#{version}_#{file_name}"
end

To make the destination file the same as the version:
def filename(version, _), do: version

 Anchor for this section

 Summary

 Functions

 resolve_file_name(definition, version, arg)

 Anchor for this section

Functions

 Link to this function

 resolve_file_name(definition, version, arg)

Waffle.Processor

Apply transformation to files.
Waffle can be used to facilitate transformations of uploaded files
via any system executable. Some common operations you may want to
take on uploaded files include resizing an uploaded avatar with
ImageMagick or extracting a still image from a video with FFmpeg.
To transform an image, the definition module must define a
transform/2 function which accepts a version atom and a tuple
consisting of the uploaded file and corresponding scope.
This transform handler accepts the version atom, as well as the
file/scope argument, and is responsible for returning one of the
following:
	:noaction - The original file will be stored as-is.

	:skip - Nothing will be stored for the provided version.

	{executable, args} - The executable will be called with
System.cmd with the format
#{original_file_path} #{args} #{transformed_file_path}.

	{executable, fn(input, output) -> args end} If your executable
expects arguments in a format other than the above, you may
supply a function to the conversion tuple which will be invoked
to generate the arguments. The arguments can be returned as a
string (e.g. – " #{input} -strip -thumbnail 10x10 #{output}")
or a list (e.g. – [input, "-strip", "-thumbnail", "10x10", output]) for even more control.

	{executable, args, output_extension} - If your transformation
changes the file extension (eg, converting to png), then the
new file extension must be explicit.

	fn version, file -> {:ok, file} end - Implement custom
transformation as elixir function,
read more about custom transformations

ImageMagick transformations
As images are one of the most commonly uploaded filetypes, Waffle
has a recommended integration with ImageMagick's convert tool for
manipulation of images. Each definition module may specify as many
versions as desired, along with the corresponding transformation for
each version.
The expected return value of a transform function call must either
be :noaction, in which case the original file will be stored
as-is, :skip, in which case nothing will be stored, or {:convert, transformation} in which the original file will be processed via
ImageMagick's convert tool with the corresponding transformation
parameters.
The following example stores the original file, as well as a squared
100x100 thumbnail version which is stripped of comments (eg, GPS
coordinates):
defmodule Avatar do
 use Waffle.Definition

 @versions [:original, :thumb]

 def transform(:thumb, _) do
 {:convert, "-strip -thumbnail 100x100^ -gravity center -extent 100x100"}
 end
end
Other examples:
Change the file extension through ImageMagick's `format` parameter:
{:convert, "-strip -thumbnail 100x100^ -gravity center -extent 100x100 -format png", :png}

Take the first frame of a gif and process it into a square jpg:
{:convert, fn(input, output) -> "#{input}[0] -strip -thumbnail 100x100^ -gravity center -extent 100x100 -format jpg #{output}", :jpg}
For more information on defining your transformation, please consult
ImageMagick's convert
documentation.
Note: Keep this transformation function simple and deterministic based on the version, file name, and scope object. The transform function is subsequently called during URL generation, and the transformation is scanned for the output file format. As such, if you conditionally format the image as a png or jpg depending on the time of day, you will be displeased with the result of Waffle's URL generation.

System Resources: If you are accepting arbitrary uploads on a public site, it may be prudent to add system resource limits to prevent overloading your system resources from malicious or nefarious files. Since all processing is done directly in ImageMagick, you may pass in system resource restrictions through the -limit flag. One such example might be: -limit area 10MB -limit disk 100MB.

FFmpeg transformations
Common transformations of uploaded videos can be also defined
through your definition module:
To take a thumbnail from a video:
{:ffmpeg, fn(input, output) -> "-i #{input} -f jpg #{output}" end, :jpg}

To convert a video to an animated gif
{:ffmpeg, fn(input, output) -> "-i #{input} -f gif #{output}" end, :gif}
Complex Transformations
Waffle requires the output of your transformation to be located at
a predetermined path. However, the transformation may be done
completely outside of Waffle. For fine-grained transformations,
you should create an executable wrapper in your $PATH (eg. bash
script) which takes these proper arguments, runs your
transformation, and then moves the file into the correct location.
For example, to use soffice to convert a doc to an html file, you
should place the following bash script in your $PATH:
#!/usr/bin/env sh

`soffice` doesn't allow for output file path option, and waffle can't find the
temporary file to process and copy. This script has a similar argument list as
what waffle expects. See https://github.com/stavro/arc/issues/77.

set -e
set -o pipefail

function convert {
 soffice \
 --headless \
 --convert-to html \
 --outdir $TMPDIR \
 "$1"
}

function filter_new_file_name {
 awk -F$TMPDIR '{print $2}' \
 | awk -F" " '{print $1}' \
 | awk -F/ '{print $2}'
}

converted_file_name=$(convert "$1" | filter_new_file_name)

cp $TMPDIR/$converted_file_name "$2"
rm $TMPDIR/$converted_file_name
And perform the transformation as such:
def transform(:html, _) do
 {:soffice_wrapper, fn(input, output) -> [input, output] end, :html}
end

 Anchor for this section

 Summary

 Functions

 process(definition, version, arg)

 Anchor for this section

Functions

 Link to this function

 process(definition, version, arg)

Waffle.Storage.Local

Local storage provides facility to store files locally.
Local configuration
config :waffle,
 storage: Waffle.Storage.Local,
 # in order to have a different storage directory from url
 storage_dir_prefix: "priv/waffle/private",
 # add custom host to url
 asset_host: "https://example.com"
If you want to handle your attachments by phoenix application,
configure the endpoint to serve it.
defmodule AppWeb.Endpoint do
 plug Plug.Static,
 at: "/uploads",
 from: Path.expand("./priv/waffle/public/uploads"),
 gzip: false
end

