

 wsdataselect

 v1.11.1

 Table of contents

 	
 Modules

 	DeliveryMetrics

 	DeliveryMetrics.Data

 	DeliveryMetrics.Repo

 	Wsdataselect

 	Wsdataselect.ApiSpec

 	Wsdataselect.Auth.Header

 	Wsdataselect.Auth.Repo

 	Wsdataselect.Auth.WsUser

 	Wsdataselect.Data.Content

 	Wsdataselect.Data.ContentEpoch

 	Wsdataselect.Data.File

 	Wsdataselect.Data.Repository

 	Wsdataselect.DataFile

 	Wsdataselect.Dataselect

 	Wsdataselect.Filter

 	Wsdataselect.Mailer

 	Wsdataselect.Metadata.Epoch

 	Wsdataselect.Metadata.Network

 	Wsdataselect.Metadata.Station

 	Wsdataselect.Plug.Authentication

 	Wsdataselect.Plug.Authorization

 	Wsdataselect.Plug.Filters

 	Wsdataselect.Repo

 	WsdataselectWeb

 	WsdataselectWeb.Endpoint

 	WsdataselectWeb.ErrorJSON

 	WsdataselectWeb.Plug.Health

 	WsdataselectWeb.Plug.RedirectDoc

 	WsdataselectWeb.Plug.TrafficDrain

 	WsdataselectWeb.Plug.Version

 	WsdataselectWeb.QueryController

 	WsdataselectWeb.QueryJSON

 	WsdataselectWeb.Router

 	WsdataselectWeb.Telemetry

DeliveryMetrics

Plug module to compute metrics for Delivery metrics.

 Summary

 Functions

 amount_delivered(filters)

 With the directory containing the delivered data, count the size of bytes by channel.
With a list of filters, it means that there were no data delivered. Associate each filter with 0 bytes and no files delivered.

 compute(conn)

 We assume that datadir is present in the Plug. ie. the Plug.Conn has already traversed all previous steps

 extend_network(net, year)

 userid(user, remote_ip)

 This computes an identifier the same way as Seiscomp does.
The resulting integer can be then aggregated in the central database.

 Functions

 amount_delivered(filters)

 @spec amount_delivered(String.t() | list()) :: [DeliveryMetrics.Data.t()]

With the directory containing the delivered data, count the size of bytes by channel.
With a list of filters, it means that there were no data delivered. Associate each filter with 0 bytes and no files delivered.
Returns a list of DeliveryMetrics.Data.

 compute(conn)

 @spec compute(Plug.Conn.t()) :: Plug.Conn.t()

We assume that datadir is present in the Plug. ie. the Plug.Conn has already traversed all previous steps

 extend_network(net, year)

 @spec extend_network(String.t(), String.t() | integer()) :: {:ok | :error, String.t()}

 userid(user, remote_ip)

This computes an identifier the same way as Seiscomp does.
The resulting integer can be then aggregated in the central database.

DeliveryMetrics.Data

This module has all metrics for a data delivery.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %DeliveryMetrics.Data{
 __meta__: term(),
 auth: boolean(),
 bytes: integer(),
 channel: String.t(),
 clientip: String.t(),
 country: String.t(),
 date: DateTime.t(),
 geohash: String.t(),
 hostname: String.t(),
 location: String.t(),
 nbfiles: integer(),
 network: String.t(),
 requestid: String.t(),
 station: String.t(),
 useragent: String.t(),
 userid: integer()
}

DeliveryMetrics.Repo

 Summary

 Functions

 aggregate(queryable, aggregate, opts \\ [])

 Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

 Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

 Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

 Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

 Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

 Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 Forces all connections in the repo pool to disconnect within the given interval.

 exists?(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.

 get(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

 Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

 Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

 Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_log(metric)

 insert_or_update(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

 Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

 Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

 Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

 Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 Runs a custom SQL query.

 query!(sql, params \\ [], opts \\ [])

 Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 Runs a custom SQL query that returns multiple results on the given repo.

 query_many!(sql, params \\ [], opts \\ [])

 Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

 Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

 Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 Converts the given query to SQL according to its kind and the
adapter in the given repository.

 transact(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

 Callback implementation for Ecto.Repo.update_all/3.

