

 WaitForIt

 v2.1.2

 Table of contents

 	Changelog

 	License

 	Modules

 	WaitForIt

 	WaitForIt.Waitable

 	WaitForIt.V1

 	WaitForIt.TimeoutError

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog
and this project adheres to Semantic Versioning.

 2.1.0 - 2023--11-14

 Changed

	Further improved documentation.
	WaitForIt.case_wait/3 will now raise a CaseClauseError on timeout if there is no else block.
	WaitForIt.cond_wait/2 will now raise a CondClauseError on timeout if there is no else block.

 2.0.0 - 2023-11-02

 Changed

	Much improved documentation.
	Breaking change to return value of WaitForIt.wait/2, WaitForIt.case_wait/3, and WaitForIt.cond_wait/2.
	Rewrite of WaitForIt internals.
	Moved legacy code to WaitForIt.V1.

 1.4.0 - 2023-10-24

 Added

	Add WaitForIt.wait! macro.

 [1.3.0] - 2020-04-02

 Changed

	Use DynamicSupervisor to manage condition variables.

 [1.2.1] - 2019-03-14

 Added

	Add :pre_wait option to all forms of waiting.

 [1.2.0] - 2019-03-08

 Added

	Add support for match clauses in else block of case_wait. (Issue #9)

 1.1.1 - 2018-03-03

 Added

	Add idle timeout feature for ConditionVariable.

 1.1.0 - 2017-09-02

 Added

	Add support for else clause in case_wait and cond_wait. (Issue #4)
	Add this CHANGELOG

 Changed

	Use supervisor to manage condition variables. (Issue #5)

 Fixed

	Grammar fixes for README and @moduledoc. Thanks to @GregMefford for the fixes.
	Fix unexpected messages from wait_for_it when used with Genserver

 1.0.0 - 2017-08-28

	Initial release supporting wait, case_wait, and cond_wait with either polling or condition variable signaling.

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright {yyyy} {name of copyright owner}

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

WaitForIt

Provides various ways of waiting for things to happen.

 Overview

Elixir is a functional programming language with an emphasis on immmutability of data. However,
when dealing with shared state or interacting with external systems, change happens.
WaitForIt provides various ways of waiting for such changes to happen.
While Elixir provides several language and standard library features (such as
Process.sleep/1, receive/1/after, and Task.async/1/Task.await/2) that can be used to
implement waiting, they are inconvenient to use for this purpose. WaitForIt builds on top of
these language features to provide convenient and easy-to-use facilities for waiting on specific
conditions. While this is likely most useful for test code in which tests must wait for
concurrent or asynchronous activities to complete, it is also useful in any scenario where
concurrent processes must coordinate their activity. Examples include asynchronous event
handling, producer-consumer processes, and time-based activity.

 Quick start

To use WaitForIt, you must first require WaitForIt or import WaitForIt.
There are three distinct forms of waiting provided. Jump to the docs for each for more
information.
wait
The wait/2 macro waits until a given expression evaluates to a truthy value.
Wait up to one minute for a file to exist, and then print its contents
if WaitForIt.wait(File.exists?("data.csv"), timeout: :timer.minutes(1)) do
 IO.puts(File.read!("data.csv"))
else
 IO.warn("Stopped waiting for the file to exist")
end
case_wait
The case_wait/3 macro waits until a given expression evaluates to a value that matches any one
of the given case clauses. It looks and acts like an Elixir case/2 expression except that it
can take an optional else clause.
Wait for 30 seconds for a directory to exist, and then write a file in it
WaitForIt.case_wait(File.stat("data"), timeout: :timer.seconds(30)) do
 {:ok, %File.Stat{type: :directory}} ->
 File.write!("data/greeting.txt", "Hello, world!")
else
 {:ok, %File.Stat{type: type}} ->
 IO.warn("Expected 'data' to be a directory but its type is #{inspect(type)}")

 {:error, reason} ->
 IO.warn("Could not stat 'data': #{inspect(reason)}")
end
cond_wait
The cond_wait/2 macro waits until any one of the given expressions evaluates to a truthy value.
It looks and acts like an Elixir cond/1 expression except that it can take an optional else
clause.
Wait for up to one minute for either a specific file to exist OR for the top of the minute
to be reached.
WaitForIt.cond_wait(timeout: :timer.seconds(10), frequency: 500) do
 File.exists?("data/process.json") ->
 IO.puts("Processing...")