 Anchor for this section

 Summary

 Functions

 delete(definition, version, file_and_scope)

 put(definition, version, arg)

 url(definition, version, file_and_scope, options \\ [])

 Anchor for this section

Functions

 Link to this function

 delete(definition, version, file_and_scope)

 Link to this function

 put(definition, version, arg)

 Link to this function

 url(definition, version, file_and_scope, options \\ [])

Waffle.Storage.S3

The module to facilitate integration with S3 through ExAws.S3
config :waffle,
 storage: Waffle.Storage.S3,
 bucket: {:system, "AWS_S3_BUCKET"}
Along with any configuration necessary for ExAws.
ExAws is used to support Amazon S3.
To store your attachments in Amazon S3, you'll need to provide a
bucket destination in your application config:
config :waffle,
 bucket: "uploads"
You may also set the bucket from an environment variable:
config :waffle,
 bucket: {:system, "S3_BUCKET"}
In addition, ExAws must be configured with the appropriate Amazon S3
credentials.
ExAws has by default the following configuration (which you may
override if you wish):
config :ex_aws,
 json_codec: Jason,
 access_key_id: [{:system, "AWS_ACCESS_KEY_ID"}, :instance_role],
 secret_access_key: [{:system, "AWS_SECRET_ACCESS_KEY"}, :instance_role]
This means it will first look for the AWS standard
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment
variables, and fall back using instance meta-data if those don't
exist. You should set those environment variables to your
credentials, or configure an instance that this library runs on to
have an iam role.
Specify multiple buckets
Waffle lets you specify a bucket on a per definition basis. In case
you want to use multiple buckets, you can specify a bucket in the
definition module like this:
def bucket, do: :some_custom_bucket_name
You can also use the current scope to define a target bucket
def bucket({_file, scope}), do: scope.bucket || bucket()
Access Control Permissions
Waffle defaults all uploads to private. In cases where it is
desired to have your uploads public, you may set the ACL at the
module level (which applies to all versions):
@acl :public_read
Or you may have more granular control over each version. As an
example, you may wish to explicitly only make public a thumbnail
version of the file:
def acl(:thumb, _), do: :public_read
Supported access control lists for Amazon S3 are:
	ACL	Permissions Added to ACL
	:private	Owner gets FULL_CONTROL. No one else has access rights (default).
	:public_read	Owner gets FULL_CONTROL. The AllUsers group gets READ access.
	:public_read_write	Owner gets FULL_CONTROL. The AllUsers group gets READ and WRITE access.
		Granting this on a bucket is generally not recommended.
	:authenticated_read	Owner gets FULL_CONTROL. The AuthenticatedUsers group gets READ access.
	:bucket_owner_read	Object owner gets FULL_CONTROL. Bucket owner gets READ access.
	:bucket_owner_full_control	Both the object owner and the bucket owner get FULL_CONTROL over the object.

For more information on the behavior of each of these, please
consult Amazon's documentation for Access Control List (ACL)
Overview.
S3 Object Headers
The definition module may specify custom headers to pass through to
S3 during object creation. The available custom headers include:
	 :cache_control
	 :content_disposition
	 :content_encoding
	 :content_length
	 :content_type
	 :expect
	 :expires
	 :storage_class
	 :website_redirect_location
	 :encryption (set to "AES256" for encryption at rest)

As an example, to explicitly specify the content-type of an object,
you may define a s3_object_headers/2 function in your definition,
which returns a Keyword list, or Map of desired headers.
def s3_object_headers(version, {file, scope}) do
 [content_type: MIME.from_path(file.file_name)] # for "image.png", would produce: "image/png"
end
Alternate S3 configuration example
If you are using a region other than US-Standard, it is necessary to
specify the correct configuration for ex_aws. A full example
configuration for both waffle and ex_aws is as follows:
config :waffle,
 bucket: "my-frankfurt-bucket"

config :ex_aws,
 json_codec: Jason,
 access_key_id: "my_access_key_id",
 secret_access_key: "my_secret_access_key",
 region: "eu-central-1",
 s3: [
 scheme: "https://",
 host: "s3.eu-central-1.amazonaws.com",
 region: "eu-central-1"
]
For your host configuration, please examine the approved AWS Hostnames. There are often multiple hostname formats for AWS regions, and it will not work unless you specify the correct one.

 Anchor for this section

 Summary

 Functions

 delete(definition, version, arg)

 put(definition, version, arg)

 s3_key(definition, version, file_and_scope)

 url(definition, version, file_and_scope, options \\ [])

 Anchor for this section

Functions

 Link to this function

 delete(definition, version, arg)

 Link to this function

 put(definition, version, arg)

 Link to this function

 s3_key(definition, version, file_and_scope)

 Link to this function

 url(definition, version, file_and_scope, options \\ [])

Waffle.MissingExecutableError exception

mix waffle

mix waffle.g

A task for generating waffle uploader modules.
If generating an uploader in a Phoenix project, your a uploader will be generated in
lib/[APP_NAME]_web/uploaders/
Example
mix waffle.g avatar # creates lib/[APP_NAME]_web/uploaders/avatar.ex
If not generating an uploader in a Phoenix project, then you must pass the path to where the
uploader should be generated.
Example
mix waffle.g avatar uploaders/avatar.ex # creates uploaders/avatar.ex

 Anchor for this section

 Summary

 Functions

 run(arg1)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(arg1)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

