

 xla

 v0.6.0

 Table of contents

 	XLA

 	Modules

 	XLA

 	Mix Tasks

 	mix xla.info

XLA

Precompiled XLA binaries for EXLA.
Usage
EXLA already depends on this package, so you generally don't need to install it yourself.
There is however a number of environment variables that you may want to use in order to
customize the variant of XLA binary.
The binaries are always built/downloaded to match the current configuration, so you should
set the environment variables in .bash_profile or a similar configuration file so you don't
need to export it in every shell session.
XLA_TARGET
The default value is cpu, which implies the final the binary supports targeting
only the host CPU.
	Value	Target environment
	cpu	
	tpu	libtpu
	cuda120	CUDA 12.1+, cuDNN 8.9+
	cuda118	CUDA 11.8+, cuDNN 8.6+
	cuda	CUDA x.y, cuDNN (building from source only)
	rocm	ROCm (building from source only)

To use XLA with NVidia GPU you need CUDA
and cuDNN compatible with your GPU drivers.
See the installation instructions
and the cuDNN support matrix
for version compatibility. To use precompiled XLA binaries specify a target matching
your CUDA version (like cuda118). You can find your CUDA version by running nvcc --version
(note that nvidia-smi shows the highest supported CUDA version, not the installed one).
When building from source it's enough to specify cuda as the target.
Note that all the precompiled binaries assume glibc 2.31 or newer.
Notes for ROCm
For GPU support, we primarily rely on CUDA, because of the popularity and availability
in the cloud. In case you use ROCm and it does not work, please open up an issue and
we will be happy to help.
In addition to building in a local environment, you can build the ROCm binary using
the Docker-based scripts in builds/. You may want to adjust the ROCm
version in rocm.Dockerfile accordingly.
When you encounter errors at runtime, you may want to set ROCM_PATH=/opt/rocm-5.7.0
and LD_LIBRARY_PATH="/opt/rocm-5.7.0/lib" (with your respective version). For further
issues, feel free to open an issue.
XLA_BUILD
Defaults to false. If true the binary is built locally, which may be intended
if no precompiled binary is available for your target environment. Once set, you
must run mix deps.clean xla --build explicitly to force XLA to recompile.
Building has a number of dependencies, see Building from source below.
XLA_ARCHIVE_URL
A URL pointing to a specific build of the .tar.gz archive. When using this option
you need to make sure the build matches your OS, CPU architecture and the XLA target.
XLA_CACHE_DIR
The directory to store the downloaded and built archives in. Defaults to the standard
cache location for the given operating system.
XLA_TARGET_PLATFORM
The target triplet describing the target platform, such as aarch64-linux-gcc. By default
this target is inferred for the host, however you may want to override this when cross-compiling
the project using Nerves.
XLA_HTTP_HEADERS
Headers to use when querying and downloading the precompiled archive. By default the
requests are sent to GitHub, unless XLA_ARCHIVE_URL specifies otherwise. The headers
should be a list following this format: Key1: Value1; Key2: value2.
Building from source
To build the XLA binaries locally you need to set XLA_BUILD=true and possibly XLA_TARGET.
Keep in mind that the compilation usually takes a very long time.
You will need the following installed in your system for the compilation:
	Git for fetching XLA source
	Bazel v6.1.2 for compiling XLA
	Python3 with NumPy installed for compiling XLA

If running on Windows, you will also need:
	MSYS2
	Microsoft Build Tools 2019
	Microsoft Visual C++ 2019 Redistributable

Common issues
Bazel version
Use bazel --version to check your Bazel version, make sure you are using v6.1.2.
Most binaries are available on Github,
but it can also be installed with asdf:
asdf plugin-add bazel
asdf install bazel 6.1.2
asdf global bazel 6.1.2

GCC
You may have issues with newer and older versions of GCC. XLA builds are known to work
with GCC versions between 7.5 and 9.3. If your system uses a newer GCC version, you can
install an older version and tell Bazel to use it with export CC=/path/to/gcc-{version}
where version is the GCC version you installed.
Python and asdf
Bazel cannot find python installed via the asdf version manager by default. asdf uses a
function to lookup the specified version of a given binary, this approach prevents Bazel from
being able to correctly build XLA. The error is unknown command: python. Perhaps you have to reshim?.
There are two known workarounds:
	Explicitly change your $PATH to point to a Python installation (note the build process
looks for python, not python3). For example:
 # Point directly to a specific Python version
 export PATH=$HOME/.asdf/installs/python/3.10.8/bin:$PATH

	Use the asdf direnv plugin to install direnv 2.20.0.
direnv along with the asdf-direnv plugin will explicitly set the paths for any binary specified
in your project's .tool-versions files.

If you still get the error, you can also try setting PYTHON_BIN_PATH, like export PYTHON_BIN_PATH=/usr/bin/python3.9.
After doing any of the steps above, it may be necessary to clear the build cache by removing ~/.cache/xla_extension.
GPU support
To build binaries with GPU support, you need all the GPU-specific dependencies (CUDA, ROCm),
then you can build with either XLA_TARGET=cuda or XLA_TARGET=rocm. See the XLA_TARGET
for more details.
TPU support
All you need is setting XLA_TARGET=tpu.
Compilation-specific environment variables
You can use the following env vars to customize your build:
	BUILD_CACHE - controls where to store XLA source and builds

	BUILD_FLAGS - additional flags passed to Bazel

	BUILD_MODE - controls to compile opt (default) artifacts or dbg, example: BUILD_MODE=dbg

Runtime flags
You can further configure XLA runtime options with XLA_FLAGS,
see: xla/debug_options_flags.cc
for the list of available flags.
Release process
To publish a new version of this package:
	Update version in mix.exs.
	Create and push a new tag.
	Wait for the release workflow to build all the binaries.
	Publish the release from draft.
	Publish the package to Hex.

License
Note that the build artifacts are a result of compiling XLA, hence are under
the respective license. See XLA.
Copyright (c) 2020 Sean Moriarity

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

XLA

API for accessing compiled XLA archives.

 Summary

 Functions

 archive_path!()

 Returns path to the precompiled XLA archive.

Functions

 Link to this function

 archive_path!()

 View Source

 @spec archive_path!() :: Path.t()

Returns path to the precompiled XLA archive.
Depending on the environment variables configuration,
the path will point to either built or downloaded file.
If not found locally, the file is downloaded when calling
this function.

mix xla.info

Returns relevant information about the XLA archive.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