 Functions

 aggregate(queryable, aggregate, opts \\ [])

Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 @spec disconnect_all(non_neg_integer(), opts :: Keyword.t()) :: :ok

Forces all connections in the repo pool to disconnect within the given interval.
Once this function is called, the pool will disconnect all of its connections
as they are checked in or as they are pinged. Checked in connections will be
randomly disconnected within the given time interval. Pinged connections are
immediately disconnected - as they are idle (according to :idle_interval).
If the connection has a backoff configured (which is the case by default),
disconnecting means an attempt at a new connection will be done immediately
after, without starting a new process for each connection. However, if backoff
has been disabled, the connection process will terminate. In such cases,
disconnecting all connections may cause the pool supervisor to restart
depending on the max_restarts/max_seconds configuration of the pool,
so you will want to set those carefully.

 exists?(queryable, opts \\ [])

Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 @spec explain(
 :all | :update_all | :delete_all,
 Ecto.Queryable.t(),
 opts :: Keyword.t()
) ::
 String.t() | Exception.t() | [map()]

Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.
Examples
Postgres
iex> MyRepo.explain(:all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

iex> Ecto.Adapters.SQL.explain(Repo, :all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

MySQL
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title")) |> IO.puts()
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | p0 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.0 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+

Shared opts
iex> MyRepo.explain(:all, Post, analyze: true, timeout: 20_000)
"Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=443) (actual time=0.013..0.013 rows=0 loops=1)\nPlanning Time: 0.031 ms\nExecution Time: 0.021 ms"
It's safe to execute it for updates and deletes, no data change will be committed:
iex> MyRepo.explain(Repo, :update_all, from(p in Post, update: [set: [title: "new title"]]))
"Update on posts p0 (cost=0.00..11.70 rows=170 width=449)\n -> Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=449)"
This function is also available under the repository with name explain:
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title"))
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)\n Filter: ((title)::text = 'title'::text)"
Options
Built-in adapters support passing opts to the EXPLAIN statement according to the following:
	Adapter	Supported opts
	Postgrex	analyze, verbose, costs, settings, buffers, timing, summary, format, plan
	MyXQL	format

All options except format are boolean valued and default to false.
The allowed format values are :map, :yaml, and :text:
	:map is the deserialized JSON encoding.
	:yaml and :text return the result as a string.

The built-in adapters support the following formats:
	Postgrex: :map, :yaml and :text
	MyXQL: :map and :text

The :plan option in Postgrex can take the values :custom or :fallback_generic. When :custom
is specified, the explain plan generated will consider the specific values of the query parameters
that are supplied. When using :fallback_generic, the specific values of the query parameters will
be ignored. :fallback_generic does not use PostgreSQL's built-in support for a generic explain
plan (available as of PostgreSQL 16), but instead uses a special implementation that works for PostgreSQL
versions 12 and above. Defaults to :custom.
Any other value passed to opts will be forwarded to the underlying adapter query function, including
shared Repo options such as :timeout. Non built-in adapters may have specific behaviour and you should
consult their documentation for more details.
For version compatibility, please check your database's documentation:
	Postgrex: PostgreSQL doc.
	MyXQL: MySQL doc.

 get(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_log(metric)

 @spec insert_or_log(DeliveryMetrics.Data.t()) :: :ok

 insert_or_update(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 @spec query(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, Ecto.Adapters.SQL.query_result()} | {:error, Exception.t()}

Runs a custom SQL query.
If the query was successful, it will return an :ok tuple containing
a map with at least two keys:
	:num_rows - the number of rows affected
	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query("SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

iex> Ecto.Adapters.SQL.query(MyRepo, "SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

 query!(sql, params \\ [], opts \\ [])

 @spec query!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 Ecto.Adapters.SQL.query_result()

Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 @spec query_many(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, [Ecto.Adapters.SQL.query_result()]} | {:error, Exception.t()}

Runs a custom SQL query that returns multiple results on the given repo.
In case of success, it must return an :ok tuple containing a list of
maps with at least two keys:
	:num_rows - the number of rows affected

	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query_many("SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

iex> Ecto.Adapters.SQL.query_many(MyRepo, "SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

 query_many!(sql, params \\ [], opts \\ [])

 @spec query_many!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) :: [
 Ecto.Adapters.SQL.query_result()
]

Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 @spec rollback(term()) :: no_return()

Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 @spec to_sql(:all | :update_all | :delete_all, Ecto.Queryable.t()) ::
 {String.t(), Ecto.Adapters.SQL.query_params()}

Converts the given query to SQL according to its kind and the
adapter in the given repository.
Examples
The examples below are meant for reference. Each adapter will
return a different result:
iex> MyRepo.to_sql(:all, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

iex> MyRepo.to_sql(:update_all, from(p in Post, update: [set: [title: ^"hello"]]))
{"UPDATE posts AS p SET title = $1", ["hello"]}

iex> Ecto.Adapters.SQL.to_sql(:all, MyRepo, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

 transact(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

Callback implementation for Ecto.Repo.update_all/3.

