

 zigler

 v0.13.1

 Table of contents

 	Zigler

 	Guides

 	Using Nifs

 	Collection Datatypes

 	Allocations

 	Nif options

 	Resources

 	CXX integration

 	Nif concurrency strategies

 	Global module options

 	Raw nifs

 	Module Callbacks

 	

 	Modules

 	:zigler

 	Zig

 	Zig.Formatter

 	Exceptions

 	Zig.CompileError

 	Zig.Type.ParseError

 	zig code

 	beam

Zigler

Library test status:
	[image:]
	[image:]

 Installation: Elixir

 Obtaining Zig dependency

Run mix zig.get

 Main Installation

Zigler is available in Hex, and the package can be installed
by adding zigler to your list of dependencies in mix.exs:
def deps do
 [
 {:zigler, "~> 0.13.1", runtime: false}
]
end

 Installation: Erlang

 Zig dependency

TBD.
~/.cache/zigler/zig-linux-<arch>-0.13.0

 Main Installation

Erlang is only supported via rebar3. You must enable the rebar_mix plugin and
add zigler to your deps in rebar3.
Note that erlang support is highly experimental. Please submit issues if you
have difficulty.
{plugins, [rebar_mix]}.

{deps, [{zigler, "0.13"}]}.

 Documentation

Docs can be found at https://hexdocs.pm/zigler.

 Currently supported platforms

	Linux

	FreeBSD (tested, but not subjected to CI)

	MacOS

	Nerves cross-compilation is supported out of the box.

 Zig Nifs made easy

Wouldn't it be nice if you could make NIFs as easily as you can use the asm
keyword in C?
This is now possible, using the magic of Zig.
defmodule ExampleZig do
 use Zig, otp_app: :zigler
 ~Z"""
 pub fn example_fun(value1: f64, value2: f64) bool {
 return value1 > value2;
 }
 """
end

test "example nifs" do
 assert ExampleZig.example_fun(0.8, -0.8)
 refute ExampleZig.example_fun(0.1, 0.4)
end
Zigler will do automatic type marshalling between Elixir code and Zig code.
It will also convert trickier types into types you care about, for example:
defmodule ZigCollections do
 use Zig, otp_app: :zigler
 ~Z"""
 pub fn string_count(string: []u8) i64 {
 return @intCast(string.len);
 }

 pub fn list_sum(array: []f64) f64 {
 var sum: f64 = 0.0;
 for(array) | item | {
 sum += item;
 }
 return sum;
 }
 """
end

test "type marshalling" do
 assert 9 == ZigCollections.string_count("hello zig")
 assert 6.0 == ZigCollections.list_sum([1.0, 2.0, 3.0])
end
Memory allocation with zigler is easy! A standard BEAM allocator is provided for you,
so any zig code you import will play nice with the BEAM.
defmodule Allocations do
 use Zig, otp_app: :zigler
 ~Z"""
 const beam = @import("beam");

 pub fn double_atom(string: []u8) !beam.term {
 var double_string = try beam.allocator.alloc(u8, string.len * 2);
 defer beam.allocator.free(double_string);

 for (string, 0..) | char, i | {
 double_string[i] = char;
 double_string[i + string.len] = char;
 }

 return beam.make_into_atom(double_string, .{});
 }
 """
end

test "allocations" do
 assert :foofoo == Allocations.double_atom("foo")
end
It is a goal for Zigler to make using it to bind C libraries easier
than using C to bind C libraries. Here is an example:
if {:unix, :linux} == :os.type() do
 defmodule Blas do
 use Zig,
 otp_app: :zigler,
 c: [link_lib: {:system, "blas"}]

 ~Z"""
 const beam = @import("beam");
 const blas = @cImport({
 @cInclude("cblas.h");
 });

 const BadArgs = error { badarg };

 pub fn blas_axpy(a: f64, x: []f64, y: []f64) ![]f64 {
 if (x.len != y.len) return error.badarg;

 blas.cblas_daxpy(@intCast(x.len), a, x.ptr, 1, y.ptr, 1);

 return y;
 }
 """
 end

 test "we can use a blas shared library" do
 # returns aX+Y
 assert [11.0, 18.0] == Blas.blas_axpy(3.0, [2.0, 4.0], [5.0, 6.0])
 end
end

