

    

        Xandra

        v0.19.0



    



  

    Table of contents

    
      



            	Data Types Comparison Table


            	Compatibility


            	Telemetry Events





  	Modules
    

    	Xandra


    	Xandra.Authenticator


    	Xandra.Authenticator.Password


    	Xandra.Batch


    	Xandra.Cluster


    	Xandra.Cluster.Host


    	Xandra.Cluster.LoadBalancingPolicy


    	Xandra.Cluster.LoadBalancingPolicy.DCAwareRoundRobin


    	Xandra.Cluster.LoadBalancingPolicy.Random


    	Xandra.Compressor


    	Xandra.Page


    	Xandra.Prepared


    	Xandra.RetryStrategy


    	Xandra.SchemaChange


    	Xandra.SetKeyspace


    	Xandra.Simple


    	Xandra.Telemetry


    	Xandra.Void


    	Xandra.ConnectionError


    	Xandra.Error


    

  



      

    


  

    
Data Types Comparison Table
    

This page contains a table that compares the data types used by Cassandra with their counterparts used by Xandra. Each Cassandra data type corresponds to one or more Elixir data types. What Elixir data type is used for a given Cassandra type is often controlled by a formatting option. For example, a date value from Cassandra can be returned as a Date.t() struct or as an integer representing the number of days since the Unix epoch depending on the :date_format option passed to various Xandra functions.

  
    
  
  Comparison Table


	Cassandra data type	Elixir data type
	ascii	String.t/0
	bigint	integer/0
	blob	binary/0
	boolean	boolean/0
	counter	integer/0
	date	Date.t/0 (if date_format: :date)
	date	integer/0 (if date_format: :integer), days from Unix epoch
	decimal	{value, scale} (if decimal_format: :tuple), where value * 10^(-1 * scale)
	decimal	Decimal.t/0 (if decimal_format: :decimal)
	double	float/0
	float	float/0
	inet	:inet.ip_address/0
	int	integer/0
	list<T>	list/0
	map<KeyT, ValueT>	map/0
	NULL	nil
	set<T>	MapSet.t/0
	smallint	integer/0
	text	String.t/0
	time	integer/0 (if time_format: :integer), as nanoseconds from midnight
	time	Time.t/0 (if time_format: :time)
	timestamp	DateTime.t/0 (if timestamp_format: :datetime)
	timestamp	integer/0 (if timestamp_format: :integer), as milliseconds from Unix epoch
	timeuuid	binary/0
	tinyint	integer/0
	tuple<...>	tuple/0
	uuid	binary/0
	varchar	String.t/0
	varint	integer/0




  

    
Compatibility
    

This page describes Xandra's compatibility with various Cassandra versions,
Cassandra-compatible data storage (like ScyllaDB), and Cassandra native protocol
versions.
All compatibility below refers to the latest version of Xandra.

  
    
  
  Cassandra Versions


	3.x
	4.x


  
    
  
  Native Protocol Versions


	v3
	v4
	v5


  
    
  
  ScyllaDB Versions


	2.3
	3.x
	4.x
	5.x




  

    
Telemetry Events
    


  
    
  
  Connection Events



  
    
  
  [:xandra, :connected]


Executed when a connection connects to its Cassandra node.
Measurements: none
Metadata:
	:connection (pid/0) - the PID of the connection process
	:connection_name (term/0 or nil) - given name of the connection or nil if not set
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:protocol_module (module/0) - the protocol module used for the connection
	:supported_options (map/0) - Cassandra supported options (mostly useful for internal debugging)


  
    
  
  [:xandra, :disconnected]


Executed when a connection disconnects from its Cassandra node.
Measurements: none
Metadata:
	:connection (pid/0) - the PID of the connection process
	:connection_name (term/0 or nil) - given name of the connection or nil if not set
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:reason (usually a Exception.t/0) - the reason for the disconnection


  
    
  
  [:xandra, :failed_to_connect]


Available since v0.18.0.
Executed when a connection fails to connect to its Cassandra node.
Measurements: none
Metadata:
	:connection (pid/0) - the PID of the connection process
	:connection_name (term/0 or nil) - given name of the connection or nil if not set
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:reason (usually a Exception.t/0) - the reason for the disconnection


  
    
  
  Query Events


The [:xandra, :prepare_query, ...] and [:xandra, :execute_query, ...] events are
Telemetry spans. See
telemetry:span/3. All the time
measurements are in native time unit, so you need to use System.convert_time_unit/3
to convert to the desired time unit.

  
    
  
  [:xandra, :prepare_query, ...]


Executed before and after a query is prepared (as a Telemetry span).
Measurements:
	:system_time (integer/0) - in :native time units (only for [..., :start] events)
	:monotonic_time (integer/0) - in :native time units
	:duration (integer/0) - in :native time units (only for [..., :stop] and [..., :exception] events)

Metadata:
	:connection (pid/0) - the PID of the connection process
	:connection_name (term/0 or nil) - given name of the connection or nil if not set
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:query (Xandra.Prepared.t/0) - the query being prepared
	:extra_metadata (any term) - extra metadata provided by the :telemetry_metadata option
	:reprepared (boolean/0) - whether the query was reprepared or not (only available for
[..., :stop] events)
	:reason (any term) - if there the result of the query was an error, this is the reason
(only available for [..., :stop] events), otherwise it's the error
that was raised (only available for [..., :exception] events)
	:kind (Exception.kind/0) - exception kind (only available for [..., :exception] events)
	:stacktrace (Exception.stacktrace/0) - exception stacktrace (only available for [..., :exception] events)


  
    
  
  [:xandra, :execute_query, ...]


Executed before and after a query is executed (as a Telemetry span).
Measurements:
	:system_time (integer/0) - in :native time units (only for [..., :start] events)
	:monotonic_time (integer/0) - in :native time units
	:duration (integer/0) - in :native time units (only for [..., :stop] and [..., :exception] events)

Metadata:
	:connection (pid/0) - the PID of the connection process
	:connection_name (term/0 or nil) - given name of the connection or nil if not set
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:query (Xandra.Simple.t/0, Xandra.Batch.t/0, or Xandra.Prepared.t/0) - the query being executed
	:extra_metadata (any term) - extra metadata provided by the :telemetry_metadata option
	:reason (any term) - if there the result of the query was an error, this is the reason
(only available for [..., :stop] events), otherwise it's the error
that was raised (only available for [..., :exception] events)
	:kind (Exception.kind/0) - exception kind (only available for [..., :exception] events)
	:stacktrace (Exception.stacktrace/0) - exception stacktrace (only available for [..., :exception] events)


  
    
  
  [:xandra, :prepared_cache, :hit | :miss]


Executed when a query is executed and the prepared cache is checked.
Measurements: none
Metadata:
	:connection (pid/0) - the PID of the connection process
	:connection_name (term/0 or nil) - given name of the connection or nil if not set
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:query (Xandra.Prepared.t/0) - the query being prepared
	:extra_metadata (any term) - extra metadata provided by the :telemetry_metadata option


  
    
  
  Warnings



  
    
  
  [:xandra, :server_warnings]


Executed when a query returns warnings.
Measurements:
	:warnings (non-empty list of String.t/0) - a list of warnings

Metadata:
	:address (String.t/0) - the address of the node the connection is connected to
	:port (:inet.port_number/0) - the port of the node the connection is connected to
	:current_keyspace (String.t/0 or nil) - the current keyspace of the connection, or nil if not set
	:query (Xandra.Simple.t/0, Xandra.Batch.t/0, or Xandra.Prepared.t/0) - the query that caused the warnings


  
    
  
  Cluster Events


Unless specified otherwise, these are available since v0.15.0.

  
    
  
  [:xandra, :cluster, :change_event]


Emitted when there is a change in the cluster, either as reported by Cassandra itself
or as detected by Xandra.
Measurements: none
Metadata:
	:cluster_pid (pid/0) - the PID of the cluster process
	:cluster_name (String.t/0 or nil) - the name of the cluster executing the event, if provided
through the :name option in Xandra.Cluster.start_link/1
	:host (Xandra.Cluster.Host.t/0) - the host the event is related to
	:event_type (atom/0) - one of :host_up (a host went up), :host_down (a host went down),
:host_added (a host was added to the cluster topology), or :host_removed
(a host was removed from the cluster topology)


  
    
  
  [:xandra, :cluster, :discovered_peers]


Available since v0.17.0.
Executed when the Xandra cluster's control connection discovers peers. The peers might have been
already discovered in the past, so you'll need to keep track of new peers if you need to.
Measurements:
	:peers (list of Xandra.Cluster.Host.t/0) - the discovered peers

Metadata:
	:cluster_pid (pid/0) - the PID of the cluster process
	:cluster_name (String.t/0 or nil) - the name of the cluster executing the event, if provided
through the :name option in Xandra.Cluster.start_link/1


  
    
  
  [:xandra, :cluster, :pool, :started | :restarted | :stopped]


Available since v0.17.0.
Executed when a connection pool to a node is started, restarted, or stopped.
Measurements: none
Metadata:
	:cluster_pid (pid/0) - the PID of the cluster process
	:cluster_name (String.t/0 or nil) - the name of the cluster executing the event, if provided
through the :name option in Xandra.Cluster.start_link/1
	:host (Xandra.Cluster.Host.t/0) - the host the event is related to


  
    
  
  [:xandra, :cluster, :control_connection, :connected]


Emitted when the control connection for the cluster is established.
Measurements: none
Metadata:
	:cluster_pid (pid/0) - the PID of the cluster process
	:cluster_name (String.t/0 or nil) - the name of the cluster executing the event, if provided
through the :name option in Xandra.Cluster.start_link/1
	:host (Xandra.Cluster.Host.t/0) - the host the event is related to


  
    
  
  [:xandra, :cluster, :control_connection, :disconnected | :failed_to_connect]


Emitted when the control connection for the cluster disconnects or fails to connect.
Measurements: none
Metadata:
	:cluster_pid (pid/0) - the PID of the cluster process
	:cluster_name (String.t/0 or nil) - the name of the cluster executing the event, if provided
through the :name option in Xandra.Cluster.start_link/1
	:host (Xandra.Cluster.Host.t/0) - the host the event is related to
	:reason (any term) - the reason for the disconnection or failure to connect




  

    
Xandra 
    



      
This module provides the main API to interface with Cassandra.
This module handles the connection to Cassandra, queries, connection pooling,
connection backoff, logging, and more.
db_connection
Before v0.18.0, this library was built on top of the
db_connection library. Since v0.18.0,
this is not the case anymore. This allowed us to significantly improve the design
and architecture of Xandra, ultimately resulting in a client that is more fitted
for the Cassandra protocol.


  
    
  
  Errors


Many of the functions in this module (whose names don't end with a !)
return values in the form {:ok, result} or {:error, error}. While result
varies based on the specific function, error is always one of the following:
	a Xandra.Error struct: such structs represent errors returned by
Cassandra. When such an error is returned, it means that communicating
with the Cassandra server was successful, but the server returned an
error. Examples of these errors are syntax errors in queries, non-existent
tables, and so on. See Xandra.Error for more information.

	a Xandra.ConnectionError struct: such structs represent errors in the
communication with the Cassandra server. For example, if the Cassandra
server dies while the connection is waiting for a response from the
server, a Xandra.ConnectionError error will be returned. See
Xandra.ConnectionError for more information.



  
    
  
  Parameters, encoding, and types


Xandra supports parameterized queries (queries that specify "parameter" values
through ? or :named_value):
SELECT * FROM users WHERE name = ? AND email = ?
SELECT * FROM users WHERE name = :name AND email = :email
When a query has positional parameters, parameters can be passed as a list to
functions like execute/4: in this case, a parameter in a given position in
the list will be used as the ? in the corresponding position in the
query. When a query has named parameters, parameters are passed as a map with
string keys representing each parameter's name and values representing the
corresponding parameter's value.