Wsdataselect

Wsdataselect keeps the contexts that define your domain
and business logic.
Contexts are also responsible for managing your data, regardless
if it comes from the database, an external API or others.

Wsdataselect.ApiSpec

Wsdataselect.Auth.Header

Defines the structure for an authentication header.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Wsdataselect.Auth.Header{
 credential: String.t(),
 nonce: String.t(),
 opaque: String.t(),
 realm: String.t(),
 response: String.t(),
 uri: String.t(),
 username: String.t()
}

Wsdataselect.Auth.Repo

 Summary

 Functions

 aggregate(queryable, aggregate, opts \\ [])

 Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

 Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

 Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

 Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

 Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

 Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 Forces all connections in the repo pool to disconnect within the given interval.

 exists?(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.

 get(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

 Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 health()

 in_transaction?()

 Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

 Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

 Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

 Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

 Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

 Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 Runs a custom SQL query.

 query!(sql, params \\ [], opts \\ [])

 Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 Runs a custom SQL query that returns multiple results on the given repo.

 query_many!(sql, params \\ [], opts \\ [])

 Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

 Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

 Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 Converts the given query to SQL according to its kind and the
adapter in the given repository.

 transact(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

 Callback implementation for Ecto.Repo.update_all/3.

 Functions

 aggregate(queryable, aggregate, opts \\ [])

Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 @spec disconnect_all(non_neg_integer(), opts :: Keyword.t()) :: :ok

Forces all connections in the repo pool to disconnect within the given interval.
Once this function is called, the pool will disconnect all of its connections
as they are checked in or as they are pinged. Checked in connections will be
randomly disconnected within the given time interval. Pinged connections are
immediately disconnected - as they are idle (according to :idle_interval).
If the connection has a backoff configured (which is the case by default),
disconnecting means an attempt at a new connection will be done immediately
after, without starting a new process for each connection. However, if backoff
has been disabled, the connection process will terminate. In such cases,
disconnecting all connections may cause the pool supervisor to restart
depending on the max_restarts/max_seconds configuration of the pool,
so you will want to set those carefully.

 exists?(queryable, opts \\ [])

Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 @spec explain(
 :all | :update_all | :delete_all,
 Ecto.Queryable.t(),
 opts :: Keyword.t()
) ::
 String.t() | Exception.t() | [map()]

Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.
Examples
Postgres
iex> MyRepo.explain(:all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

iex> Ecto.Adapters.SQL.explain(Repo, :all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

MySQL
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title")) |> IO.puts()
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | p0 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.0 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+

Shared opts
iex> MyRepo.explain(:all, Post, analyze: true, timeout: 20_000)
"Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=443) (actual time=0.013..0.013 rows=0 loops=1)\nPlanning Time: 0.031 ms\nExecution Time: 0.021 ms"
It's safe to execute it for updates and deletes, no data change will be committed:
iex> MyRepo.explain(Repo, :update_all, from(p in Post, update: [set: [title: "new title"]]))
"Update on posts p0 (cost=0.00..11.70 rows=170 width=449)\n -> Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=449)"
This function is also available under the repository with name explain:
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title"))
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)\n Filter: ((title)::text = 'title'::text)"
Options
Built-in adapters support passing opts to the EXPLAIN statement according to the following:
	Adapter	Supported opts
	Postgrex	analyze, verbose, costs, settings, buffers, timing, summary, format, plan
	MyXQL	format

All options except format are boolean valued and default to false.
The allowed format values are :map, :yaml, and :text:
	:map is the deserialized JSON encoding.
	:yaml and :text return the result as a string.

The built-in adapters support the following formats:
	Postgrex: :map, :yaml and :text
	MyXQL: :map and :text

The :plan option in Postgrex can take the values :custom or :fallback_generic. When :custom
is specified, the explain plan generated will consider the specific values of the query parameters
that are supplied. When using :fallback_generic, the specific values of the query parameters will
be ignored. :fallback_generic does not use PostgreSQL's built-in support for a generic explain
plan (available as of PostgreSQL 16), but instead uses a special implementation that works for PostgreSQL
versions 12 and above. Defaults to :custom.
Any other value passed to opts will be forwarded to the underlying adapter query function, including
shared Repo options such as :timeout. Non built-in adapters may have specific behaviour and you should
consult their documentation for more details.
For version compatibility, please check your database's documentation:
	Postgrex: PostgreSQL doc.
	MyXQL: MySQL doc.

 get(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 health()

 in_transaction?()

Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 @spec query(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, Ecto.Adapters.SQL.query_result()} | {:error, Exception.t()}

Runs a custom SQL query.
If the query was successful, it will return an :ok tuple containing
a map with at least two keys:
	:num_rows - the number of rows affected
	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query("SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

iex> Ecto.Adapters.SQL.query(MyRepo, "SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

 query!(sql, params \\ [], opts \\ [])

 @spec query!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 Ecto.Adapters.SQL.query_result()

Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 @spec query_many(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, [Ecto.Adapters.SQL.query_result()]} | {:error, Exception.t()}

Runs a custom SQL query that returns multiple results on the given repo.
In case of success, it must return an :ok tuple containing a list of
maps with at least two keys:
	:num_rows - the number of rows affected

	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query_many("SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

iex> Ecto.Adapters.SQL.query_many(MyRepo, "SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

 query_many!(sql, params \\ [], opts \\ [])

 @spec query_many!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) :: [
 Ecto.Adapters.SQL.query_result()
]

Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 @spec rollback(term()) :: no_return()

Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 @spec to_sql(:all | :update_all | :delete_all, Ecto.Queryable.t()) ::
 {String.t(), Ecto.Adapters.SQL.query_params()}

Converts the given query to SQL according to its kind and the
adapter in the given repository.
Examples
The examples below are meant for reference. Each adapter will
return a different result:
iex> MyRepo.to_sql(:all, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

iex> MyRepo.to_sql(:update_all, from(p in Post, update: [set: [title: ^"hello"]]))
{"UPDATE posts AS p SET title = $1", ["hello"]}

iex> Ecto.Adapters.SQL.to_sql(:all, MyRepo, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

 transact(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

Callback implementation for Ecto.Repo.update_all/3.

Wsdataselect.Auth.WsUser

Schema for matching a user with it's credential.

Wsdataselect.Data.Content

Wsdataselect.Data.ContentEpoch

Wsdataselect.Data.File

Wsdataselect.Data.Repository

 Summary

 Functions

 slugify(name)

 Functions

 slugify(name)

Wsdataselect.DataFile

Module to manipulate files in the storage repository.

 Summary

 Types

 t()

 An archive structure.
tsindex is a list of maps stored in json ie. [{"offset": 0, "timestamp": 1111}]

 Functions

 abs_path(file)

 Returns the full path of the file, where it can be read.
Includes the mountpoint set in the application config, the name of the repository as subdirectory
And the path of the file.

 abs_path_with_offset(file)

 Returns the path with the offset, in a syntax that dataselect understands.

 exists?(file)

 get_end_offset(file, ts)

 get_file_size(file)

 get_start_offset(file, ts)

 health()

 Test the repositories.
Gets a list of repositories, list the expected mount point for each of them.

 set_offsets(file)

 Find the best fitting offsets (start and end).
Timeindex is expected to be like:
[%{"offset" => 0, "timestamp" => 533174407868300000}]

 Types

 t()

 @type t() :: %Wsdataselect.DataFile{
 cha: String.t(),
 checksum: DateTime.t(),
 earliest: DateTime.t(),
 end_offset: integer(),
 extnet: String.t(),
 latest: DateTime.t(),
 loc: String.t(),
 net: String.t(),
 path: String.t(),
 quality: String.t(),
 repository: String.t(),
 sta: String.t(),
 start_offset: integer(),
 tsindex: list(),
 updated: DateTime.t()
}

An archive structure.
tsindex is a list of maps stored in json ie. [{"offset": 0, "timestamp": 1111}]

 Functions

 abs_path(file)

 @spec abs_path(t()) :: String.t()

Returns the full path of the file, where it can be read.
Includes the mountpoint set in the application config, the name of the repository as subdirectory
And the path of the file.

 abs_path_with_offset(file)

 @spec abs_path_with_offset(t()) :: String.t()

Returns the path with the offset, in a syntax that dataselect understands.

 exists?(file)

 @spec exists?(t()) :: boolean()

 get_end_offset(file, ts)

 @spec get_end_offset(t(), integer()) :: integer()

 get_file_size(file)

 @spec get_file_size(t()) :: integer()

 get_start_offset(file, ts)

 @spec get_start_offset(t(), integer()) :: integer()

 health()

 @spec health() :: {:ok | :warning | :error, String.t()}

Test the repositories.
Gets a list of repositories, list the expected mount point for each of them.
Return
A tupple: {:ok, message} if all repositories are accessible

 set_offsets(file)

 @spec set_offsets(t()) :: t()

Find the best fitting offsets (start and end).
Timeindex is expected to be like:
[%{"offset" => 0, "timestamp" => 533174407868300000}]

Wsdataselect.Dataselect

Dataselect is an interface to the dataselect binary

 Summary

 Functions

 read_all_files(files, reqid)

 This function takes a list of DataFile.
It actually reads data from archive and returns the data as a list, using dataselect binary.
It expects a match file to be available (previously prepared by write_match_file/2)
It returns the list of absolute paths of data files collected.