 NaiveDateTime.utc_now().second == 0 ->
 IO.puts("Processing...")
else
 IO.warn("Stopped waiting since neither condition ever became truthy")
end

 Options

All three forms of waiting accept the same set of options to control their behavior:
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a signal of the given name instead

See Polling-based waiting for more information on the
:frequency option and Signal-based waiting for more
information on the :signal option.

 Waitable expressions and waiting conditions

Waitable expressions and waiting conditions are fundamental concepts in WaitForIt.
A waitable expression is any arbitrary Elixir expression that can be evaluated one or more
times to produce a value.
A waiting condition is a conditional expression that indicates whether waiting should continue
or be halted with a particular value.
In the case of wait/2, there is a single waitable expression, which is passed as the first
argument of the macro, and an implicit waiting condition, which is based on the truthiness
of the associated waitable expression. For example:
WaitForIt.wait(2 + 2 == 5, timeout: 200)
In this example the waitable expression is 2 + 2 == 5 and the implicit waiting condition is
the truthiness of that expression. The waitable expression is repeatedly evaluated until the
value that it produces satisfies the waiting condition. In this case, the value of evaluating
the expression is always false so it will never satisfy the waiting condition of a truthy
value, and will therefore result in a timeout.
For case_wait/3, there is a single waitable expression and one or more explicit waiting
conditions expressed as case clauses. For example:
WaitForIt.case_wait(File.stat("data.csv"), timeout: :timer.seconds(10)) do
 {:ok, %File.Stat{} = file_stat} -> IO.inspect(file_stat)
end
In this example the waitable expression is File.stat("data.csv"), which, upon evaluation,
results in a value of either {:ok, %FileStat{}} or {:error, reason}. There is also one
explicit waiting condition, which is the case clause {:ok, %File.Stat{} = file_stat}.
The waitable expression will be repeatedly evaluated until it produces a value satisfying the
lone waiting condition. In other words, it will wait until the file exists or a timeout occurs.
For cond_wait/2, there can be one or more waitable expressions and each one is paired with an
implicit waiting condition, which is the truthiness of the waitable expression value.
For example:
WaitForIt.cond_wait(timeout: :timer.hours(1)) do
 Date.utc_today().day == 1 -> IO.puts("It's the first day of the month")
 NaiveDateTime.utc_now().minute == 30 -> IO.puts("It's half past the hour")
end
In this example, there are two waitable expressions: Date.utc_today().day == 1 and
NaiveDateTime.utc_now().minute == 30. Each of these is paired with an implicit waiting
condition, which is the truthiness of the value produced by evaluating the expression.

 Idempotency of waitable expressions

Waitable expressions are by their nature subject to change with repeated evaluations over time.
Therefore, idempotent expressions are of little use in the context of waiting, since waiting
would either halt immediately (if the expression already saitisfies the waiting conditions)
or never halt at all (if it does not satisfy the waiting conditions).
It is important, however, that any side-effects that can occur during evaluation of the
expression are safe and predictable, since the expression may be evaluated an inderminate
number of times while waiting.

 Polling-based waiting

By default, WaitForIt uses a polling-based waiting mode in which waitable expressions are
periodically re-evaluated until waiting conditions have been met or a timeout has occurred.
The frequency at which waitable expressions are evaluated can be controlled by the :frequency
option, which specifies the delay between evaluations in milliseconds and is supported by all
forms of waiting.
Polling "frequency"
The term "frequency" is something of a misnomer as it is used here, since it is a time value
(milliseconds) rather than a rate. A more accurate term would be :polling_interval, or
perhaps simply :interval, but :frequency is already in use.
For the curious, the actual frequency in Hertz can be derived from the value of the
:frequency option using this formula: 1 / (:frequency / 1000)
Thus a :frequency value of 100 yields a frequency of 10 Hz.