  
    
  
  Types


For information about how Elixir types translate to Cassandra types and
viceversa, see the "Data types comparison table" page.
Cassandra supports many types of values, and some types have "shades" that
cannot be represented by Elixir types. For example, in Cassandra an integer
could be a "bigint" (a 64 bit integer), an "int" (a 32 bit integer), a
"smallint" (a 16 bit integer), or others; in Elixir, however, integers are
just integers (with varying size to be precise), so it is impossible to
univocally map Elixir integers to a specific Cassandra integer type. For this
reason, when executing simple parameterized queries (statements) it is
necessary to explicitly specify the type of each value.
To specify the type of a value, that value needs to be provided as a
two-element tuple where the first element is the value's type and the second
element is the value itself. Types are expressed with the same syntax used in
CQL: for example, 16-bit integers are represented as "smallint", while maps
of strings to booleans are represented as "map<text, boolean>".
# Using a list of parameters:
statement = "INSERT INTO species (name, properties) VALUES (?, ?)"
Xandra.execute(conn, statement, [
  {"text", "human"},
  {"map<text, boolean>", %{"legs" => true, "arms" => true, "tail" => false}},
])

# Using a map of parameters:
statement = "INSERT INTO species (name, properties) VALUES (:name, :properties)"
Xandra.execute(conn, statement, %{
  "name" => {"text", "human"},
  "properties" => {"map<text, boolean>", %{"legs" => true, "arms" => true, "tail" => false}},
})
You only need to specify types for simple queries (statements): when using
prepared queries, the type information of each parameter of the query is
encoded in the prepared query itself.
# Using a map of parameters:
prepared = Xandra.prepare!(conn, "INSERT INTO species (name, properties) VALUES (:name, :properties)")
Xandra.execute(conn, prepared, %{
  "name" => "human",
  "properties" => %{"legs" => true, "arms" => true, "tail" => false},
})
User-defined types
Xandra supports user-defined types (UDTs). A UDT can be inserted as a map with
string fields. For example, consider having created the following UDTs:
CREATE TYPE full_name (first_name text, last_name text)
CREATE TYPE profile (username text, full_name frozen<full_name>)
and having the following table:
CREATE TABLE users (id int PRIMARY KEY, profile frozen<profile>)
Inserting rows will look something like this:
prepared_insert = Xandra.prepare!(conn, "INSERT INTO users (id, profile) VALUES (?, ?)")

profile = %{
  "username" => "bperry",
  "full_name" => %{"first_name" => "Britta", "last_name" => "Perry"},
}
Xandra.execute!(conn, prepared_insert, [_id = 1, profile])
Note that inserting UDTs is only supported on prepared queries.
When retrieved, UDTs are once again represented as maps with string
keys. Retrieving the row inserted above would look like this:
%{"profile" => profile} = conn |> Xandra.execute!("SELECT id, profile FROM users") |> Enum.fetch!(0)
profile
#=> %{"username" => "bperry", "full_name" => %{"first_name" => "Britta", "last_name" => "Perry"}}

  
    
  
  Values


Xandra supports two special values: nil and :not_set. Using nil explicitly
inserts a null value into the Cassandra table. This is useful to delete a value while
inserting. Note however that explicitly inserting null values into Cassandra creates so
called tombstones which negatively affects performance and resource utilisation and is
thus usually not recommended.
The :not_set value is a special value that allows to leave the value of a parametrized query
unset, telling Cassandra not to insert anything for the given field. In contrast to explicit
null values, no tombstone is created for this field. This is useful for prepared queries with
optional fields. The :not_set value requires Cassandra native protocol v4, available since
Cassandra 2.2.x. You can force the protocol version to v4 with the :protocol_version
option.

  
    
  
  Reconnections


A Xandra connection is able to handle connection
losses and to automatically reconnect to Cassandra. By default, reconnections
are retried at exponentially increasing randomized intervals, but backoff can
be configured through a subset of the options accepted by
start_link/2.

  
    
  
  Clustering


Xandra supports connecting to multiple nodes in a Cassandra cluster and
executing queries on different nodes based on load balancing strategies. See
the documentation for Xandra.Cluster for more information.

  
    
  
  Authentication


Xandra supports Cassandra authentication. See the documentation for
Xandra.Authenticator for more information.

  
    
  
  Retrying failed queries


Xandra takes a customizable and extensible approach to retrying failed queries
through "retry strategies" that encapsulate the logic for retrying
queries. See Xandra.RetryStrategy for documentation on retry strategies.

  
    
  
  Compression


Xandra supports compression. To inform the Cassandra server that the
connections you start should use compression for data transmitted to and from
the server, you can pass the :compressor option to start_link/1; this
option should be a module that implements the Xandra.Compressor
behaviour. After this, all compressed data that Cassandra sends to the
connection will be decompressed using this behaviour module.
To compress outgoing data (such as when issuing or preparing queries), the behavior
of Xandra depends on the native protocol that it negotiated with the Cassandra server.
For native protocol v4 and earlier, the :compressor option should be specified
explicitly for every request where you want outgoing compressor. When it's specified, the
given module will be used to compress data. If no :compressor option is
passed, the outgoing data will not be compressed. For native protocol v5 or later,
Xandra compresses all outgoing data since compression happens at the connection level,
so it's not necessary to pass the :compressor option when preparing or executing queries.
It's still good practice to pass it around so that your code stays agnostic of the
native protocol being used.

  
    
  
  Native protocol


Xandra supports the following versions of Cassandra's native protocol:
v5, v4, v3.
By default, Xandra will negotiate the protocol version with the Cassandra server.
Xandra will start by trying to use the highest protocol it supports (which is
v5). If the server rejects that, then
Xandra will reconnect with the protocol advertised by the server. If you
want to force a specific version of the native protocol that Xandra should use,
use the :protocol_version option.

  
    
  
  Logging


Xandra connections log a few events like disconnections or connection failures.
Logs contain the :xandra_address and :xandra_port metadata that you can
choose to log if desired.

  
    
  
  Custom payloads


The Cassandra native protocol supports exchanging custom payloads between
server and client. A custom payload is a map of string keys to binary values
(custom_payload/0).
To send custom payloads to the server, you can pass the :custom_payload
option to functions such as prepare/3 and execute/4.
If the server sends a custom payload in a response (result/0), you'll find
it in the :custom_payload field of the corresponding struct (such as
Xandra.Page, Xandra.Void, and so on).
By default, Cassandra itself ignores custom payloads sent to the server. Other
implementations built on top of the Cassandra native protocol might use
custom payloads to provide implementation-specific functionality. One such
example is Azure Cosmos DB.

      


      
        Summary


  
    Types
  


    
      
        configure_fun()

      


        Possible values for the :configure option in start_link/1.



    


    
      
        conn()

      


        A single Xandra connection process.



    


    
      
        consistency()

      


        Consistency level for queries.



    


    
      
        custom_payload()

      


        Custom payload that Xandra can exchange with the server.



    


    
      
        error()

      


        An error that can be returned from a query.



    


    
      
        native_protocol_version()

      


        Cassandra native protocol version.



    


    
      
        result()

      


        The result of a query.



    


    
      
        start_option()

      


        Options for start_link/1.



    


    
      
        statement()

      


        A statement (query) to pass to execute/4 and other functions.



    


    
      
        values()

      


    





  
    Functions
  


    
      
        child_spec(options)

      


        Returns a child spec to use Xandra in supervision trees.



    


    
      
        execute(conn, query, params_or_options \\ [])

      


        Executes the given simple query, prepared query, or batch query.



    


    
      
        execute(conn, query, params, options)

      


        Executes the given simple query or prepared query with the given parameters.



    


    
      
        execute!(conn, query, params_or_options \\ [])

      


        Executes the given simple query, prepared query, or batch query, raising if
there's an error.



    


    
      
        execute!(conn, query, params, options)

      


        Executes the given simple query, prepared query, or batch query, raising if
there's an error.



    


    
      
        prepare(conn, statement, options \\ [])

      


        Prepares the given query.



    


    
      
        prepare!(conn, statement, options \\ [])

      


        Prepares the given query, raising if there's an error.



    


    
      
        start_link(options \\ [])

      


        Starts a new pool of connections to Cassandra.



    


    
      
        start_link_opts_schema()

      


        Returns the NimbleOptions schema used for validating the options for start_link/1.



    


    
      
        stop(conn, reason \\ :normal, timeout \\ :infinity)

      


        Synchronously stops the given connection with the given reason.



    


    
      
        stream_pages!(conn, query, params, options \\ [])

      


        Streams the results of a simple query or a prepared query with the given params.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    configure_fun()


      
       
       View Source
     


      (since 0.18.0)

  


  

      

          @type configure_fun() ::
  {module(), function_name :: atom(), [term()]} | (keyword() -> keyword())


      


Possible values for the :configure option in start_link/1.

  



  
    
      
      Link to this type
    
    conn()


      
       
       View Source
     


  


  

      

          @type conn() :: :gen_statem.server_ref()


      


A single Xandra connection process.

  



  
    
      
      Link to this type
    
    consistency()


      
       
       View Source
     


      (since 0.18.0)

  


  

      

          @type consistency() ::
  :local_serial
  | :each_quorum
  | :local_quorum
  | :local_one
  | :quorum
  | :all
  | :serial
  | :three
  | :two
  | :one


      


Consistency level for queries.
This is supported as the default consistency on the connection level (see start_link/1)
or as a per-query consistency (see execute/3 and execute/4).

  



  
    
      
      Link to this type
    
    custom_payload()


      
       
       View Source
     


  


  

      

          @type custom_payload() :: %{optional(String.t()) => binary()}


      


Custom payload that Xandra can exchange with the server.
See the "Custom payloads" section in the
module documentation.

  



  
    
      
      Link to this type
    
    error()


      
       
       View Source
     


  


  

      

          @type error() :: Xandra.Error.t() | Xandra.ConnectionError.t()


      


An error that can be returned from a query.
This is either a semantic error returned by Cassandra or a connection error.

  



  
    
      
      Link to this type
    
    native_protocol_version()


      
       
       View Source
     


      (since 0.18.0)

  


  

      

          @type native_protocol_version() :: :v3 | :v4 | :v5


      


Cassandra native protocol version.

  



  
    
      
      Link to this type
    
    result()


      
       
       View Source
     


  


  

      

          @type result() ::
  Xandra.Void.t()
  | Xandra.Page.t()
  | Xandra.SetKeyspace.t()
  | Xandra.SchemaChange.t()


      


The result of a query.

  



  
    
      
      Link to this type
    
    start_option()


      
       
       View Source
     


  


  

      

          @type start_option() ::
  {:atom_keys, boolean()}
  | {:authentication, term()}
  | {:backoff_min, non_neg_integer()}
  | {:backoff_max, non_neg_integer()}
  | {:backoff_type, term()}
  | {:compressor, term()}
  | {:configure, {module(), atom(), [term()]} | (term() -> term())}
  | {:connect_timeout, timeout()}
  | {:default_consistency, term()}
  | {:debug, term()}
  | {:encryption, boolean()}
  | {:keyspace, binary()}
  | {:max_concurrent_requests_per_connection, pos_integer()}
  | {:name, term()}
  | {:nodes, [term()]}
  | {:protocol_version, term()}
  | {:show_sensitive_data_on_connection_error, boolean()}
  | {:transport_options, keyword()}
  | {:cluster_pid, pid()}


      


Options for start_link/1.

  



  
    
      
      Link to this type
    
    statement()


      
       
       View Source
     


  


  

      

          @type statement() :: String.t()


      


A statement (query) to pass to execute/4 and other functions.

  



  
    
      
      Link to this type
    
    values()


      
       
       View Source
     


  


  

      

          @type values() :: list() | map()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    child_spec(options)


      
       
       View Source
     


  


  

      

          @spec child_spec([start_option()]) :: Supervisor.child_spec()


      


Returns a child spec to use Xandra in supervision trees.
To use Xandra without passing any options you can just do:
children = [
  Xandra,
  # ...
]
If you want to pass options, use a two-element tuple like
usual when using child specs:
children = [
  {Xandra, name: :xandra_connection}
]

  



    

  
    
      
      Link to this function
    
    execute(conn, query, params_or_options \\ [])


      
       
       View Source
     


  


  

      

          @spec execute(conn(), statement() | Xandra.Prepared.t(), values()) ::
  {:ok, result()} | {:error, error()}


          @spec execute(conn(), Xandra.Batch.t(), keyword()) ::
  {:ok, Xandra.Void.t()} | {:error, error()}


      


Executes the given simple query, prepared query, or batch query.
Returns {:ok, result} if executing the query was successful, or {:error, error} otherwise. The meaning of the params_or_options argument depends on
what query is:
	if query is a batch query, than params_or_options has to be a list of
options that will be used to run the batch query (since batch queries
don't use parameters as parameters are attached to each query in the
batch).

	if query is a simple query (a string) or a prepared query, then
params_or_opts is a list or map of parameters, and this function is
exactly the same as calling execute(conn, query, params_or_options, []).