 Documentation (Elixir-only)

You can document nif functions, local functions, zig structs, variables, and types.
If you document a nif function, it will be a part of the module documentation, and
accessible using the iex h method, etc.
Example:
defmodule Documentation do
 use Zig, otp_app: :zigler
 ~Z"""
 /// a zero-arity function which returns 47.
 pub fn zero_arity() i64 {
 return 47;
 }
 """
end

 Formatting (Elixir-only)

Zigler ships with a formatter. To activate the formatter, adapt the following to your
.formatter.exs:
[
 inputs: ~w[
 {mix,.formatter,.credo}.exs
 {config,lib,rel,test}/**/*.{ex,exs,zig}
 installer/**/*.{ex,exs}
],
 plugins: [Zig.Formatter]
]

 Erlang support (highly experimental)

Use of Zigler with erlang is possible using parse transforms. You must obtain
zigler using the rebar3 and the rebar_mix plugin. Modules with zigler
nifs should inculde code into one or more zig_code attribute and pass
zigler options (identical to the elixir options) into a zig_opts attribute.
Zigler will then create appropriate functions matching the zig functions as
it does with elixir. Please not that some features (such as integers > 64
bits) are not currently supported in erlang, although nearly full feature parity
is planned.
-module(erlang_zigler_module).
-compile({parse_transform, zigler}).
-export([foo/1, foo/0]).

-zig_code("
pub fn foo() i32 {
 return 47;
}
").

-zig_opts([{otp_app, zigler}]).

foo(X) ->
 47 + X.

 Zigler Principles

	Make being a good citizen of the BEAM easy.
	Use magic, but sparingly, only to prevent errors.
	Let the user see behind the curtain.
	Let the user opt out of magic.
	Magic shouldn't get in the way.

Using Nifs

Nifs are the entrypoint between your BEAM code and your C ABI code. Zigler provides semantics which
are designed to make it easy to write safe NIF code with the safety, memory guarantees that Zig
provides.

 Preamble

Near the top of your module you should use the use Zig directive. This will activate Zigler to
seek zig code blocks and convert them to functions. You must provide the otp_app option, which
enables Zigler to find a directory to place compilation artifacts (such as libraries) so that they
can be shipped with releases. By default, this will be /priv/lib.

 compilation artifacts

defaults for compilation artifacts may change in future versions of zigler.

Note that we can ship zig code in any module in-place, so they will live alongside other functions
or even other macro alterations you make to the module. In this case, we'll build our code into a
module that will be tested with ExUnit.
defmodule NifGuideTest do
 use Zig, otp_app: :zigler
 use ExUnit.Case, async: true

 Basic function writing

Once zigler has been activated for a module, write ~Z code anywhere and this code will be
assembled into a zig file that will be compiled into the nif artifact.
Then write your desired zig function Zigler will also mount functions with the same name as the
function in the body of the module.

 Example: simple scalar values

~Z"""
pub fn add_one(input: i32) i32 {
 return input + 1;
}
"""

test "add one" do
 assert 48 == add_one(47)
end
Note that Zigler will automatically marshal input and output values across the nif boundary. The
following scalar types are accepted by zigler:
	signed integer (i0..i65535), including non-power-of-two values
	unsigned integer (u0..u65535), including non-power-of-two values
	usize, isize, architecture-dependent size (roughly size_t and ssize_t in C)
	c_char, c_short, c_ushort, c_int, c_uint, c_ulong, c_longlong, c_ulonglong, which
are architecture-dependent integer sizes mostly used for c interop.
	floats f16, f32, and f64.
	bool (use the atoms true or false exclusively)

Floating point datatypes
Floating point datatypes can take the atoms :infinity, :neg_infinity, and :NaN.

Boolean datatypes
You must pass boolean datatypes true or false atoms.