 Signal-based waiting

Signal-based waiting obviates the need for polling by using a signaling mechanism to indicate
that waiting conditions should be re-evaluated in response to some event. With signal-based
waiting, instead of periodically re-evaluating conditions at a particular frequency, a signal
is sent to waiters to indicate when waiting conditions should be re-evaluated. It is expected
that the signal/1 function will be used to unblock the waiting code in order to re-evaluate
the waiting conditions.
To use signal-based waiting instead of polling-based waiting use the :signal option that is
supported by all forms of waiting. The value of the :signal option is an arbitrary term
(typically an atom or a tuple of atoms) that serves as the binding between the waiting
conditions and the asynchronous code that can alter the outcome of those waiting conditions.
When the :signal option is used, WaitForIt will automatically wait until a matching signal is
received and then re-evaluate waiting conditions. If the waiting conditions are saitisfied then
the wait is halted, if not then the wait continues until the next signal is received or a
timeout occurs.
By way of example, imagine a typical producer-consumer problem in which a consumer process waits
for items to appear in some buffer while a separate producer process occasionally place items in
the buffer. In this scenario, the consumer process might use the wait/2 macro with the
:signal option to wait until there are some items in the buffer and the producer process would
use the signal/1 function to tell the consumer that it might be time for it to check the
buffer again.
CONSUMER process
WaitForIt.wait Buffer.count() >= 4, signal: :wait_for_buffer

PRODUCER process
put some things in buffer, then signal waiters
Buffer.put(1)
Buffer.put(2)
WaitForIt.signal(:wait_for_buffer)
Notice that the same signal name, :wait_for_buffer, is used by both the consumer and the
producer, which is what allows the producer to signal to the consumer that waiting conditions
should be re-evaluated. It is important to realize that just because a signal has been emitted
does not necessarily mean that any waiting conditions have been satisfied. Rather, a signal
indicates that waiters should re-evaluate their waiting conditions to determine if they should
continue to wait or not.

 Using WaitForIt in tests

One common use case for waiting on the results of asynchronous operations is in tests,
particularly in integration or end-to-end tests. This section will present examples of using
the various forms of waiting in test code. All examples assume that the WaitForIt module has
been imported in the test module, such as follows:
defmodule MyTest do
 use ExUnit.Case
 import WaitForIt
end
The wait/2 macro can be used directly in assertions, since it returns the truthy or falsy
value that the waitable expression evaluated to (i.e. a truthy value for successful waits or a
falsy value for timeouts). For example, to assert that a particular database record is
eventually inserted into the database can be as simple as:
assert wait(Repo.get(User, user_id))
Alternatively, pattern-matching can be used in some cases to make stronger assertions, such as:
assert %User{first_name: "Elijah"} = wait(Repo.get(User, user_id), timeout: 1_000)
The case_wait/3 macro offers greater flexibility in the sense that it allows for matching on
any one of a series of case clauses and also allows for the use of an else block if none of
the case clauses eventually match. For example, to assert that a particular database record is
eventually inserted and that it has particular values:
case_wait Repo.get(User, user_id), timeout: 1_000 do
 %User{id: ^user_id} = user ->
 assert user.first_name == "Elijah"
 assert Date.compare(user.birth_date, ~D[2023-07-20]) == :eq
else
 unexpected ->
 flunk("Expected a User record for Elijah, got something else: #{inspect(unexpected)}")
end
Or to test if exactly one or two records are returned for a particular query, something like
the following can be used:
case_wait Repo.all(some_query), timeout: 2_000, frequency: 500 do
 [only_thing] -> assert only_thing.id == 42
 [thing1, thing2] -> assert thing1.id == 1 and thing2.id == 2
else
 [] -> flunk("expected one or two things, got no things")
 [_ | _] = things -> flunk("expected one or two things, got #{length(things)} things")
end

 A note on "catch-all" clauses

It is common to include "catch-all" clauses in normal Elixir case/2 and cond/1 expressions.
Often, a case/2 expression will include a final catch-all clause (like _) which will always
match, Similarly, a cond/1 expression will typically include a final always-truthy condition
(like true) which will always match.
When using the waiting variants of these constructs, case_wait/3 and cond_wait/2, it is
not recommended to use such catch-all clauses. The reason for this is that, since catch-all
clauses by definition always match, including one as a waiting condition would not allow for
re-evaluating any other waiting conditions and would terminate the wait immediately after the
first evaluation.
Instead of using a catch-all clause that always matches, an else clause can be used instead.
Both case_wait/3 and cond_wait/2 support else clauses, and these clauses are evaluated
whenever a waiting operation results in a timeout, which allows for customizing the behavior
and return value of the expression in the event of a timeout.