When query is a batch query, successful results will always be Xandra.Void
structs. See execute/4 for full documentation on all supported options.
When {:error, error} is returned, error can be either a Xandra.Error or
a Xandra.ConnectionError struct. See the module documentation for more
information on errors.

  
    
  
  Options for batch queries


When query is a batch query, params_or_options is a list of options. The following
options are supported:
	:consistency - same as the :consistency option described in the
documentation for execute/4.

	:serial_consistency - same as the :serial_consistency option described
in the documentation for execute/4.

	:timestamp - using this option means that the provided
timestamp will apply to all the statements in the batch that do not
explicitly specify a timestamp.


See execute/4 for full documentation on all supported options if query is not a batch
query.

  
    
  
  Examples


For examples on executing simple queries or prepared queries, see the
documentation for execute/4. Examples below specifically refer to batch
queries. See the documentation for Xandra.Batch for more information about
batch queries and how to construct them.
prepared_insert = Xandra.prepare!(conn, "INSERT (email, name) INTO users VALUES (?, ?)")

batch =
  Xandra.Batch.new()
  |> Xandra.Batch.add(prepared_insert, ["abed@community.com", "Abed Nadir"])
  |> Xandra.Batch.add(prepared_insert, ["troy@community.com", "Troy Barnes"])
  |> Xandra.Batch.add(prepared_insert, ["britta@community.com", "Britta Perry"])

# Execute the batch:
Xandra.execute(conn, batch)
#=> {:ok, %Xandra.Void{}}

# Execute the batch with a default timestamp for all statements:
Xandra.execute(conn, batch, timestamp: System.system_time(:millisecond) - 1_000)
#=> {:ok, %Xandra.Void{}}

  



  
    
      
      Link to this function
    
    execute(conn, query, params, options)


      
       
       View Source
     


  


  

      

          @spec execute(conn(), statement() | Xandra.Prepared.t(), values(), keyword()) ::
  {:ok, result()} | {:error, error()}


      


Executes the given simple query or prepared query with the given parameters.
Returns {:ok, result} where result is the result of executing query if
the execution is successful (there are no network errors or semantic errors
with the query), or {:error, error} otherwise.
result can be one of the following:
	a Xandra.Void struct - returned for queries such as INSERT, UPDATE,
or DELETE.

	a Xandra.SchemaChange struct - returned for queries that perform changes
on the schema (such as creating tables).

	a Xandra.SetKeyspace struct - returned for USE queries.

	a Xandra.Page struct - returned for queries that return rows (such as
SELECT queries).


The properties of each of the results listed above are described in each
result's module.

  
    
  
  Options


This function supports any arbitrary option, since Xandra passes those down
to the Xandra.RetryStrategy module passed in :retry_strategy. However, below
is a list of the options that are specific to Xandra and that Xandra uses when executing
the query. Note that we might add options to this list in the future, which could
potentially change the meaning of custom options you use to implement your own retry
strategy, and we wouldn't consider this a breaking change. Because of this, we recommend
scoping custom options in your retry strategy module (for example, by prefixing them
with <my_module>_<option_name).
Here are the Xandra-specific options:
	:consistency - Specifies the consistency level for the given
query. See the Cassandra documentation for more information on consistency
levels. If not present, defaults to the value of the :default_consistency option
used when starting the connection (see start_link/1).
The value of this option can be one of:
	:one
	:two
	:three
	:serial
	:all
	:quorum
	:local_one
	:local_quorum
	:each_quorum
	:local_serial


	:page_size (non_neg_integer/0) - The size of a page of results. If query returns a
Xandra.Page struct, that struct will contain at most :page_size rows in it. The default value is 10000.

	:paging_state - The offset where rows should be returned from. By default this option is not
present and paging starts from the beginning. See the "Paging" section
below for more information on how to page queries.

	:timestamp (integer/0) - The default timestamp for the query, expressed in microseconds. If provided,
overrides the server-side assigned timestamp. However, a timestamp in
the query itself will still override this timestamp.

	:serial_consistency - Specifies the serial consistency to use for executing the given query. Can
be one of :serial or :local_serial. By default this option is not present.

	:compressor - The compressor module to use for compressing and decompressing data.
See the "Compression" section in the module documentation. By default
this option is not present, which means no compression is used.

	:retry_strategy - The module implementing the Xandra.RetryStrategy behaviour that is used in case
the query fails to determine whether to retry it or not. See the
"Retrying failed queries" section in the module documentation.
By default, this option is not present, which means no retries are attempted.

	:tracing (boolean/0) - Turn on tracing for the preparation of the
given query and sets the tracing_id field in the returned prepared
query. See the "Tracing" option in execute/4. The default value is false.

	:custom_payload - A custom payload to send to the Cassandra server alongside the request. Only
supported in QUERY, PREPARE, EXECUTE, and BATCH requests. The custom
payload must be of type custom_payload/0. See the
"Custom payloads" section in the module documentation.

	:date_format - Controls the format in which dates are returned. When set to :integer, the
returned value is a number of days from the Unix epoch. When set to
:date, the returned value is a date struct. The default value is :date.

	:time_format - Controls the format in which times are returned. When set to :integer, the
returned value is a number of nanoseconds from midnight. When set to
:time, the returned value is a time struct. The default value is :time.

	:timestamp_format - Controls the format in which timestamps are returned. When set to :integer, the
returned value is a number of milliseconds from the Unix epoch. When set to
:datetime, the returned value is a datetime struct. The default value is :datetime.

	:decimal_format - Controls the format in which decimals are returned. When set to :decimal, a
Decimal struct from the decimal package is
returned. When set to :tuple, a {value, scale} is returned such that
the returned number is value * 10^(-1 * scale). If you use :decimal,
you'll have to add the :decimal dependency to your application explicitly. The default value is :tuple.

	:uuid_format - Controls the format in which UUIDs are returned. When set to :binary, UUIDs are
returned as raw 16-byte binaries, such as: <<0, 182, 145, 128, 208, 225, 17, 226, 139, 139, 8, 0, 32, 12, 154, 102>>. When set to :string, UUIDs are returned in
their human-readable format, such as: "fe2b4360-28c6-11e2-81c1-0800200c9a66". The default value is :string.

	:timeuuid_format - Same as the :uuid_format option, but for values of the timeuuid type. The default value is :string.

	:telemetry_metadata (map/0) - Custom metadata to be added to the metadata of [:xandra, :execute_query, :start]
and [:xandra, :execute_query, :stop] telemetry events as extra_metadata field. The default value is %{}.

	:timeout (timeout/0) - The timeout for this call, in milliseconds. The default value is :infinity.



  
    
  
  Parameters


The params argument specifies parameters to use when executing the query; it
can be either a list of positional parameters (specified via ? in the query)
or a map of named parameters (specified as :named_parameter in the
query). When query is a simple query, the value of each parameter must be a
two-element tuple specifying the type used to encode the value and the value
itself; when query is a prepared query, this is not necessary (and values
can just be values) as the type information is encoded in the prepared
query. See the module documentation for more information about query
parameters, types, and encoding values.

  
    
  
  Examples


Executing a simple query (which is just a string):
statement = "INSERT INTO users (first_name, last_name) VALUES (:first_name, :last_name)"

{:ok, %Xandra.Void{}} =
  Xandra.execute(conn, statement, %{
    "first_name" => {"text", "Chandler"},
    "last_name" => {"text", "Bing"},
  })
Executing the query when atom_keys: true has been specified in Xandra.start_link/1:
Xandra.execute(conn, statement, %{
  first_name: {"text", "Chandler"},
  last_name: {"text", "Bing"}
})
Executing a prepared query:
prepared = Xandra.prepare!(conn, "INSERT INTO users (first_name, last_name) VALUES (?, ?)")

{:ok, %Xandra.Void{}} = Xandra.execute(conn, prepared, ["Monica", "Geller"])
Performing a SELECT query and using Enum.to_list/1 to convert the
Xandra.Page result to a list of rows:
statement = "SELECT * FROM users"
{:ok, %Xandra.Page{} = page} = Xandra.execute(conn, statement, _params = [])
Enum.to_list(page)
#=> [%{"first_name" => "Chandler", "last_name" => "Bing"},
#=>  %{"first_name" => "Monica", "last_name" => "Geller"}]
Performing the query when atom_keys: true has been specified in Xandra.start_link/1:
{:ok, page} = Xandra.execute(conn, statement, _params = [])
Enum.to_list(page)
#=> [%{first_name:  "Chandler", last_name: "Bing"},
#=>  %{first_name: "Monica", last_name: "Geller"}]
Ensuring the write is written to the commit log and memtable of at least three replica nodes:
statement = "INSERT INTO users (first_name, last_name) VALUES ('Chandler', 'Bing')"
{:ok, %Xandra.Void{}} = Xandra.execute(conn, statement, _params = [], consistency: :three)

  
    
  
  Paging


Since execute/4 supports the :paging_state option, it is possible to manually
implement paging. For example, given the following prepared query:
prepared = Xandra.prepare!(conn, "SELECT first_name FROM users")
We can now execute such query with a specific page size using the :page_size
option:
{:ok, %Xandra.Page{} = page} = Xandra.execute(conn, prepared, [], page_size: 2)
Since :page_size is 2, page will contain at most 2 rows:
Enum.to_list(page)
#=> [%{"first_name" => "Ross"}, %{"first_name" => "Rachel"}]
Now, we can pass page.paging_state as the value of the :paging_state
option to let the paging start from where we left off:
{:ok, %Xandra.Page{} = new_page} =
  Xandra.execute(conn, prepared, [], page_size: 2, paging_state: page.paging_state)

Enum.to_list(page)
#=> [%{"first_name" => "Joey"}, %{"first_name" => "Phoebe"}]
However, using :paging_state and :page_size directly with execute/4 is not
recommended when the intent is to "stream" a query. For that, it's recommended
to use stream_pages!/4. Also note that if the :paging_state option is set to nil,
meaning there are no more pages to fetch, an ArgumentError exception will be raised;
be sure to check for this with page.paging_state != nil.

  
    
  
  Tracing


Cassandra supports tracing queries.
If you set the :tracing option to true, the executed query will be traced.
This means that a tracing ID (a binary UUID) will be set in the response of the query
and that Cassandra will write relevant tracing events to tracing-related tables in the
system_traces keyspace.
In Xandra, all response structs contain an accessible tracing_id field that is set
to nil except for when tracing is enabled. In those cases, tracing_id is a binary
UUID that you can use to select events from the traces tables.
For example:
{:ok, page} = Xandra.execute(conn, "SELECT * FROM users", [], tracing: true)

statement = "SELECT * FROM system_traces.events WHERE session_id = ?"
{:ok, trace_events_page} = Xandra.execute(conn, statement, [{"uuid", page.tracing_id}])
Note that tracing is an expensive operation for Cassandra that puts load on
executing queries. This is why this option is only supported per-query in
execute/4 instead of connection-wide.

  



    

  
    
      
      Link to this function
    
    execute!(conn, query, params_or_options \\ [])


      
       
       View Source
     


  


  

      

          @spec execute!(conn(), statement() | Xandra.Prepared.t(), values()) ::
  result() | no_return()


          @spec execute!(conn(), Xandra.Batch.t(), keyword()) :: Xandra.Void.t() | no_return()


      


Executes the given simple query, prepared query, or batch query, raising if
there's an error.
This function behaves exactly like execute/3, except that it returns
successful results directly and raises on errors.

  
    
  
  Examples


Xandra.execute!(conn, "INSERT INTO users (name, age) VALUES ('Jane', 29)")
#=> %Xandra.Void{}

  



  
    
      
      Link to this function
    
    execute!(conn, query, params, options)


      
       
       View Source
     


  


  

      

          @spec execute!(conn(), statement() | Xandra.Prepared.t(), values(), keyword()) ::
  result() | no_return()


      


Executes the given simple query, prepared query, or batch query, raising if
there's an error.
This function behaves exactly like execute/4, except that it returns
successful results directly and raises on errors.