 Functions

 read_all_files(files, reqid)

 @spec read_all_files([Wsdataselect.DataFile.t()], String.t()) ::
 {:ok, String.t()} | {:error, String.t()}

This function takes a list of DataFile.
It actually reads data from archive and returns the data as a list, using dataselect binary.
It expects a match file to be available (previously prepared by write_match_file/2)
It returns the list of absolute paths of data files collected.

Wsdataselect.Filter

A filter is a structure containing all filter parameters given in an FDSN webservice request.

 Summary

 Types

 t()

 Functions

 from_source_identifier(sid, includerestricted \\ false, quality \\ [:R, :D, :M, :Q])

 split_channel(f)

 Types

 t()

 @type t() :: %Wsdataselect.Filter{
 cha: String.t(),
 end: DateTime.t(),
 epochids: list(),
 includerestricted: boolean(),
 loc: String.t(),
 net: String.t(),
 quality: String.t(),
 sample_rate: number(),
 sta: String.t(),
 start: DateTime.t()
}

 Functions

 from_source_identifier(sid, includerestricted \\ false, quality \\ [:R, :D, :M, :Q])

 @spec from_source_identifier(FdsnPlugs.SourceIdentifier.t(), boolean(), list()) :: t()

 split_channel(f)

 @spec split_channel(t()) :: map()

Wsdataselect.Mailer

 Summary

 Functions

 deliver(email, config \\ [])

 Delivers an email.

 deliver!(email, config \\ [])

 Delivers an email, raises on error.

 deliver_many(emails, config \\ [])

 Delivers a list of emails.

 Functions

 deliver(email, config \\ [])

 @spec deliver(Swoosh.Email.t(), Keyword.t()) :: {:ok, term()} | {:error, term()}

Delivers an email.
If the email is delivered it returns an {:ok, result} tuple. If it fails,
returns an {:error, error} tuple.

 deliver!(email, config \\ [])

 @spec deliver!(Swoosh.Email.t(), Keyword.t()) :: term() | no_return()

Delivers an email, raises on error.
If the email is delivered, it returns the result. If it fails, it raises
a DeliveryError.

 deliver_many(emails, config \\ [])

 @spec deliver_many(
 [
 %Swoosh.Email{
 assigns: term(),
 attachments: term(),
 bcc: term(),
 cc: term(),
 from: term(),
 headers: term(),
 html_body: term(),
 private: term(),
 provider_options: term(),
 reply_to: term(),
 subject: term(),
 text_body: term(),
 to: term()
 }
],
 Keyword.t()
) :: {:ok, term()} | {:error, term()}

Delivers a list of emails.
It accepts a list of %Swoosh.Email{} as its first parameter.

Wsdataselect.Metadata.Epoch

Wsdataselect.Metadata.Network

Wsdataselect.Metadata.Station

Wsdataselect.Plug.Authentication

Plug for HTTP Digest Authentication, connected to an Authentication database.

 Summary

 Functions

 call(conn, opts)

 Run authentication mechanism with HTTP Digest
If there is no authorization header in the request, reply with a random opaque and nonce
In case of successful authentication,
Returns:
{:challenge_set, header_value} if the request had no authorization header.
{:ok, user} if the authentication was successful
{:error, message} if the authentication failed or something went wrong in the authentication process

 init(opts)

 Functions

 call(conn, opts)

Run authentication mechanism with HTTP Digest
If there is no authorization header in the request, reply with a random opaque and nonce
In case of successful authentication,
Returns:
{:challenge_set, header_value} if the request had no authorization header.
{:ok, user} if the authentication was successful
{:error, message} if the authentication failed or something went wrong in the authentication process

 init(opts)

Wsdataselect.Plug.Authorization

 Summary

 Functions

 build_authorizations()

 Get all the closed networks from database, extended form.
Make a map of those, with empty authorized users list.
Merge with the authorized users

 call(conn, opts)

 get_authorizations()

 get_forbidden_networks(user)

 init(opts)

 Functions

 build_authorizations()

 @spec build_authorizations() :: map()

Get all the closed networks from database, extended form.
Make a map of those, with empty authorized users list.
Merge with the authorized users

 call(conn, opts)

 get_authorizations()

 get_forbidden_networks(user)

 @spec get_forbidden_networks(String.t()) :: [String.t()]

 init(opts)

Wsdataselect.Plug.Filters

A plug to add a Filter struct to the connection assigns.
The filter is made of the source identifier + includerestricted + quality
NOTE: this is maybe redundant with FdsnPlugs.RequestParams but is more suited to filtering by Avy.Repo
Refactoring may be.