 Summary

 Types

 wait_expression()

 Type to represent an expression that can be waited on.

 wait_opt()

 Options that can be used to control waiting behavior.

 wait_opts()

 Options that can be used to control waiting behavior.

 wait

 wait(expression, opts \\ [])

 Wait until the given expression evaluates to a truthy value.

 wait!(expression, opts \\ [])

 The same as wait/2 but raises a WaitForIt.TimeoutError exception if it fails.

 case_wait

 case_wait(expression, opts \\ [], blocks)

 Wait until the given expression matches one of the case clauses in the given block.

 case_wait!(expression, opts \\ [], blocks)

 The same as case_wait/3 but raises a WaitForIt.TimeoutError exception if it fails.

 cond_wait

 cond_wait(opts \\ [], blocks)

 Wait until one of the expressions in the given block evaluates to a truthy value.

 cond_wait!(opts \\ [], blocks)

 The same as cond_wait/2 but raises a WaitForIt.TimeoutError exception if it fails.

 signaling

 signal(signal)

 Send a signal to indicate that any processes waiting on the signal should re-evaluate their
waiting conditions.

 Types

 Link to this type

 wait_expression()

 View Source

 @type wait_expression() :: Macro.t()

Type to represent an expression that can be waited on.

 Link to this type

 wait_opt()

 View Source

 @type wait_opt() ::
 {:timeout, non_neg_integer()}
 | {:frequency, non_neg_integer()}
 | {:pre_wait, non_neg_integer()}
 | {:signal, atom() | nil}

Options that can be used to control waiting behavior.

 Link to this type

 wait_opts()

 View Source

 @type wait_opts() :: [wait_opt()]

Options that can be used to control waiting behavior.
See wait_opt/0.

 wait

 Link to this macro

 wait(expression, opts \\ [])

 View Source

 (macro)

Wait until the given expression evaluates to a truthy value.
Returns the truthy value that ended the wait, or the last falsy value evaluated if a timeout
occurred.
Warning
The value returned from this macro has changed as of version 2.0.
In previous versions, {:ok, value} would be returned for the success case, and
{:timeout, timeout_milliseconds} would be returned for the timeout case.
As of version 2.0, the final value of the wait expression is returned directly, which will
be a truthy value for the success case and a falsy value for the timeout case. This allows
the wait/2 macro to be used in conditional expressions, such as in if/2/else expressions,
or in assertions in tests.
If you are migrating from version 1.x and rely on the return value, you can enable the
previous behavior by using the WaitForIt.V1.wait/2 macro instead.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a signal of the given name instead

 Examples

Wait until the top of the hour:
WaitForIt.wait Time.utc_now.minute == 0, frequency: 60_000, timeout: 60_000 * 60
Wait up to one minute for a particular record to appear in the database:
if data = WaitForIt.wait Repo.get(Post, 42), frequency: 1000, timeout: :timer.seconds(60) do
 IO.inspect(data)
else
 IO.puts("Gave up after #{timeout} milliseconds")
end
Assert that a database record is created by some asynchronous process:
do_some_async_work()
assert %Post{id: 42} = WaitForIt.wait Repo.get(Post, 42)

 Link to this macro

 wait!(expression, opts \\ [])

 View Source

 (macro)

The same as wait/2 but raises a WaitForIt.TimeoutError exception if it fails.

 case_wait

 Link to this macro

 case_wait(expression, opts \\ [], blocks)

 View Source

 (macro)

Wait until the given expression matches one of the case clauses in the given block.
Returns the value of the matching clause, the value of the optional else clause,
or the last evaluated value of the expression in the event of a timeout.
The do block passed to this macro must be a series of case clauses exactly like a built-in
Elixir case/2 expression. Just like a case/2 expression, the clauses will attempt to be
matched from top to bottom and the first one that matches will provide the resulting value of the
expression. The difference with case_wait/3 is that if none of the clauses initially matches it
will wait and periodically re-evaluate the clauses until one of them does match or a timeout
occurs.
An optional else clause may also be used to provide the value in case of a timeout. If an
else clause is provided and a timeout occurs, then the else clause will be evaluated and
the resulting value of the else clause becomes the value of the case_wait/3 expression. If no
else clause is provided and a timeout occurs, then a CaseClauseError is raised, exactly as
if a normal Elixir case/2 expression were being used.
The optional else clause may also take the form of match clauses, such as those in the else
clause of a with/1 expression. In this form, the else clause can match on the final value
of the expression that was evaluated before the timeout occurred. See the examples below for an
example of this.
Beware "catch-all" clauses
case_wait/3 expressions should not include a final "catch-all" clause, such as _, which
would always match. Instead, an else clause can be used to customize the behavior and
return value in the event of a waiting timeout.
See A note on "catch-all" clauses in the module docs
for further information.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a signal of the given name instead