  
    
  
  Examples


statement = "INSERT INTO users (name, age) VALUES ('John', 43)"
Xandra.execute!(conn, statement, _params = [], consistency: :quorum)
#=> %Xandra.Void{}

  



    

  
    
      
      Link to this function
    
    prepare(conn, statement, options \\ [])


      
       
       View Source
     


  


  

      

          @spec prepare(conn(), statement(), keyword()) ::
  {:ok, Xandra.Prepared.t()} | {:error, error()}


      


Prepares the given query.
This function prepares the given statement on the Cassandra server. If
preparation is successful and there are no network errors while talking to the
server, {:ok, prepared} is returned, otherwise {:error, error} is
returned.
The returned prepared query can be run through execute/4, or used inside a
batch (see Xandra.Batch).
Errors returned by this function can be either Xandra.Error or
Xandra.ConnectionError structs. See the module documentation for more
information about errors.

  
    
  
  Options


	:compressor - The compressor module to use for compressing and decompressing data.
See the "Compression" section in the module documentation. By default
this option is not present, which means no compression is used.

	:force (boolean/0) - When true, forces the preparation of the query on
the server instead of trying to read the prepared query from cache. See
the "Prepared queries cache" section below. The default value is false.

	:tracing (boolean/0) - Turn on tracing for the preparation of the
given query and sets the tracing_id field in the returned prepared
query. See the "Tracing" option in execute/4. The default value is false.

	:custom_payload - A custom payload to send to the Cassandra server alongside the request. Only
supported in QUERY, PREPARE, EXECUTE, and BATCH requests. The custom
payload must be of type custom_payload/0. See the
"Custom payloads" section in the module documentation.

	:telemetry_metadata (map/0) - Custom metadata to be added to the metadata of [:xandra, :prepare_query, :start]
and [:xandra, :prepare_query, :stop] telemetry events as extra_metadata field. The default value is %{}.

	:timeout (timeout/0) - The timeout for this call, in milliseconds. The default value is :infinity.



  
    
  
  Prepared queries cache


Since Cassandra prepares queries on a per-node basis (and not on a
per-connection basis), Xandra internally caches prepared queries for each
connection or pool of connections. This means that if you prepare a query that
was already prepared, no action will be executed on the Cassandra server and
the prepared query will be returned from the cache.
If the Cassandra node goes down, however, the prepared query will be
invalidated and trying to use the one from cache will result in a
Xandra.Error. However, this is automatically handled by Xandra: when such an
error is returned, Xandra will first retry to prepare the query and only
return an error if the preparation fails.
If you want to ensure a query is prepared on the server, you can set the
:force option to true.

  
    
  
  Examples


{:ok, prepared} = Xandra.prepare(conn, "SELECT * FROM users WHERE id = ?")
{:ok, _page} = Xandra.execute(conn, prepared, [_id = 1])

{:error, %Xandra.Error{reason: :invalid_syntax}} = Xandra.prepare(conn, "bad syntax")

# Force a query to be prepared on the server and not be read from cache:
Xandra.prepare!(conn, "SELECT * FROM users WHERE ID = ?", force: true)

  



    

  
    
      
      Link to this function
    
    prepare!(conn, statement, options \\ [])


      
       
       View Source
     


  


  

      

          @spec prepare!(conn(), statement(), keyword()) :: Xandra.Prepared.t() | no_return()


      


Prepares the given query, raising if there's an error.
This function works exactly like prepare/3, except it returns the prepared
query directly if preparation succeeds, otherwise raises the returned error.

  
    
  
  Examples


prepared = Xandra.prepare!(conn, "SELECT * FROM users WHERE id = ?")
{:ok, _page} = Xandra.execute(conn, prepared, [_id = 1])

  



    

  
    
      
      Link to this function
    
    start_link(options \\ [])


      
       
       View Source
     


  


  

      

          @spec start_link([start_option()]) :: GenServer.on_start()


      


Starts a new pool of connections to Cassandra.
This function starts a new connection to the provided Cassandra node.

  
    
  
  Options


These are the options supported by this function:
	:atom_keys (boolean/0) - Whether or not results of and parameters to execute/4 will have atom
keys. If true, the result maps will have column names returned as
atoms rather than as strings. Additionally, maps that represent named
parameters will need atom keys. The default value is false.

	:authentication (tuple with module/0 and term/0) - Two-element tuple: the authenticator module to use for authentication
and its supported options. See Xandra.Authenticator.

	:backoff_min (non_neg_integer/0) - The minimum backoff interval (in milliseconds). The default value is 1000.

	:backoff_max (non_neg_integer/0) - The maximum backoff interval (in milliseconds). The default value is 30000.

	:backoff_type - The backoff strategy. :stop means the connection will stop when a disconnection happens,
:exp means exponential backoff, :rand is random backoff, and :rand_exp is random
exponential backoff. The default value is :rand_exp.

	:compressor (module/0) - The compressor module to use for compressing and decompressing data.
See the "Compression" section in the module documentation. By default
this option is not present, which means no compression is used.

	:configure (configure_fun/0) - A function to run before every connect attempt to dynamically configure the options. It's
either a 1-arity fun which gets called with the options and must return options, or a
{module, function, args} tuple with the options prepended to args (the return value
of the function must still be options). By default, options are not modified. This
function is called in the connection process. Available since v0.18.0.

	:connect_timeout (timeout/0) - Time to wait (in milliseconds) for Xandra to establish a network connection.
If the timeout is reached, the connection considers it as a failed connection attempt
and behaves according to the :backoff_type option. Available since v0.18.0. The default value is 5000.

	:default_consistency (consistency/0) - The default consistency to set for all queries. Can be overridden on a per-query
basis through the :consistency option in execute/4. The default value is :one.

	:debug (term/0)

	:encryption (boolean/0) - Whether to connect to Cassandra using SSL. If you want to set up SSL
options, see the :transport_options option. The default value is false.

	:keyspace (String.t/0) - USE this keyspace right after establishing a connection to the server. This effectively
replaces most uses of the :after_connect option that was available before v0.18.0.
Available since v0.18.0.

	:max_concurrent_requests_per_connection (pos_integer/0) - The maximum number of requests that can be in flight at any given time on a single
connection. Xandra "multiplexes" requests on a single connection, since that is allowed
by the Cassandra protocol (via the use of stream IDs to identify in-flight requests on
a particular connection). Increasing this option means that a single connection will
handle more requests, so you can potentially lower the number of total connections in
your connection pool. However, the more requests are in flight on a single connection,
the more work that connection will have to do to decode and route requests and responses.
Available since 0.19.0. The default value is 100.

	:name (term/0) - Name registration, just like GenServer.

	:nodes (list of String.t/0) - The Cassandra node to connect to. This option is a list for consistency with
Xandra.Cluster, but if using Xandra directly, it can only contain a single node.
Such node can have the form "ADDRESS:PORT", or "ADDRESS" (port defaults to
9042). See the documentation for Xandra.Cluster for more information on
connecting to multiple nodes. The default value is ["127.0.0.1"].

	:protocol_version (native_protocol_version/0) - The enforced version of the Cassandra native protocol to use. If this option
is not present, Xandra will negotiate the protocol with the server, starting
with the most recent one and falling back to older ones if needed. Must be one
of :v5, :v4, :v3. See
the relevant section in the module documentation.

	:show_sensitive_data_on_connection_error (boolean/0) - Is it ok to show sensitive data on connection errors? Useful for
debugging and in tests. The default value is false.

	:transport_options (keyword/0) - Options to forward to the socket transport. If the :encryption option is true,
then the transport is SSL (see the Erlang :ssl module) otherwise it's
TCP (see the :gen_tcp Erlang module). The :buffer option (pos_integer/0), 
which controls the size of the user level buffer in use by the active mode
socket, defaults to 1_000_000 bytes.



  
    
  
  Examples


# Start a connection:
{:ok, conn} = Xandra.start_link()

# Start a connection and register it under a name:
{:ok, _conn} = Xandra.start_link(name: :xandra)
If you're using Xandra under a supervisor, see child_spec/1.

  



  
    
      
      Link to this function
    
    start_link_opts_schema()


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @spec start_link_opts_schema() :: keyword()


      


Returns the NimbleOptions schema used for validating the options for start_link/1.
This function is meant to be used by other libraries that want to extend Xandra's
functionality, and that rely on start_link/1 at some point. The keys in the returned
schema are not all public, so you should always refer to the documentation for
start_link/1.

  
    
  
  Examples


iex> schema = Xandra.start_link_opts_schema()
iex> schema[:encryption][:type]
:boolean

  



    

    

  
    
      
      Link to this function
    
    stop(conn, reason \\ :normal, timeout \\ :infinity)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @spec stop(conn(), term(), timeout()) :: :ok


      


Synchronously stops the given connection with the given reason.
Waits timeout milliseconds for the connection to stop before aborting and exiting.

  



    

  
    
      
      Link to this function
    
    stream_pages!(conn, query, params, options \\ [])


      
       
       View Source
     


  


  

      

          @spec stream_pages!(conn(), statement() | Xandra.Prepared.t(), values(), keyword()) ::
  Enumerable.t()


      


Streams the results of a simple query or a prepared query with the given params.
This function can be used to stream the results of query so as not to load
them entirely in memory. This function doesn't send any query to Cassandra
right away: it will only execute queries as necessary when results are
requested out of the returned stream.
The returned value is a stream of Xandra.Page structs, where each of such
structs contains at most as many rows as specified by the :page_size
option. Every time an element is requested from the stream, query will be
executed with params to get that result.
In order to get each result from Cassandra, execute!/4 is used: this means
that if there is an error (such as a network error) when executing the
queries, that error will be raised.

  
    
  
  Simple or prepared queries


Regardless of query being a simple query or a prepared query, this function
will execute it every time a result is needed from the returned stream. For
this reason, it is usually a good idea to use prepared queries when streaming.

  
    
  
  Options


options supports all the options supported by execute/4, with the same
default values.

  
    
  
  Examples


prepared = Xandra.prepare!(conn, "SELECT * FROM users")
users_stream = Xandra.stream_pages!(conn, prepared, _params = [], page_size: 2)

[%Xandra.Page{} = _page1, %Xandra.Page{} = _page2] = Enum.take(users_stream, 2)

  


        

      



  

    
Xandra.Authenticator behaviour
    



      
A behaviour module for implementing a Cassandra authenticator.

  
    
  
  Examples


defmodule MyAuthenticator do
  @behaviour Xandra.Authenticator

  def response_body(options) do
    ["user:", Keyword.fetch!(options, :user), "_password:", Keyword.fetch!(options, :password)]
  end
end
To use the authenticator defined above:
Xandra.start_link(authentication: {MyAuthenticator, user: "foo", password: "bar"})
Xandra supports Cassandra's PasswordAuthenticator by default, see
Xandra.Authenticator.Password for more information.

      


      
        Summary


  
    Callbacks
  


    
      
        response_body(options)

      


        Returns an iodata that's used as the response body to Cassandra's auth challenge.



    





      


      
        Callbacks

        


  
    
      
      Link to this callback
    
    response_body(options)


      
       
       View Source
     


  


  

      

          @callback response_body(options :: keyword()) :: iodata()


      


Returns an iodata that's used as the response body to Cassandra's auth challenge.

  


        

      



  

    
Xandra.Authenticator.Password 
    



      
A Xandra.Authenticator that implements support for PasswordAuthenticator
to authenticate with Cassandra server.

  
    
  
  Example


options = [username: "xandra", password: "secret"]

Xandra.start_link(authentication: {Xandra.Authenticator.Password, options})

      





  

    
Xandra.Batch 
    



      
Represents a batch of simple and/or prepared queries.
This module provides a data structure that can be used to group queries and
execute them as a Cassandra BATCH query. Batch queries can be executed
through Xandra.execute/3 and Xandra.execute!/3; see their respective
documentation for more information.
Note that the t/1 type is not documented as it's not meant
for public use. If you want to use batches in your typespecs, use t/0.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    


    
      
        type()

      


    





  
    Functions
  


    
      
        add(batch, query, values \\ [])

      


        Adds a query to the given batch.