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Functions

 call(conn, opts)

 init(opts)

Wsdataselect.Repo

 Summary

 Functions

 aggregate(queryable, aggregate, opts \\ [])

 Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

 Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

 Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

 Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 conditional_where_clause(keyword_params)

 config()

 Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

 Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 Forces all connections in the repo pool to disconnect within the given interval.

 exists?(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.

 extend(net, year)

 Queries the database to find the extended network code.

 fragment_extend_net(code, date)

 get(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by!/3.

 get_closed_networks()

 get_contents(filter)

 From a filter structure, fetch all related epoch identifiers.

 get_dynamic_repo()

 Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 get_repositories()

 health()

 in_transaction?()

 Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

 Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

 Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

 Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

 Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

 Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 Runs a custom SQL query.

 query!(sql, params \\ [], opts \\ [])

 Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 Runs a custom SQL query that returns multiple results on the given repo.

 query_many!(sql, params \\ [], opts \\ [])

 Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

 Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

 Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 Converts the given query to SQL according to its kind and the
adapter in the given repository.

 transact(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

 Callback implementation for Ecto.Repo.update_all/3.

 Functions

 aggregate(queryable, aggregate, opts \\ [])

Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 conditional_where_clause(keyword_params)

 config()

Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 @spec disconnect_all(non_neg_integer(), opts :: Keyword.t()) :: :ok

Forces all connections in the repo pool to disconnect within the given interval.
Once this function is called, the pool will disconnect all of its connections
as they are checked in or as they are pinged. Checked in connections will be
randomly disconnected within the given time interval. Pinged connections are
immediately disconnected - as they are idle (according to :idle_interval).
If the connection has a backoff configured (which is the case by default),
disconnecting means an attempt at a new connection will be done immediately
after, without starting a new process for each connection. However, if backoff
has been disabled, the connection process will terminate. In such cases,
disconnecting all connections may cause the pool supervisor to restart
depending on the max_restarts/max_seconds configuration of the pool,
so you will want to set those carefully.

 exists?(queryable, opts \\ [])

Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 @spec explain(
 :all | :update_all | :delete_all,
 Ecto.Queryable.t(),
 opts :: Keyword.t()
) ::
 String.t() | Exception.t() | [map()]

Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.
Examples
Postgres
iex> MyRepo.explain(:all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

iex> Ecto.Adapters.SQL.explain(Repo, :all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

MySQL
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title")) |> IO.puts()
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | p0 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.0 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+

Shared opts
iex> MyRepo.explain(:all, Post, analyze: true, timeout: 20_000)
"Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=443) (actual time=0.013..0.013 rows=0 loops=1)\nPlanning Time: 0.031 ms\nExecution Time: 0.021 ms"
It's safe to execute it for updates and deletes, no data change will be committed:
iex> MyRepo.explain(Repo, :update_all, from(p in Post, update: [set: [title: "new title"]]))
"Update on posts p0 (cost=0.00..11.70 rows=170 width=449)\n -> Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=449)"
This function is also available under the repository with name explain:
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title"))
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)\n Filter: ((title)::text = 'title'::text)"
Options
Built-in adapters support passing opts to the EXPLAIN statement according to the following:
	Adapter	Supported opts
	Postgrex	analyze, verbose, costs, settings, buffers, timing, summary, format, plan
	MyXQL	format

All options except format are boolean valued and default to false.
The allowed format values are :map, :yaml, and :text:
	:map is the deserialized JSON encoding.
	:yaml and :text return the result as a string.