 Examples

Wait until queue has at least 5 messages, then return them:
WaitForIt.case_wait Queue.get_messages(queue), timeout: 30_000, frequency: 100 do
 messages when length(messages) > 4 -> messages
else
 # If after 30 seconds we still don't have 5 messages, just return the messages we do have.
 messages -> messages
end
A thermostat that keeps temperature in a small range:
def thermostat(desired_temperature) do
 WaitForIt.case_wait get_current_temperature() do
 temp when temp > desired_temperature + 2 ->
 turn_on_air_conditioning()
 temp when temp < desired_temperature - 2 ->
 turn_on_heat()
 end
 thermostat(desired_temperature)
end
Wait until the process mailbox is small enough before flooding it with more messages:
WaitForIt.case_wait Process.info(stream_pid, :message_queue_len),
 frequency: 10,
 timeout: 60_000 do
 {:message_queue_len, len} when len < 500 ->
 send_chunk(conn, chunk)
else
 len ->
 raise "Timeout while sending stream response. [message_queue_len: #{len}]"
end
Production-ready
The above example is a real-world use of WaitForIt that was used to solve an issue with chunked
HTTP responses using plug_cowboy. The underlying
issue has since been fixed but this example is a good illustration of using WaitForIt to
solve a production problem.
See https://github.com/elixir-plug/plug_cowboy/issues/10 for background and further details,
if interested.

 Link to this macro

 case_wait!(expression, opts \\ [], blocks)

 View Source

 (macro)

The same as case_wait/3 but raises a WaitForIt.TimeoutError exception if it fails.

 cond_wait

 Link to this macro

 cond_wait(opts \\ [], blocks)

 View Source

 (macro)

Wait until one of the expressions in the given block evaluates to a truthy value.
Returns the value corresponding with the matching expression, the value of the optional else
clause, or nil in the event of a timeout.
The do block passed to this macro must be a series of expressions exactly like a built-in
Elixir cond/1 expression. Just like a cond/1 expression, the embedded expresions will be
evaluated from top to bottom and the first one that is truthy will provide the resulting value of
the expression. The difference with cond_wait/2 is that if none of the expressions is initially
truthy it will wait and periodically re-evaluate them until one of them becomes truthy or a
timeout occurs.
An optional else clause may also be used to provide the value in case of a timeout. If an
else clause is provided and a timeout occurs, then the else clause will be evaluated and
the resulting value of the else clause becomes the value of the cond_wait/2 expression. If no
else clause is provided and a timeout occurs, then a CondClauseError is raised, exactly as
if a normal Elixir cond/1 expression were being used.
Beware "catch-all" clauses
cond_wait/2 expressions should not include a final "catch-all" clause, such as true,
which would always match. Instead, an else clause can be used to customize the behavior and
return value in the event of a waiting timeout.
See A note on "catch-all" clauses in the module docs
for further information.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a signal of the given name instead

 Examples

Trigger an alarm when any sensors go beyond a threshold:
def sound_the_alarm do
 WaitForIt.cond_wait timeout: 60_000 * 60 * 24 do
 read_sensor(:sensor1) > 9 -> IO.puts("Alarm: :sensor1 too high!")
 read_sensor(:sensor2) < 100 -> IO.puts("Alarm: :sensor2 too low!")
 read_sensor(:sensor3) < 0 -> IO.puts("Alarm: :sensor3 below zero!")
 else
 IO.puts("All is good...for now.")
 end

 # Recursively call to wait for the next sensor readings...
 sound_the_alarm()
end

 Link to this macro

 cond_wait!(opts \\ [], blocks)

 View Source

 (macro)

The same as cond_wait/2 but raises a WaitForIt.TimeoutError exception if it fails.

 signaling

 Link to this function

 signal(signal)

 View Source

Send a signal to indicate that any processes waiting on the signal should re-evaluate their
waiting conditions.

WaitForIt.Waitable protocol

Protocol used for evaluating waitable expressions against waiting conditions to determine if
waiting should continue or halt with a final value.