    


    
      
        new(type \\ :logged)

      


        Creates a new batch query.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: t(type())


      



  



  
    
      
      Link to this type
    
    type()


      
       
       View Source
     


  


  

      

          @type type() :: :logged | :unlogged | :counter


      



  


        

      

      
        Functions

        


    

  
    
      
      Link to this function
    
    add(batch, query, values \\ [])


      
       
       View Source
     


  


  

      

          @spec add(t(), Xandra.statement() | Xandra.Prepared.t(), Xandra.values()) :: t()


      


Adds a query to the given batch.
query has to be either a simple query (statement) or a prepared query. Note
that parameters have to be added alongside their corresponding query when
adding a query to a batch. In contrast with functions like Xandra.execute/4,
simple queries in batch queries only support positional parameters and do
not support named parameters; this is a current Cassandra limitation. If a
map of named parameters is passed alongside a simple query, an ArgumentError
exception is raised. Named parameters are supported with prepared queries.

  
    
  
  Examples


prepared = Xandra.prepare!(conn, "INSERT INTO users (name, age) VALUES (?, ?)")

batch =
  Xandra.Batch.new()
  |> Xandra.Batch.add(prepared, ["Rick", 60])
  |> Xandra.Batch.add(prepared, ["Morty", 14])
  |> Xandra.Batch.add(prepared, ["Jerry", 35])
  |> Xandra.Batch.add("DELETE FROM users WHERE name = 'Jerry'")

Xandra.execute!(conn, batch)

  



    

  
    
      
      Link to this function
    
    new(type \\ :logged)


      
       
       View Source
     


  


  

      

          @spec new(type()) :: t()


      


Creates a new batch query.
type represents the type of the batch query (:logged, :unlogged, or
:counter). See the Cassandra documentation for the meaning of these types.

  
    
  
  Examples


batch = Xandra.Batch.new()

  


        

      



  

    
Xandra.Cluster 
    



      
Connection to a Cassandra cluster.
This module is a "proxy" connection with support for connecting to multiple
nodes in a Cassandra cluster and executing queries on such nodes based on a
given policy.

  
    
  
  Usage


This module manages pools of connections to different nodes in a Cassandra cluster.
Each pool is a pool of Xandra connections to a specific node.
The API provided by this module mirrors the API provided by the Xandra
module. Queries executed through this module will be "routed" to nodes
in the provided list of nodes based on a policy. See the
"Load balancing policies" section.
Regardless of the underlying pool, Xandra.Cluster will establish
one extra connection to a node in the cluster for internal purposes.
We refer to this connection as the control connection.
Here is an example of how one could use Xandra.Cluster to connect to a cluster:
Xandra.Cluster.start_link(
  nodes: ["cassandra1.example.net", "cassandra2.example.net"],
  pool_size: 10,
)
The code above will establish a pool of ten connections to each of the nodes
specified in :nodes, plus one extra connection used for internal
purposes, for a total of twenty-one connections going out of the machine.

  
    
  
  Child Specification


Xandra.Cluster implements a child_spec/1 function, so it can be used as a child
under a supervisor:
children = [
  # ...,
  {Xandra.Cluster, nodes: ["cassandra-seed.example.net"]}
]

  
    
  
  Contact Points and Cluster Discovery


Xandra.Cluster auto-discovers peer nodes in the cluster, by using the system.peers
built-in Cassandra table. Once Xandra discovers peers, it opens a pool of connections
to a subset of the peers based on the chosen load-balancing policy (see below).
The :nodes option in start_link/1 specifies the contact points. The contact
points are used to discover the rest of the nodes in the cluster. It's generally
a good idea to provide multiple contacts points, so that if some of those are
unreachable, the others can be used to discover the rest of the cluster. Xandra.Cluster
tries to connect to contact points in the order they are specified in the :nodes
option, initially ignoring the chosen load-balancing policy. Once a connection is
established, then that contact point is used to discover the rest of the cluster
and open connection pools according to the load-balancing policy.
Xandra also refreshes the cluster topology periodically. See the
:refresh_topology_interval option in start_link/1.

  
    
  
  Load-balancing Policies


Xandra.Cluster uses customizable "load-balancing policies" to manage nodes
in the cluster. A load-balancing policy is a module that implements the
Xandra.Cluster.LoadBalancing behaviour. Xandra uses load-balancing policies
for these purposes:
	Choosing which node to execute a query on
	Choosing which nodes to open pools of connections to (see the :target_pools
option in start_link/1)
	Choosing which node the control connection connects to (or re-connects to
in case of disconnections)

Xandra ships with the following built-in load-balancing policies:
	Xandra.Cluster.LoadBalancingPolicy.Random - it will choose one of the
connected nodes at random and execute the query on that node.
	Xandra.Cluster.LoadBalancingPolicy.DCAwareRoundRobin - it will execute the
queries on the nodes in a round robin manner, prioritizing the current DC.


  
    
  
  Disconnections and Reconnections


Xandra.Cluster also supports nodes disconnecting and reconnecting: if Xandra
detects one of the nodes in :nodes going down, it will not execute queries
against it anymore, but will start executing queries on it as soon as it
detects such node is back up.
If all specified nodes happen to be down when a query is executed, a
Xandra.ConnectionError with reason {:cluster, :not_connected} will be
returned.

  
    
  
  Telemetry


Xandra.Cluster emits several Telemetry events to help you log, instrument,
and debug your application. See the Telemetry Events
page in the guides for a comprehensive list of the events that Xandra emits.

      


      
        Summary


  
    Types
  


    
      
        cluster()

      


        A Xandra cluster.



    


    
      
        start_option()

      


        Cluster-specific options for start_link/1.



    





  
    Functions
  


    
      
        connected_hosts(cluster)

      


        Returns a list of hosts that the cluster has outgoing connections to.



    


    
      
        execute(cluster, query, params_or_options \\ [])

      


        Same as execute/4 but with optional arguments.



    


    
      
        execute(cluster, query, params, options)

      


        Executes a query on a node in the cluster.



    


    
      
        execute!(cluster, query, params_or_options \\ [])

      


        Same as execute/3 but returns the result directly or raises in case of errors.



    


    
      
        execute!(cluster, query, params, options)

      


        Same as execute/4 but returns the result directly or raises in case of errors.



    


    
      
        prepare(cluster, statement, options \\ [])

      


        Same as Xandra.prepare/3.



    


    
      
        prepare!(cluster, statement, options \\ [])

      


        Same as prepare/3 but raises in case of errors.



    


    
      
        run(cluster, options \\ [], fun)

      


        Runs a function with a given connection.



    


    
      
        start_link(options)

      


        Starts connections to a cluster.



    


    
      
        stop(cluster, reason \\ :normal, timeout \\ :infinity)

      


        Synchronously stops the given cluster with the given reason.



    


    
      
        stream_pages!(cluster, query, params, options \\ [])

      


        Returns a stream of pages.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    cluster()


      
       
       View Source
     


  


  

      

          @type cluster() :: GenServer.server()


      


A Xandra cluster.

  



  
    
      
      Link to this type
    
    start_option()


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @type start_option() ::
  {:nodes, [term()]}
  | {:load_balancing, term() | {module(), [term()]}}
  | {:autodiscovery, boolean()}
  | {:autodiscovered_nodes_port, 0..65535}
  | {:refresh_topology_interval, timeout()}
  | {:target_pools, pos_integer()}
  | {:name, term()}
  | {:sync_connect, timeout() | term()}
  | {:queue_checkouts_before_connecting, keyword()}
  | {:pool_size, pos_integer()}
  | {:debug, term()}
  | {:spawn_opt, term()}
  | {:hibernate_after, term()}
  | {:xandra_module, atom()}
  | {:control_connection_module, atom()}
  | {:test_discovered_hosts, term()}


      


Cluster-specific options for start_link/1.
Some of these options are internal and not part of the public API. Only use
the options explicitly documented in start_link/1.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    connected_hosts(cluster)


      
       
       View Source
     


      (since 0.18.0)

  


  

      

          @spec connected_hosts(cluster()) :: [Xandra.Cluster.Host.t()]


      


Returns a list of hosts that the cluster has outgoing connections to.

  



    

  
    
      
      Link to this function
    
    execute(cluster, query, params_or_options \\ [])


      
       
       View Source
     


  


  

      

          @spec execute(cluster(), Xandra.statement() | Xandra.Prepared.t(), Xandra.values()) ::
  {:ok, Xandra.result()} | {:error, Xandra.error()}


          @spec execute(cluster(), Xandra.Batch.t(), keyword()) ::
  {:ok, Xandra.Void.t()} | {:error, Xandra.error()}


      


Same as execute/4 but with optional arguments.

  



  
    
      
      Link to this function
    
    execute(cluster, query, params, options)


      
       
       View Source
     


  


  

      

          @spec execute(
  cluster(),
  Xandra.statement() | Xandra.Prepared.t(),
  Xandra.values(),
  keyword()
) ::
  {:ok, Xandra.result()} | {:error, Xandra.error()}


          @spec execute(
  cluster(),
  Xandra.statement() | Xandra.Prepared.t(),
  Xandra.values(),
  keyword()
) ::
  Xandra.result()


      


Executes a query on a node in the cluster.
This function executes a query on a node in the cluster. The node is chosen based
on the load-balancing policy given in start_link/1.
Supports the same options as Xandra.execute/4. In particular, the :retry_strategy
option is cluster-aware, meaning that queries are retried on possibly different nodes
in the cluster.

  



    

  
    
      
      Link to this function
    
    execute!(cluster, query, params_or_options \\ [])


      
       
       View Source
     


  


  

      

          @spec execute!(cluster(), Xandra.statement() | Xandra.Prepared.t(), Xandra.values()) ::
  Xandra.result()


          @spec execute!(cluster(), Xandra.Batch.t(), keyword()) :: Xandra.Void.t()


      


Same as execute/3 but returns the result directly or raises in case of errors.

  



  
    
      
      Link to this function
    
    execute!(cluster, query, params, options)


      
       
       View Source
     


  


  

Same as execute/4 but returns the result directly or raises in case of errors.

  



    

  
    
      
      Link to this function
    
    prepare(cluster, statement, options \\ [])


      
       
       View Source
     


  


  

      

          @spec prepare(cluster(), Xandra.statement(), keyword()) ::
  {:ok, Xandra.Prepared.t()} | {:error, Xandra.error()}


      


Same as Xandra.prepare/3.
Preparing a query through Xandra.Cluster will prepare it only on one node,
according to the load-balancing policy chosen in start_link/1. To prepare
and execute a query on the same node, you could use run/3:
Xandra.Cluster.run(cluster, fn conn ->
  # "conn" is the pool of connections for a specific node.
  prepared = Xandra.prepare!(conn, "SELECT * FROM system.local")
  Xandra.execute!(conn, prepared, _params = [])
end)
Thanks to the prepared query cache, we can always reprepare the query and execute
it because after the first time (on each node) the prepared query will be fetched
from the cache. However, if a prepared query is unknown on a node, Xandra will
prepare it on that node on the fly, so we can simply do this as well:
prepared = Xandra.Cluster.prepare!(cluster, "SELECT * FROM system.local")
Xandra.Cluster.execute!(cluster, prepared, _params = [])
Note that this goes through the cluster twice, so there's a high chance that
the query will be prepared on one node and then executed on another node.
This is however useful if you want to use the :retry_strategy option in
execute!/4: in the run/3 example above, if you use :retry_strategy with
Xandra.execute!/3, the query will be retried on the same pool of connections
to the same node. execute!/4 will retry queries going through the cluster
again instead.

  



    

  
    
      
      Link to this function
    
    prepare!(cluster, statement, options \\ [])


      
       
       View Source
     


  


  

      

          @spec prepare!(cluster(), Xandra.statement(), keyword()) :: Xandra.Prepared.t()


      


Same as prepare/3 but raises in case of errors.
If the function is successful, the prepared query is returned directly
instead of in an {:ok, prepared} tuple like in prepare/3.

  



    

  
    
      
      Link to this function
    
    run(cluster, options \\ [], fun)


      
       
       View Source
     


  


  

      

          @spec run(cluster(), keyword(), (Xandra.conn() -> result)) :: result when result: var


      


Runs a function with a given connection.
The connection that is passed to fun is a Xandra connection, not a
cluster. This means that you should call Xandra functions on it.
Since the connection is a single connection, it means that it's a connection
to a specific node, so you can do things like prepare a query and then execute
it because you can be sure it's prepared on the same node where you're
executing it.