Zigler can also marshal list parameters into array, and array-like datatypes:

 Example: Array-like datatypes

~Z"""
pub fn sum(input: []f32) f32 {
 var total: f32 = 0.0;
 for (input) | value | { total += value; }
 return total;
}
"""

test "sum" do
 assert 6.0 == sum([1.0, 2.0, 3.0])
end
The following array-like datatypes are allowed for parameters:
	arrays [3]T (for example). Note the length is compile-time known.
	slices []T
	pointers to arrays *[3]T (for example).
	multipointers [*]T
	sentinel-terminated versions of all of the above.
	cpointers [*c]T

 Example: Array-like datatypes as binaries

For all scalar child types, Array-like datatypes may be passed as binaries, thus the following code
works with no alteration:
test "sum, with binary input" do
 assert 6.0 == sum(<<1.0 :: float-size(32)-native, 2.0 :: float-size(32)-native, 3.0 :: float-size(32)-native>>)
end
This also results in a natural interface for treating BEAM binaries as u8 arrays or slices.

 Example: Marshalling errors

Zigler will generate code that protects you from sending incompatible datatypes to the desired
function:
test "marshalling error" do
 assert_raise ArgumentError, """
 errors were found at the given arguments:

 * 1st argument:

 expected: list(float | :infinity | :neg_infinity | :NaN) | <<_::_*32>> (for `[]f32`)
 got: `:atom`
 """, fn ->
 sum(:atom)
 end
end
For more on marshalling collection datatypes, see collections.

 Marshalling types manually

You may also manually marshal types into and out of the beam by using the
beam.term datatype. To do so, you must first import the beam
package. The beam.term type is an opaque, wrapped datatype that ensures safe manipulation of terms
as a token in your zig code.
~Z"""
const beam = @import("beam");

pub fn manual_addone(value_term: beam.term) !beam.term {
 const value = try beam.get(i32, value_term, .{});
 return beam.make(value + 1, .{});
}
"""

test "manual marshalling" do
 assert 48 == manual_addone(47)
end

 Send

An important mechanism for exporting values out of a NIF is to send it to a process ID using the
send function. Zigler provides an advanced beam.send function which will perform this operation
for you.
~Z"""
pub fn test_send(pid: beam.pid) !void {
 try beam.send(pid, .{.ok, 47}, .{});
}
"""

test "sending" do
 test_send(self())
 assert_receive {:ok, 47}
end
Note that the second argument of send and the options argument are equivalent to a beam.make
function call.

 Optional values

You may use optional values as both input and output terms. Note that the empty optional value in
elixir is nil and the empty optional value in zig is null.
~Z"""
pub fn optional(number: ?u32) ?u32 {
 if (number) | n | {
 if (n == 42) return null;
 return n;
 } else {
 return 47;
 }
}
"""

test "optionals" do
 assert is_nil(optional(42))
 assert 47 = optional(nil)
 assert 10 = optional(10)
end

 Error Returns

You may use functions which return an error, in which case an ErlangException will be thrown with
the value being the atom representing the error.
~Z"""
const OopsError = error { oops };

pub fn erroring() !void {
 return error.oops;
}
"""

test "erroring" do
 assert_raise ErlangError, "Erlang error: :oops", fn -> erroring() end
end

 A few notes on the above code.

	to marshal a value out of a beam.term and into a zig static type, use beam.get.
This is a failable function, and in this case we hoist the failure in the function return.
	to marshal a value into a beam.term from a zig static type, use beam.make.
This function does not fail.
	for more information on the final options parameter of get and make, see their respective
documentation.
	zigler will translate the hoisted marshalling failures into detailed BEAM exceptions of type
ArgumentError.

Collection Datatypes

 Returning array-like datatypes

For array-like datatypes, we saw in Using Nifs how they
can take both lists or binaries as inputs. However, when returning statically-typed data from zig, a
choice needs to be made as to whether to return lists or binaries.

 Arrays

Arrays are the simplest array-like datatype to return.
~Z"""
pub fn return_array(input: f32) [3]f32 {
 var result: [3]f32 = undefined;

 // set each item in the array:
 for (&result, 0..) |*item, index| {
 item.* = input + @as(f32, @floatFromInt(index));
 }
 return result;
}
"""

test "returning an array" do
 assert [47.0, 48.0, 49.0] == return_array(47.0)
end

 Slices

Slices can also be returned. Note that in many cases, returning a slice might need an allocation strategy
~Z"""
pub fn return_slice(input: []f32) []f32 {
 // set each item in the array:
 for (input, 0..) |*item, index| {
 item.* = item.* + @as(f32, @floatFromInt(index));
 }
 return input;
}
"""

test "returning a slice" do
 assert [47.0, 48.0, 49.0] == return_slice([47.0, 47.0, 47.0])
end

 u8 array-likes output as binary

u8 array-like datatypes are marshalled into binary by default instead of list.