 Summary

 Types

 t()

 All the types that implement this protocol.

 value()

 wait_type()

 Functions

 evaluate(waitable, env)

 Evaluates the waitable expression to provide its value, or to continue to wait.

 handle_timeout(waitable, last_value, env)

 Provides the final value of the waitable expression in the event of a timeout.

 wait_type(waitable)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Link to this type

 value()

 View Source

 @type value() :: any()

 Link to this type

 wait_type()

 View Source

 @type wait_type() :: atom()

 Functions

 Link to this function

 evaluate(waitable, env)

 View Source

 @spec evaluate(t(), Macro.Env.t()) :: {:halt, value()} | {:cont, value()}

Evaluates the waitable expression to provide its value, or to continue to wait.
It should return {:halt, value} if the wait is over and the final value of the waitable
expression has been determined, or {:cont, value} if waiting should continue.

 Link to this function

 handle_timeout(waitable, last_value, env)

 View Source

 @spec handle_timeout(t(), value(), Macro.Env.t()) :: value()

Provides the final value of the waitable expression in the event of a timeout.

 Link to this function

 wait_type(waitable)

 View Source

 @spec wait_type(t()) :: wait_type()

WaitForIt.V1

 This module is deprecated. This is a legacy module for backward compatibility only; new code should use the main WaitForIt module instead.

 Summary

 Functions

 case_wait(expression, opts \\ [], blocks)

 Wait until the given expression matches one of the case clauses in the given block.

 cond_wait(opts \\ [], blocks)

 Wait until one of the expressions in the given block evaluates to a truthy value.

 signal(condition_var)

 Send a signal to the given condition variable to indicate that any processes waiting on the
condition variable should re-evaluate their wait conditions.

 wait(expression, opts \\ [])

 Wait until the given expression evaluates to a truthy value.

 wait!(expression, opts \\ [])

 Wait until the given expression evaluates to a truthy value.

 Functions

 Link to this macro

 case_wait(expression, opts \\ [], blocks)

 View Source

 (macro)

Wait until the given expression matches one of the case clauses in the given block.
Returns the value of the matching clause, the value of the optional else clause,
or a tuple of the form {:timeout, timeout_milliseconds}.
The do block passed to this macro must be a series of case clauses exactly like a built-in
Elixir case expression. Just like a case expression, the clauses will attempt to be matched
from top to bottom and the first one that matches will provide the resulting value of the
expression. The difference with case_wait is that if none of the clauses initially matches it
will wait and periodically re-evaluate the clauses until one of them does match or a timeout
occurs.
An optional else clause may also be used to provide the value in case of a timeout. If an
else clause is provided and a timeout occurs, then the else clause will be evaluated and
the resulting value of the else clause becomes the value of the case_wait expression. If no
else clause is provided and a timeout occurs, then the value of the case_wait expression is a
tuple of the form {:timeout, timeout_milliseconds}.
The optional else clause may also take the form of match clauses, such as those in a case
expression. In this form, the else clause can match on the final value of the expression that
was evaluated before the timeout occurred. See the examples below for an example of this.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a condition variable of the given name instead
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time

 Examples

 Wait until queue has at least 5 messages, then return them:
WaitForIt.case_wait Queue.get_messages(queue), timeout: 30_000, frequency: 100 do
 messages when length(messages) > 4 -> messages
else
 # If after 30 seconds we still don't have 5 messages, just return the messages we do have.
 messages -> messages
end
 A thermostat that keeps temperature in a small range:
def thermostat(desired_temperature) do
 WaitForIt.case_wait get_current_temperature() do
 temp when temp > desired_temperature + 2 ->
 turn_on_air_conditioning()
 temp when temp < desired_temperature - 2 ->
 turn_on_heat()
 end
 thermostat(desired_temperature)
end
 Ring the church bells every 15 minutes:
def church_bell_chimes do
 count = WaitForIt.case_wait Time.utc_now.minute, frequency: 60_000, timeout: 60_000 * 60 do
 15 -> 1
 30 -> 2
 45 -> 3
 0 -> 4
 end
 IO.puts(String.duplicate(" ding ding ding dong ", count))
 church_bell_chimes()
end

 Link to this macro

 cond_wait(opts \\ [], blocks)

 View Source

 (macro)