The built-in adapters support the following formats:
	Postgrex: :map, :yaml and :text
	MyXQL: :map and :text

The :plan option in Postgrex can take the values :custom or :fallback_generic. When :custom
is specified, the explain plan generated will consider the specific values of the query parameters
that are supplied. When using :fallback_generic, the specific values of the query parameters will
be ignored. :fallback_generic does not use PostgreSQL's built-in support for a generic explain
plan (available as of PostgreSQL 16), but instead uses a special implementation that works for PostgreSQL
versions 12 and above. Defaults to :custom.
Any other value passed to opts will be forwarded to the underlying adapter query function, including
shared Repo options such as :timeout. Non built-in adapters may have specific behaviour and you should
consult their documentation for more details.
For version compatibility, please check your database's documentation:
	Postgrex: PostgreSQL doc.
	MyXQL: MySQL doc.

 extend(net, year)

 @spec extend(String.t(), integer()) :: {:ok | :error, String.t()}

Queries the database to find the extended network code.

 fragment_extend_net(code, date)

 (macro)

 get(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by!/3.

 get_closed_networks()

 @spec get_closed_networks() :: [String.t()]

 get_contents(filter)

 @spec get_contents(Wsdataselect.Filter.t()) :: [Wsdataselect.DataFile.t()]

From a filter structure, fetch all related epoch identifiers.

 get_dynamic_repo()

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 get_repositories()

 @spec get_repositories() :: [map()]

 health()

 in_transaction?()

Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 @spec query(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, Ecto.Adapters.SQL.query_result()} | {:error, Exception.t()}

Runs a custom SQL query.
If the query was successful, it will return an :ok tuple containing
a map with at least two keys:
	:num_rows - the number of rows affected
	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query("SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

iex> Ecto.Adapters.SQL.query(MyRepo, "SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

 query!(sql, params \\ [], opts \\ [])

 @spec query!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 Ecto.Adapters.SQL.query_result()

Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 @spec query_many(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, [Ecto.Adapters.SQL.query_result()]} | {:error, Exception.t()}

Runs a custom SQL query that returns multiple results on the given repo.
In case of success, it must return an :ok tuple containing a list of
maps with at least two keys:
	:num_rows - the number of rows affected

	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query_many("SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

iex> Ecto.Adapters.SQL.query_many(MyRepo, "SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

 query_many!(sql, params \\ [], opts \\ [])

 @spec query_many!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) :: [
 Ecto.Adapters.SQL.query_result()
]

Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 @spec rollback(term()) :: no_return()

Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 @spec to_sql(:all | :update_all | :delete_all, Ecto.Queryable.t()) ::
 {String.t(), Ecto.Adapters.SQL.query_params()}

Converts the given query to SQL according to its kind and the
adapter in the given repository.
Examples
The examples below are meant for reference. Each adapter will
return a different result:
iex> MyRepo.to_sql(:all, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

iex> MyRepo.to_sql(:update_all, from(p in Post, update: [set: [title: ^"hello"]]))
{"UPDATE posts AS p SET title = $1", ["hello"]}

iex> Ecto.Adapters.SQL.to_sql(:all, MyRepo, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

 transact(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

Callback implementation for Ecto.Repo.update_all/3.

WsdataselectWeb

The entrypoint for defining your web interface, such
as controllers, components, channels, and so on.
This can be used in your application as:
use WsdataselectWeb, :controller
use WsdataselectWeb, :html
The definitions below will be executed for every controller,
component, etc, so keep them short and clean, focused
on imports, uses and aliases.
Do NOT define functions inside the quoted expressions
below. Instead, define additional modules and import
those modules here.

 Summary

 Functions

 __using__(which)

 When used, dispatch to the appropriate controller/live_view/etc.

 channel()

 controller()

 router()

 static_paths()

 verified_routes()

 Functions

 __using__(which)

 (macro)

When used, dispatch to the appropriate controller/live_view/etc.

 channel()

 controller()

 router()

 static_paths()

 verified_routes()

WsdataselectWeb.Endpoint

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 log_level(arg1)

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

Callback implementation for Plug.call/2.

 child_spec(opts)

Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

Returns the endpoint configuration for key
Returns default if the key does not exist.

 config_change(changed, removed)

Reloads the configuration given the application environment changes.

 host()

Returns the host for the given endpoint.

 init(opts)

Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 log_level(arg1)

 path(path)

Generates the path information when routing to this endpoint.

 script_name()

Generates the script name.

 server_info(scheme)

Returns the address and port that the server is running on

 start_link(opts \\ [])

Starts the endpoint supervision tree.
All other options are merged into the endpoint configuration.

 static_integrity(path)

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

Generates a route to a static file in priv/static.

 static_url()

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 struct_url()

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 subscribe(topic, opts \\ [])

Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

WsdataselectWeb.ErrorJSON

This module is invoked by your endpoint in case of errors on JSON requests.
See config/config.exs.