  
    
  
  Examples


query = "SELECT * FROM system_schema.keyspaces"

Xandra.Cluster.run(cluster, fn conn ->
  prepared = Xandra.prepare!(conn, query)
  Xandra.execute!(conn, prepared, _params = [])
end)

  



  
    
      
      Link to this function
    
    start_link(options)


      
       
       View Source
     


  


  

      

          @spec start_link([option]) :: GenServer.on_start()
when option: Xandra.start_option() | start_option()


      


Starts connections to a cluster.

  
    
  
  Options


This function accepts all options accepted by Xandra.start_link/1 and
and forwards them to each underlying connection or pool of connections. The following
options are specific to this function:
	:nodes (list of String.t/0) - A list of nodes to use as contact points when setting up the cluster. Each node in this
list must be a hostname ("cassandra.example.net"), IPv4 ("192.168.0.100"),
or IPv6 ("16:64:c8:0:2c:58:5c:c7") address. An optional port can be specified by
including :<port> after the address, such as "cassandra.example.net:9876".
See the Contact points and cluster discovery
section in the module documentation. The default value is ["127.0.0.1"].

	:load_balancing ({module(), term()} or :random) - Load balancing "policy". See the Load balancing policies
section in the module documentation.
The policy must be expressed as a {module, options} tuple, where module
is a module that implements the Xandra.Cluster.LoadBalancingPolicy behaviour, and
options is any term that is passed to the Xandra.Cluster.LoadBalancingPolicy.init/1
callback. This option changed in v0.15.0.
Before v0.15.0, the only supported values were :priority and :random.
:random is deprecated in favor of using {Xandra.Cluster.LoadBalancingPolicy.Random, []}.
:priority has been removed. The default value is :random.

	:autodiscovery (boolean/0) - (deprecated) Whether to enable autodiscovery. Since v0.15.0, this option is deprecated
and autodiscovery is always enabled.

	:autodiscovered_nodes_port (:inet.port_number/0) - The port to use when connecting to autodiscovered nodes. Cassandra does not advertise
the port of nodes when discovering them, so you'll need to specify one explicitly.
This might get fixed in future Cassandra versions. The default value is 9042.

	:refresh_topology_interval (timeout/0) - The interval at which Xandra will refresh the cluster topology by querying the control
connection to discover peers. When the connection refreshes the topology, it will
also start and stop pools for new and removed nodes, effectively "syncing" with
the cluster. Available since v0.15.0. The default value is 300000.

	:target_pools (pos_integer/0) - The number of nodes to start pools to. Each pool will use the :pool_size option to
determine how many single connections to open to that node. This number is a target
number, which means that sometimes there might not be enough nodes to start this many
pools. Xandra won't ever start more than :target_pools pools. Available since v0.15.0. The default value is 2.

	:name (term/0) - The name to register this cluster under. Follows the name registration rules of GenServer.

	:sync_connect - Whether to wait for at least one connection to a node in the cluster to be established
before returning from start_link/1. If false, connecting is async, which means that
even if start_link/1 returns {:ok, pid}, that's the PID of the cluster process,
which has not necessarily established any connections yet. If this option is
an integer or :infinity (that is, a term of type timeout/0), then this function
only returns when at least one node connection is established. If the timeout expires,
this function returns {:error, :sync_connect_timeout}. Available since v0.16.0.
This is only useful in rare cases when you want to make sure that the has connected
at least once before returning from start_link/1. This is fragile though, because
the cluster could connect once and then drop connections right away, so this doesn't
mean that the cluster is connected, but rather that it connected at least once.
This is useful, for example, in test suites where you're not worried about
resiliency but rather race conditions. In most cases, the
:queue_checkouts_before_connecting option is what you want.
The default value is false.

	:queue_checkouts_before_connecting (keyword/0) - Controls how to handle checkouts that go through the cluster before the cluster
is able to establish a connection to any node. Whenever you run a cluster function,
the cluster checks out a connection from one of the connected nodes and executes the
request on that connection. However, if you try to run any cluster function before the
cluster connects to any of the nodes, you'll likely get Xandra.ConnectionErrors
with reason {:cluster, :not_connected}. This is because the cluster needs to establish
at least one connection to one node before it can execute requests. This option addresses
this issue by queueing "checkout requests" until the cluster establishes a connection
to a node. Once the connection is established, the cluster starts to hand over
connections. If you want to disable this behavior, set :max_size to 0. Available
since v0.18.0. This option supports the following sub-options: The default value is [].
	:max_size (non_neg_integer/0) - The number of checkouts to queue in the cluster and flush as soon as a connection
is established. The default value is 100.

	:timeout (timeout/0) - How long to hold on to checkout requests for. When this timeout expires, all requests
are dropped and a connection error is returned to each caller. The default value is 5000.



	:pool_size (pos_integer/0) - The number of connections to open to each node in the cluster. Available since v0.18.0. The default value is 1.

	:debug (term/0) - Same as the :debug option in GenServer.start_link/3. Available since v0.18.0.

	:spawn_opt (term/0) - Same as the :spawn_opt option in GenServer.start_link/3. Available since v0.18.0.

	:hibernate_after (term/0) - Same as the :hibernate_after option in GenServer.start_link/3.
Available since v0.18.0.


Control connection
A Xandra.Cluster starts one additional "control connection" to one of the
nodes in the cluster. This could be a node in the given :nodes (a contact point)
or a discovered peer in the cluster. See the Contact points and cluster discovery
section in the module documentation.


  
    
  
  Examples


Starting a Xandra cluster using two nodes as the contact points:
{:ok, cluster} =
  Xandra.Cluster.start_link(nodes: ["cassandra1.example.net", "cassandra2.example.net"])
Starting a pool of five connections to each node in the same cluster as the given
contact point:
{:ok, cluster} =
  Xandra.Cluster.start_link(nodes: ["cassandra-seed.example.net"], pool_size: 5)
Passing options down to each connection:
{:ok, cluster} =
  Xandra.Cluster.start_link(
    nodes: ["cassandra.example.net"],
    keyspace: "my_keyspace"
  )

  



    

    

  
    
      
      Link to this function
    
    stop(cluster, reason \\ :normal, timeout \\ :infinity)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @spec stop(cluster(), term(), timeout()) :: :ok


      


Synchronously stops the given cluster with the given reason.
Waits timeout milliseconds for the cluster to stop before aborting and exiting.

  



    

  
    
      
      Link to this function
    
    stream_pages!(cluster, query, params, options \\ [])


      
       
       View Source
     


  


  

      

          @spec stream_pages!(
  cluster(),
  Xandra.statement() | Xandra.Prepared.t(),
  Xandra.values(),
  keyword()
) :: Enumerable.t()


      


Returns a stream of pages.
When streaming pages through a cluster, the streaming is done
from a single node, that is, this function just calls out to
Xandra.stream_pages!/4 after choosing a node appropriately.
All options are forwarded to Xandra.stream_pages!/4, including
retrying options.

  


        

      



  

    
Xandra.Cluster.Host 
    



      
The data structure to represent a host in a Cassandra cluster.
The fields of this struct are public. See t/0 for information on their type,
and %Xandra.Cluster.Host{} for more information.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for the host struct.



    





  
    Functions
  


    
      
        %Xandra.Cluster.Host{}

      


        The struct that represents a host in a Cassandra cluster.



    


    
      
        format_address(host)

      


        Formats a host's address and port as a string.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @type t() :: %Xandra.Cluster.Host{
  address: :inet.ip_address() | String.t(),
  data_center: String.t(),
  host_id: String.t(),
  port: :inet.port_number(),
  rack: String.t(),
  release_version: String.t(),
  schema_version: String.t(),
  tokens: MapSet.t(String.t())
}


      


The type for the host struct.

  
    
  
  Fields


	:address - the address of the host. It can be either an IP address
or a hostname. If Xandra managed to connect to this host, then the :address will
be the actual IP peer (see :inet.peername/1). Otherwise, the :address will be
the parsed IP or the charlist hostname. For example, if you pass "10.0.2.1" as
the address, Xandra will normalize it to {10, 0, 2, 1}.

	:port - the port of the host.

	:data_center - the data center of the host, as found in the system.local or
system.peers table.

	:host_id - the ID of the host, as found in the system.local or
system.peers table.

	:rack - the rack of the host, as found in the system.local or
system.peers table.

	:release_version - the release version of the host, as found in the system.local or
system.peers table.

	:schema_version - the schema version of the host, as found in the system.local or
system.peers table.

	:tokens - the tokens held by the host, as found in the system.local or
system.peers table.



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    %Xandra.Cluster.Host{}


      
       
       View Source
     


      (since 0.15.0)

      (struct)

  


  

The struct that represents a host in a Cassandra cluster.
See t/0 for the type of each field.

  



  
    
      
      Link to this function
    
    format_address(host)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @spec format_address(t()) :: String.t()


      


Formats a host's address and port as a string.

  
    
  
  Examples


iex> host = %Xandra.Cluster.Host{address: {127, 0, 0, 1}, port: 9042}
iex> Xandra.Cluster.Host.format_address(host)
"127.0.0.1:9042"

iex> host = %Xandra.Cluster.Host{address: "example.com", port: 9042}
iex> Xandra.Cluster.Host.format_address(host)
"example.com:9042"

  


        

      



  

    
Xandra.Cluster.LoadBalancingPolicy behaviour
    



      
A behaviour for defining load-balancing policies.
A load-balancing policy is a way to tell Xandra which nodes to query when connected
to a cluster.
For example, a simple load-balancing policy is Xandra.Cluster.LoadBalancingPolicy.Random,
which picks a random node for each query out of the ones that are up.

      


      
        Summary


  
    Types
  


    
      
        state()

      


        The state of the load-balancing policy.



    





  
    Callbacks
  


    
      
        host_added(state, host)

      


        Called when the Cassandra cluster reports a new host that joined.



    


    
      
        host_connected(state, host)

      


        Called when Xandra successfully connects to host.



    


    
      
        host_down(state, host)

      


        Called when the Cassandra cluster marks host as "down".



    


    
      
        host_removed(state, host)

      


        Called when the Cassandra cluster reports a host that left the cluster.



    


    
      
        host_up(state, host)

      


        Called when the Cassandra gossip marks host as "up".



    


    
      
        hosts_plan(state)

      


        Called to return a "plan", which is an enumerable of hosts to start connections in order.



    


    
      
        init(options)

      


        Called to initialize the load-balancing policy.



    


    
      
        query_plan(state)

      


        Called to return a "plan", which is an enumerable of hosts to query in order.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    state()


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @type state() :: term()


      


The state of the load-balancing policy.
Can be any term and is passed around to all callbacks.

  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    host_added(state, host)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback host_added(state(), host :: Xandra.Cluster.Host.t()) :: state()


      


Called when the Cassandra cluster reports a new host that joined.

  



  
    
      
      Link to this callback
    
    host_connected(state, host)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback host_connected(state(), host :: Xandra.Cluster.Host.t()) :: state()


      


Called when Xandra successfully connects to host.

  



  
    
      
      Link to this callback
    
    host_down(state, host)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback host_down(state(), host :: Xandra.Cluster.Host.t()) :: state()


      


Called when the Cassandra cluster marks host as "down".

  



  
    
      
      Link to this callback
    
    host_removed(state, host)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback host_removed(state(), host :: Xandra.Cluster.Host.t()) :: state()


      


Called when the Cassandra cluster reports a host that left the cluster.

  



  
    
      
      Link to this callback
    
    host_up(state, host)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback host_up(state(), host :: Xandra.Cluster.Host.t()) :: state()


      


Called when the Cassandra gossip marks host as "up".

  



  
    
      
      Link to this callback
    
    hosts_plan(state)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback hosts_plan(state()) :: {Enumerable.t(Xandra.Cluster.Host.t()), state()}


      


Called to return a "plan", which is an enumerable of hosts to start connections in order.

  



  
    
      
      Link to this callback
    
    init(options)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback init(options :: term()) :: state()


      


Called to initialize the load-balancing policy.
options is given by the user when configuring the cluster, and is specific to
the load-balancing policy.

  



  
    
      
      Link to this callback
    
    query_plan(state)


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @callback query_plan(state()) :: {Enumerable.t(Xandra.Cluster.Host.t()), state()}


      


Called to return a "plan", which is an enumerable of hosts to query in order.