Wait until one of the expressions in the given block evaluates to a truthy value.
Returns the value corresponding with the matching expression, the value of the optional else
clause, or a tuple of the form {:timeout, timeout_milliseconds}.
The do block passed to this macro must be a series of expressions exactly like a built-in
Elixir cond expression. Just like a cond expression, the embedded expresions will be
evaluated from top to bottom and the first one that is truthy will provide the resulting value of
the expression. The difference with cond_wait is that if none of the expressions is initially
truthy it will wait and periodically re-evaluate them until one of them becomes truthy or a
timeout occurs.
An optional else clause may also be used to provide the value in case of a timeout. If an
else clause is provided and a timeout occurs, then the else clause will be evaluated and
the resulting value of the else clause becomes the value of the cond_wait expression. If no
else clause is provided and a timeout occurs, then the value of the cond_wait expression is a
tuple of the form {:timeout, timeout_milliseconds}.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a condition variable of the given name instead
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time

 Examples

 Trigger an alarm when any sensors go beyond a threshold:
def sound_the_alarm do
 WaitForIt.cond_wait timeout: 60_000 * 60 * 24 do
 read_sensor(:sensor1) > 9 -> IO.puts("Alarm: :sensor1 too high!")
 read_sensor(:sensor2) < 100 -> IO.puts("Alarm: :sensor2 too low!")
 read_sensor(:sensor3) < 0 -> IO.puts("Alarm: :sensor3 below zero!")
 else
 IO.puts("All is good...for now.")
 end
 sound_the_alarm()
end

 Link to this macro

 signal(condition_var)

 View Source

 (macro)

Send a signal to the given condition variable to indicate that any processes waiting on the
condition variable should re-evaluate their wait conditions.
The caller of signal must be in the same Elixir module as any waiters on the same condition
variable since the module is used as a namespace for condition variables. This is to prevent
accidental name collisions as well as to enforce good practice for encapsulation.

 Link to this macro

 wait(expression, opts \\ [])

 View Source

 (macro)

Wait until the given expression evaluates to a truthy value.
Returns {:ok, value} or {:timeout, timeout_milliseconds}.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a condition variable of the given name instead
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time

 Examples

 Wait until the top of the hour:
WaitForIt.wait Time.utc_now.minute == 0, frequency: 60_000, timeout: 60_000 * 60
 Wait up to one minute for a particular record to appear in the database:
case WaitForIt.wait Repo.get(Post, 42), frequency: 1000, timeout: 60_000 do
 {:ok, data} -> IO.inspect(data)
 {:timeout, timeout} -> IO.puts("Gave up after #{timeout} milliseconds")
end

 Link to this macro

 wait!(expression, opts \\ [])

 View Source

 (macro)

Wait until the given expression evaluates to a truthy value.
Returns the truthy value or raises a WaitForIt.TimeoutError if a timeout occurs.

 Options

See the WaitForIt module documentation for further discussion of these options.
	:timeout - the amount of time to wait (in milliseconds) before giving up
	:frequency - the polling frequency (in milliseconds) at which to re-evaluate conditions
	:signal - disable polling and use a condition variable of the given name instead
	:pre_wait - wait for the given number of milliseconds before evaluating conditions for the first time

WaitForIt.TimeoutError exception

Exception type to represent a timeout that occurred while waiting.

 Summary

 Types

 env()

 Type to represent the :env field of WaitForIt.TimeoutError exceptions.

 t()

 Types

 Link to this type

 env()

 View Source

 @type env() :: %{
 context: Macro.Env.context(),
 context_modules: Macro.Env.context_modules(),
 file: Macro.Env.file(),
 function: Macro.Env.name_arity() | nil,
 line: Macro.Env.line(),
 module: module()
}

Type to represent the :env field of WaitForIt.TimeoutError exceptions.
This struct is a subset of of Macro.Env and contains the following fields:
	context - the context of the environment; it can be nil (default context), :guard
(inside a guard) or :match (inside a match)
	context_modules - a list of modules defined in the current context
	file - the current absolute file name as a binary
	function - a tuple as {atom, integer}, where the first element is the function name and
the second its arity; returns nil if not inside a function
	line - the current line as an integer
	module - the current module name

 Link to this type

 t()

 View Source

 @type t() :: %WaitForIt.TimeoutError{
 __exception__: true,
 env: env(),
 last_value: term(),
 message: String.t(),
 timeout: non_neg_integer(),
 waitable: WaitForIt.Waitable.t()
}

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