 Summary

 Functions

 render(template, assigns)

 Functions

 render(template, assigns)

WsdataselectWeb.Plug.Health

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Functions

 call(conn, opts)

 init(opts)

WsdataselectWeb.Plug.RedirectDoc

Redirects / to /documentation.html

 Summary

 Functions

 call(conn, _)

 init(default)

 Functions

 call(conn, _)

 init(default)

WsdataselectWeb.Plug.TrafficDrain

Plug for handling Kubernetes readinessProbe.
Plug starts responding with 503 - Service Unavailable from /__traffic, when traffic is being drained.
Otherwise we respond with 200 - OK.

WsdataselectWeb.Plug.Version

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Functions

 call(conn, opts)

 init(opts)

WsdataselectWeb.QueryController

 Summary

 Functions

 authenticate(conn, opts)

 Authentication method for queryauth is HTTP Digest.
Authentication method for query is based on JWT.
No authentication, set user as anonymous.

 get_datafiles(conn)

 This function is called on a /query request.
It will fetch all the contents corresponding to the filters that were set up by
WsdataselectWeb.Plugs.Filters, in the assigns of the connection plug (conn.assigns.filters).
For each filter, the database request is done asynchronously in parallel.
Desactivate the timeout, as the DB pool has it's own already, and some requests can get quite long.

 open_api_operation(action)

 query(conn, params)

 send_data(conn)

 set_request_id(conn, opts)

 shared_security()

 shared_tags()

 Functions

 authenticate(conn, opts)

Authentication method for queryauth is HTTP Digest.
Authentication method for query is based on JWT.
No authentication, set user as anonymous.

 get_datafiles(conn)

 @spec get_datafiles(Plug.Conn.t()) :: Plug.Conn.t()

This function is called on a /query request.
It will fetch all the contents corresponding to the filters that were set up by
WsdataselectWeb.Plugs.Filters, in the assigns of the connection plug (conn.assigns.filters).
For each filter, the database request is done asynchronously in parallel.
Desactivate the timeout, as the DB pool has it's own already, and some requests can get quite long.
For each entry, we call the post_process function in order to build a list of datasources and merge the contents of the same properties.
Finally, the datasources are put in the conn.assigns in order for ther renderer to access them in the :availabilities keyword.

 open_api_operation(action)

 @spec open_api_operation(atom()) :: OpenApiSpex.Operation.t()

 query(conn, params)

 send_data(conn)

 @spec send_data(Plug.Conn.t()) :: Plug.Conn.t()

 set_request_id(conn, opts)

 shared_security()

 shared_tags()

WsdataselectWeb.QueryJSON

Manifest format output (still experimental)
Example:
{
 "request_time": "2025-08-29T19:37:55.891250Z",
 "dataselect_params_list": [
{
"source": "merged", "repository": null,
"starttime": "2024-10-02T06:30:00Z", "endtime": "2024-10-03T10:30:00Z",
"network": "UW", "station": "Y*", "location": null, "channel": "HH*"
}
],
 "contents": [
{
"type": "station_day_object",
"source_id": "FDSN:UW_YACT__H_H_E",
"edid": "01GVDXZPX5AMPVD7MMF84QV9JZ",
"start": "2024-10-02T05:59:56.700000Z",
"end": "2024-10-03T00:00:00.150000Z",
"query_start": "2024-10-02T06:30:00Z",
"query_end": "2024-10-03T10:30:00Z",
"byte_count": 7876096,
"object_path":
"s3://repository-stage-us-east-2-mlmoghi3ooss/miniseed/UW/2024/276/YACT.UW.2024.276",
"object_version_id": "EDSVQqroyYijBQd1kaaeq7Mr3ug38buk",
"offset": 29404672
},
]
}

 Summary

 Functions

 query(assigns)

 Functions

 query(assigns)

WsdataselectWeb.Router

 Summary

 Functions

 browser(conn, _)

 call(conn, opts)

 Callback invoked by Plug on every request.

 fdsn(conn, _)

 formatted_routes(_)

 Callback implementation for Phoenix.VerifiedRoutes.formatted_routes/1.

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 openapi(conn, _)

 verified_route?(_, split_path)

 Callback implementation for Phoenix.VerifiedRoutes.verified_route?/2.

 Functions

 browser(conn, _)

 call(conn, opts)

Callback invoked by Plug on every request.

 fdsn(conn, _)

 formatted_routes(_)

Callback implementation for Phoenix.VerifiedRoutes.formatted_routes/1.

 init(opts)

Callback required by Plug that initializes the router
for serving web requests.

 openapi(conn, _)

 verified_route?(_, split_path)

Callback implementation for Phoenix.VerifiedRoutes.verified_route?/2.

WsdataselectWeb.Telemetry

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 metrics()

 start_link(arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 metrics()

 start_link(arg)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