  


        

      



  

    
Xandra.Cluster.LoadBalancingPolicy.DCAwareRoundRobin 
    



      
A Xandra.Cluster.LoadBalancingPolicy that prefers hosts in a "local" data center.
This policy uses a round-robin strategy to pick hosts, giving precedence to hosts
in a "local" data center. The local data center is determined by the
:local_data_center option (see below). "Giving precedence" means that
hosts_plan/1 and query_plan/1 will return a list of hosts where first there are all
the local hosts that are up, and then all the remote hosts that are up.
The round-robin strategy is applied to local and remote hosts separately. For example,
say the local hosts are LH1, LH2, LH3, and the remote hosts are RH1, RH2, RH3.
The first time, this policy will return [LH1, RH1, LH2, RH2, LH3, RH3]. The second time,
it will return [LH2, LH3, LH1, RH2, RH3, RH1]. And so on.
This policy is available since Xandra v0.15.0.

  
    
  
  Options


This policy supports the following initialization options:
	:local_data_center - The local data center. If :from_first_peer, this policy picks the local
data center from the first peer that is added to the cluster. This is
usually the first peer that the control connection connects to, which
(if everything goes well) is the first peer listed in the :nodes
option passed to Xandra.Cluster.start_link/1. If you want to force
a specific data center to be used as the local data center, you can
pass a string as the value of this option (such as "datacenter1"). The default value is :from_first_peer.


      





  

    
Xandra.Cluster.LoadBalancingPolicy.Random 
    



      
A simple Xandra.Cluster.LoadBalancingPolicy that picks hosts at random.
This load-balancing policy doesn't make any attempt to be smart: it doesn't take
data center or tokens into consideration, and considers all available nodes.
This policy is available since Xandra v0.15.0.

      





  

    
Xandra.Compressor behaviour
    



      
A behaviour to compress and decompress binary data.
Modules implementing this behaviour can be used to compress and decompress
data using one of the compression algorithms supported by Cassandra (see below).

  
    
  
  Supported algorithms and implementations


Native protocol versions v4 and earlier support two compression algorithms:
LZ4 and
Snappy.
Native protocol versions v5 and later only support LZ4.

  
    
  
  LZ4


If you implement a compressor module for the LZ4 algorithm, then:
	The compress/1 callback must return the compressed payload
preceded by a 32-bit big-endian unsigned integer representing the
length (in bytes) of the uncompressed body.

	Xandra will call the decompress/1 callback with the compressed
payload, also preceded by the uncompressed body size (in bytes) as
a 32-bit big-endian unsigned integer.


That is, the result of compression when using the LZ4 algorithm must look like
this:
<<uncompressed_payload_length::32-big-unsigned, compressed_payload::binary>>
Snappy is self-sufficient so it doesn't need the prepended uncompressed-payload
size.

  
    
  
  Example


Let's imagine you implemented the LZ compression algorithm in your application:
defmodule MyApp.LZ4 do
  def compress(binary), do: # ...
  def decompress(binary, uncompressed_size), do: # ...
end
You can then implement a module that implements the Xandra.Compressor
behaviour and can be used to compress and decompress data flowing through the
connection to Cassandra:
defmodule LZ4XandraCompressor do
  @behaviour Xandra.Compressor

  @impl true
  def algorithm(), do: :lz4

  @impl true
  def compress(body) do
    [<<IO.iodata_length(body)::4-unit(8)-integer>>, MyApp.LZ4.compress(body)]
  end

  @impl true
  def decompress(<<uncompressed_size::4-unit(8)-integer, compressed_body::binary>>) do
    MyApp.LZ4.decompress(compressed_body, uncompressed_size)
  end
end
Now, this module can be passed as the value of the :compressor option to
many functions in Xandra:
Xandra.start_link(compressor: LZ4XandraCompressor)
For more information on compression, see the "Compression" section in the
documentation for Xandra.

      


      
        Summary


  
    Callbacks
  


    
      
        algorithm()

      


        Specifies which algorithm this module will use to compress and decompress
data.



    


    
      
        compress(iodata)

      


        Compresses the given iodata according to the algorithm returned by
algorithm/0.



    


    
      
        decompress(binary)

      


        Decompresses the given binary according to the algorithm returned by
algorithm/0.



    





      


      
        Callbacks

        


  
    
      
      Link to this callback
    
    algorithm()


      
       
       View Source
     


  


  

      

          @callback algorithm() :: :lz4 | :snappy


      


Specifies which algorithm this module will use to compress and decompress
data.

  



  
    
      
      Link to this callback
    
    compress(iodata)


      
       
       View Source
     


  


  

      

          @callback compress(iodata()) :: iodata()


      


Compresses the given iodata according to the algorithm returned by
algorithm/0.

  



  
    
      
      Link to this callback
    
    decompress(binary)


      
       
       View Source
     


  


  

      

          @callback decompress(binary()) :: binary()


      


Decompresses the given binary according to the algorithm returned by
algorithm/0.

  


        

      



  

    
Xandra.Page 
    



      
A struct that represents a page of rows.
This struct represents a page of rows that have been returned by the
Cassandra server in response to a query such as SELECT, but have not yet
been parsed into Elixir values.
This struct implements the Enumerable protocol and is therefore a stream. It
is through this protocol that a Xandra.Page struct can be parsed into Elixir
values. The simplest way of getting a list of single rows out of a
Xandra.Page struct is to use something like Enum.to_list/1. Each element
emitted when streaming out of a Xandra.Page struct is a map of string column
names to their corresponding value.
See %Xandra.Page{} for information about which fields are public.

  
    
  
  Examples


statement = "SELECT name, age FROM users"

%Xandra.Page{} = page = Xandra.execute!(conn, statement, _params = [])

Enum.each(page, fn %{"name" => name, "age" => age} ->
  IO.puts("Read user with name #{name} (age #{age}) out of the database")
end)

      


      
        Summary


  
    Types
  


    
      
        paging_state()

      


        The paging state of a page.



    


    
      
        t()

      


        The type for the page struct.



    





  
    Functions
  


    
      
        %Xandra.Page{}

      


        The page struct.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    paging_state()


      
       
       View Source
     


  


  

      

          @type paging_state() :: binary()


      


The paging state of a page.
This is intended to be an "opaque" binary value that you can use for further
pagination. See Xandra.execute/4.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.Page{
  columns: [column()] | nil,
  content: [term()],
  custom_payload: Xandra.custom_payload() | nil,
  paging_state: paging_state() | nil,
  tracing_id: binary() | nil
}


      


The type for the page struct.
The only public fields here are :paging_state and :tracing_id.
See %Xandra.Page{}.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    %Xandra.Page{}


      
       
       View Source
     


      (struct)

  


  

The page struct.
The following fields are public and can be accessed or relied on:
	:paging_state - the current paging state, or nil if no paging is occurring.
Its value can be used to check whether more pages are available to fetch
after the given page. This is useful when implementing manual paging.
See also the documentation for Xandra.execute/4.

	:tracing_id - the tracing ID (as a UUID binary) if tracing was enabled,
or nil if no tracing was enabled. See the "Tracing" section in Xandra.execute/4.



  


        

      



  

    
Xandra.Prepared 
    



      
A data structure used to internally represent prepared queries.
See %Xandra.Prepared{} for information about which fields are
public. All other fields are documented in t/0 to avoid Dialyzer warnings,
but are not meant to be used by users.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for a prepared query.



    





  
    Functions
  


    
      
        %Xandra.Prepared{}

      


        A struct that represents a prepared query.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.Prepared{
  bound_columns: [Xandra.Page.column()] | nil,
  compressor: module() | nil,
  default_consistency: atom() | nil,
  id: binary() | nil,
  keyspace: binary() | nil,
  protocol_module: module() | nil,
  request_custom_payload: Xandra.custom_payload() | nil,
  response_custom_payload: Xandra.custom_payload() | nil,
  result_columns: list() | nil,
  result_metadata_id: binary() | nil,
  statement: Xandra.statement(),
  tracing_id: binary() | nil,
  values: Xandra.values() | nil
}


      


The type for a prepared query.
The only public fields here are :tracing_id and :response_custom_payload.
See %Xandra.Prepared{}.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    %Xandra.Prepared{}


      
       
       View Source
     


      (struct)

  


  

A struct that represents a prepared query.
These are the publicly-accessible fields of this struct:
	:tracing_id - the tracing ID (as a UUID binary) if tracing was enabled,
or nil if no tracing was enabled. See the "Tracing" section in Xandra.execute/4.

	:response_custom_payload - the custom payload sent by the server, if present.
If the server doesn't send a custom payload, this field is nil. Otherwise,
it's of type Xandra.custom_payload/0. See the "Custom payloads" section
in the documentation for the Xandra module.



  


        

      



  

    
Xandra.RetryStrategy behaviour
    



      
A behaviour that handles how to retry failed queries.
This behaviour makes it possible to customize the strategy that Xandra uses to
retry failed queries. By default, Xandra does not retry failed queries, and
does not provide any default retry strategy since retrying queries based on
the failure reason is very tied to application logic.
Why Do You Need This?
You might be wondering why there's a need for a retry strategy behaviour, when
you could do this at the application layer by simply checking the return value
of Xandra calls and potentially retrying.
Well, the reason is that retrying queries to Cassandra can get quite smart. For
example, you might want context to know what Cassandra node a query failed to
execute on, so that you can try it on a different node next. Xandra.RetryStrategy
modules get all the necessary info to implement this kind of smarter strategies.

A module that implements the Xandra.RetryStrategy behaviour can be passed to
several functions in the Xandra module and Xandra.Cluster modules. look at
the documentation for those modules for more information.

  
    
  
  Usage


When a query fails and a retry strategy module was passed as an option, Xandra
will:
	Invoke the new/1 callback — it will invoke this with the options
passed to the failing function to initialize the given retry strategy.
This gives you access to things like default consistency, timeouts, and
so on.

	Invoke the retry/3 callback until necessary — Xandra will ask the
retry strategy whether to retry or error out until either
the query succeeds or retry/3 says to error out.


Process
The new/1 and retry/3 callbacks will be invoked in the same
process that executed the original query.


  
    
  
  Single Connections or Clusters


There are two possible cases where a retry strategy is invoked: either it's invoked
when a query fails to execute on a single connection (that is, it was executed through
a Xandra function), or when a query fails to execute through a cluster connection (that
is, it was executed through a Xandra.Cluster function).
To distinguish these cases, Xandra always passes the :execution_level option
to new/1. This option has the type execution_level/0.
If the execution level is :single_connection, Xandra doesn't inject any additional
options. When the execution level is :single_connection, retry/3 can only return
the 3-element version of the {:retry, ...} tuple.
If the execution level is :cluster, Xandra injects these options when calling new/1:
	:connected_hosts — a list of {connection_pid, host} tuples, where
connection_pid (a pid/0) is the PID of the connection and host (a
Xandra.Cluster.Host.t/0) is the corresponding host information. You can use
this option to determine on which node to retry a query. Elements in this list
are ordered according to the Xandra.Cluster.LoadBalancingPolicy used by the
cluster. If you want to keep track of the original :connected_hosts, you'll
need to store them in the state of the retry strategy returned by new/1.

When the execution level is :single_connection, retry/3 can only return
the 4-element version of the {:retry, ...} tuple.

  
    
  
  Examples


Let's look at some examples.

  
    
  
  Retry Count


This is an example of a retry strategy that retries a fixed number of times
before failing. It injects :retry_count option which it uses to keep track
of how many times the query failed. This is effectively the state/0 of this
retry strategy.
defmodule MyApp.CounterRetryStrategy do
  @behaviour Xandra.RetryStrategy

  @impl true
  def new(options) do
    # This is the "state" of this retry strategy
    Keyword.fetch!(options, :retry_count)
  end

  @impl true
  def retry(error, options, retries_left)

  def retry(_error, _options, _retries_left = 0) do
    :error
  end

  def retry(_error, options, retries_left = _state) do
    {:retry, options, retries_left - 1}
  end
end

  
    
  
  Downgrading Consistency


Another interesting example could be a retry strategy based on downgrading
consistency: for example, we could execute all queries with a "high" consistency
(such as :all) at first, and in case of failure, try again with a lower
consistency (such as :quorum), finally giving up if that fails as well.
defmodule MyApp.DowngradingConsistencyRetryStrategy do
  @behaviour Xandra.RetryStrategy

  @impl true
  def new(_options) do
    :no_state
  end

  @impl true
  def retry(_error, options, :no_state) do
    case Keyword.fetch(options, :consistency) do
      # No consistency was specified, so we don't bother to retry.
      :error -> :error

      # If the consistency was :all, we downgrade it by injecting a new one in the options.
      {:ok, :all} -> {:retry, Keyword.replace!(options, :consistency, :quorum), :no_state}

      # If the consistency was already lower than :all, we give up and stop retrying.
      {:ok, _other} -> :error
    end
  end
end

  
    
  
  Different Node (for Clusters)


A particularly-useful application of retry strategies is to retry queries on different hosts
when using Xandra.Cluster. We can even choose not to execute on certain hosts
(because they may be in a different data center). The following example retries on all hosts
after the first :connected_node has failed:
defmodule MyApp.AllNodesRetryStrategy do
  @behaviour Xandra.RetryStrategy

  alias Xandra.Cluster.Host

  @impl true
  def new(options) do
    if options[:execution_level] != :cluster do
      raise ArgumentError, "this retry strategy can only be used with clusters"
    end

    [_already_tried_node | remaining_nodes] = Keyword.fetch!(options, [:connected_hosts])
    remaining_nodes
  end

  @impl true
  def retry(error, options, nodes)

  # No nodes left to retry on.
  def retry(_error, options, [] = _remaining_nodes) do
    :error
  end

  def retry(_error, options, [{conn_pid, %Host{}} | remaining_nodes]) do
    {:retry, options, _new_state = remaining_nodes, conn_pid}
  end
end

      


      
        Summary


  
    Types
  


    
      
        execution_level()

      


        The possible values of the :execution_level option injected into the options
passed to new/1.



    


    
      
        state()

      


        The state of the retry strategy.



    





  
    Callbacks
  


    
      
        new(options)

      


        Initializes the state of a retry strategy based on the given options.



    


    
      
        retry(error, options, state)

      


        Determines whether to retry the failed query or return the error to the caller.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    execution_level()


      
       
       View Source
     


      (since 0.18.0)

  


  

      

          @type execution_level() :: :connection | :cluster


      


The possible values of the :execution_level option injected into the options
passed to new/1.

  



  
    
      
      Link to this type
    
    state()


      
       
       View Source
     


  


  

      

          @type state() :: term()


      


The state of the retry strategy.

  


        

      

      
        Callbacks

        


  
    
      
      Link to this callback
    
    new(options)


      
       
       View Source
     


  


  

      

          @callback new(options :: keyword()) :: state()


      


Initializes the state of a retry strategy based on the given options.

  



  
    
      
      Link to this callback
    
    retry(error, options, state)


      
       
       View Source
     


  


  

      

          @callback retry(error :: Xandra.error(), options :: keyword(), state()) ::
  :error
  | {:retry, new_options :: keyword(), new_state :: state()}
  | {:retry, new_options :: keyword(), new_state :: state(), conn_pid :: pid()}


      


Determines whether to retry the failed query or return the error to the caller.
The first argument is the error that caused the query to fail: for example, it
could be a Xandra.Error struct with reason :read_timeout. This can be used
to potentially determine the retry strategy based on the failure reason. The second
argument is the options given to the function that failed while executing the
query. The third argument is the retry strategy state returned either by
new/1 or by subsequent calls to retry/3.

  
    
  
  Return Values


If :error is returned, the function that was trying to execute the query
will return the error to the caller instead of retrying.
If {:retry, new_options, new_state} is returned, the function that was
trying to execute the query will be invoked again with the same query and
new_options as its options. new_state will be used if the query fails
again: in that case, retry/3 will be invoked again with new_state as its
third argument. This sequence of steps will repeat until either the query is executed
successfully or this callback returns :error.
The last possible return value is {:retry, new_options, new_state, conn_pid}.
This can only be returned by retry strategies used by Xandra.Cluster, and any
attempt to return this when using Xandra function will result in an error. This
return value is available since v0.18.0.

  


        

      



  

    
Xandra.SchemaChange 
    



      
A struct that represents the result of a query that modifies the schema.
See %Xandra.SchemaChange{} for information on the fields of this struct.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for a schema change result.



    





  
    Functions
  


    
      
        %Xandra.SchemaChange{}

      


        The struct for the "schema change" result.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.SchemaChange{
  custom_payload: Xandra.custom_payload() | nil,
  effect: String.t(),
  options: map(),
  target: String.t(),
  tracing_id: binary() | nil
}


      


The type for a schema change result.
See %Xandra.SchemaChange{} for information.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    %Xandra.SchemaChange{}


      
       
       View Source
     


      (struct)

  


  

The struct for the "schema change" result.
This struct has the following fields:
	:effect - the type of change involved. It's one of "CREATED",
"UPDATED", or "DROPPED".

	:target - what has been modified. It's one of "KEYSPACE", "TABLE",
or "TYPE".

	:options - a map of options that depends on the value of :target:
	if target is "KEYSPACE", the map will have the form
%{keyspace: keyspace}
	if the target is "TABLE" or "TYPE", the map will have the form
%{keyspace: keyspace, subject: subject} where keyspace is the
keyspace where the change happened and subject is the name of what
changed (so the name of the changed table or type)


	:tracing_id - the tracing ID (as a UUID binary) if tracing was enabled,
or nil if no tracing was enabled. See the "Tracing" section in Xandra.execute/4.

	:custom_payload - the custom payload sent by the server, if present.
If the server doesn't send a custom payload, this field is nil. Otherwise,
it's of type Xandra.custom_payload/0. See the "Custom payloads" section
in the documentation for the Xandra module.



  


        

      



  

    
Xandra.SetKeyspace 
    



      
A struct that represents the result of a USE query.
These are the public fields of this struct:
	:keyspace - the keyspace (as a binary) that was set through the executed
USE query.

	:tracing_id - the tracing ID (as a UUID binary) if tracing was enabled,
or nil if no tracing was enabled. See the "Tracing" section in Xandra.execute/4.

	:custom_payload - the custom payload sent by the server, if present.
If the server doesn't send a custom payload, this field is nil. Otherwise,
it's of type Xandra.custom_payload/0. See the "Custom payloads" section
in the documentation for the Xandra module.



      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for a "set keyspace" result.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.SetKeyspace{
  custom_payload: Xandra.custom_payload() | nil,
  keyspace: String.t(),
  tracing_id: binary() | nil
}


      


The type for a "set keyspace" result.

  


        

      



  

    
Xandra.Simple 
    



      
A data structure used internally to represent simple queries.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for a simple query.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.Simple{
  compressor: module() | nil,
  custom_payload: Xandra.custom_payload() | nil,
  default_consistency: atom() | nil,
  protocol_module: module() | nil,
  statement: Xandra.statement(),
  values: Xandra.values() | nil
}


      


The type for a simple query.
The fields of this are not meant to be used, but are documented to avoid
Dialyzer warnings.

  


        

      



  

    
Xandra.Telemetry 
    



      
Telemetry integration for event tracing, metrics, and logging.
Xandra uses telemetry for reporting
metrics and events. Below we list all the possible events emitted by Xandra, alongside
their measurements and metadata.
Xandra emits telemetry events since v0.15.0.

  
    
  
  Events


For a comprehensive list of the events that Xandra emits, see the
Telemetry Events page in the guides.

      


      
        Summary


  
    Functions
  


    
      
        attach_default_handler()

      


        Attaches a handler that logs Telemetry events.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    attach_default_handler()


      
       
       View Source
     


      (since 0.15.0)

  


  

      

          @spec attach_default_handler() :: :ok


      


Attaches a handler that logs Telemetry events.
This handler is useful when you want to see what's going on in Xandra without having to write a
Telemetry handler to handle all the events.
These are the events that get logged. This list might change in the future.
	Event	Level
	[:xandra, :connected]	info
	[:xandra, :disconnected]	warn
	[:xandra, :failed_to_connect]	warn
	[:xandra, :prepared_cache, :hit]	debug
	[:xandra, :prepared_cache, :miss]	debug
	[:xandra, :prepare_query, :start]	debug
	[:xandra, :prepare_query, :stop]	debug
	[:xandra, :prepare_query, :exception]	error
	[:xandra, :execute_query, :start]	debug
	[:xandra, :execute_query, :stop]	debug
	[:xandra, :execute_query, :exception]	error
	[:xandra, :server_warnings]	warn
	[:xandra, :cluster, :change_event]	debug
	[:xandra, :cluster, :control_connection, :connected]	debug
	[:xandra, :cluster, :control_connection, :disconnected]	debug
	[:xandra, :cluster, :control_connection, :failed_to_connect]	warn
	[:xandra, :cluster, :pool, :started]	debug
	[:xandra, :cluster, :pool, :restarted]	debug
	[:xandra, :cluster, :discovered_peers]	debug

Events have the following logger metadata:
	:xandra_address - the address of the node the connection is connected to
	:xandra_port - the port of the node the connection is connected to
	:xandra_protocol_module - the protocol module for the Cassandra native protocol


  


        

      



  

    
Xandra.Void 
    



      
A struct that represents an empty Cassandra result.
This struct is returned as the result of queries such as INSERT, UPDATE, or
DELETE. See %Xandra.Void{} for information about the fields.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for a "void" result.



    





  
    Functions
  


    
      
        %Xandra.Void{}

      


        The struct for "void" results.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.Void{
  custom_payload: Xandra.custom_payload() | nil,
  tracing_id: binary() | nil
}


      


The type for a "void" result.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    %Xandra.Void{}


      
       
       View Source
     


      (struct)

  


  

The struct for "void" results.
These are the public fields it contains:
	:tracing_id - the tracing ID (as a UUID binary) if tracing was enabled,
or nil if no tracing was enabled. See the "Tracing" section in Xandra.execute/4.

	:custom_payload - the custom payload sent by the server, if present.
If the server doesn't send a custom payload, this field is nil. Otherwise,
it's of type Xandra.custom_payload/0. See the "Custom payloads" section
in the documentation for the Xandra module.



  


        

      



  

    
Xandra.ConnectionError exception
    



      
An exception struct that represents an error in the connection to the
Cassandra server.
For more information on when this error is returned or raised, see the
documentation for the Xandra module.
The :action field represents the action that was being performed when the
connection error occurred. The :reason field represents the reason of the
connection error: for network errors, this is usually a POSIX reason (like
:econnrefused). The following Xandra-specific reasons are supported:
	{:unsupported_compression, algorithm} - this happens when a
:compressor module has been specified in Xandra.start_link/1, but
negotiating the connection algorithm fails because such compressor module
uses an algorithm that the Cassandra server does not support.

	:disconnected - the connection closed in the middle of a request to the server.

	{:connection_process_crashed, reason} - the connection process crashed before
sending a response.

	:timeout - the connection timed out while waiting for a response from the
server.

	{:cluster, :not_connected} - this happens when a Xandra.Cluster-based
connection is not connected to any node (for example, because all the
specified nodes are currently down). See the documentation for
Xandra.Cluster for more information.


Since this struct is an exception, it is possible to raise it with
Kernel.raise/1. If the intent is to format connection errors as strings (for
example, for logging purposes), it is possible to use Exception.message/1 to
get a formatted version of the error.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        new(action, reason)

      


    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.ConnectionError{
  __exception__: true,
  action: String.t(),
  reason: term()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(action, reason)


      
       
       View Source
     


  


  

      

          @spec new(String.t(), term()) :: t()


      



  


        

      



  

    
Xandra.Error exception
    



      
An exception struct that represents an error returned by Cassandra.
For more information on when this error is returned or raised, see the
documentation for the Xandra module.
The :reason field represents the reason (as an atom) of the error. For
example, if the query you're trying to execute contains a syntax error,
:reason will be :invalid_syntax. The :message field is a string that
contains the exact error message that Cassandra returned.
Since this struct is an exception, it is possible to raise it with
Kernel.raise/1. If the intent is to format errors as strings (for
example, for logging purposes), it is possible to use Exception.message/1 to
get a formatted version of the error.

      


      
        Summary


  
    Types
  


    
      
        t()

      


        The type for a Cassandra error exception.



    





  
    Functions
  


    
      
        %Xandra.Error{}

      


        The exception struct for a Cassandra error.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Xandra.Error{
  __exception__: true,
  message: String.t(),
  reason: atom(),
  warnings: [String.t()]
}


      


The type for a Cassandra error exception.

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    %Xandra.Error{}


      
       
       View Source
     


      (struct)

  


  

The exception struct for a Cassandra error.

  


        

      



  (()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();