~Z"""
pub fn return_u8_array() [3]u8 {
 const result: [3]u8 = .{97, 98, 99};
 return result;
}
"""

test "u8 datatypes are returned as binary" do
 assert "abc" == return_u8_array()
end

 Selecting output type

It's also possible to return these collections as binaries, however, in order to do so you will have
to marshal manually. For datatypes that are more than 1 byte, be aware that the endianness of the
resulting data is native.
~Z"""
const beam = @import("beam");

pub fn return_slice_binary(input: []f32) beam.term {
 // set each item in the array:
 for (input, 0..) |*item, index| {
 item.* = item.* + @as(f32, @floatFromInt(index));
 }
 return beam.make(input, .{.as = .binary});
}
"""

test "returning a slice as binary" do
 assert <<47.0 :: float-size(32)-native,
 48.0 :: float-size(32)-native,
 49.0 :: float-size(32)-native>> == return_slice_binary([47.0, 47.0, 47.0])
end
Conversely, for u8 array-like datatypes, selecting .as = .list will result in outputting a list.
You can also automatically marshal as binary by using nif options

 Full list of qualified array-like return types

The central challenge of exporting array-like data to the BEAM is that length information may not be
known. In the case of arrays and slices, length is either comptime or runtime known. For other data
types, the scope of datatypes accepted must be limited:
	array of any type ([_]T)
	single pointers to an array (*[_]T)
	slices ([]T)
	sentinel-terminated forms of the above ([_:0]T or [:0]T)
	sentinel-terminated many-item-pointer ([*:0]T)
	cpointer to u8 ([*c]u8). This will assume the cpointer is null-terminated, if it can't be
considered [*:0]u8 the behaviour is undefined.
	cpointer to a pointer ([*c]?*T). This will assume cpointer is null-terminated, if it can't be
considered [*:null]?*T then the behaviour is undefined.

 Passing and returning enums

Enums are collections of integer values that are given special identifier status in the zig
programming language. At compile-time, it's possible to get reflection on the string representation
of those identifiers. Zigler thus is enabled to use enums as a representation of atoms coming from
or going to the BEAM.

 Enums as atoms

Enums can be created by referring to them by the atom that corresponds to their value:
~Z"""
const EnumType = enum(u8) {
 foo,
 bar = 47
};

pub fn flip(input: EnumType) EnumType {
 return switch (input) {
 .foo => .bar,
 .bar => .foo
 };
}
"""

test "flipping enums" do
 assert :bar = flip(:foo)
 assert :foo = flip(:bar)
end

 Enums as integers

Functions taking an integer type can also by passed the associated integer value in the place of the
atom.
test "enums passed as integer" do
 assert :foo = flip(47)
end

 Enum literals

Enum literals can be converted to atoms using beam.make.
~Z"""
pub fn make_literal() beam.term {
 return beam.make(.some_new_literal, .{});
}
"""

test "enum literals" do
 assert :some_new_literal = make_literal()
end
This is especially useful for emitting :ok or :error tuples.

 error atom

error is a reserved word in Zig, so to create error atom you must use builtin syntax; the error
enum literal is represented .@"error".

 Passing and returning structs

 Structs are atom-keyed maps

Most structs are interpreted as atom-keyed maps. Consider the following code:
~Z"""
pub const Point2D = struct{ x: i32, y: i32 };

pub fn reflect(input: Point2D) Point2D {
 return .{.x = input.y, .y = input.x};
}
"""

test "structs" do
 assert %{x: 48, y: 47} == reflect(%{x: 47, y: 48})
end

 Structs in parameters and returns

for a struct type to be used in parameters and returns, it must be exported as pub in the module
interface

 Anonymous structs can be returned

It's possible to return anonymous structs as well, using beam.make.
~Z"""
pub fn anonymous_struct() beam.term {
 return beam.make(.{.foo = .bar}, .{});
}
"""

test "anonymous structs" do
 assert %{foo: :bar} == anonymous_struct()
end

 Zig tuples are structs.

Tuples in zig are structs (with hidden integer-valued keys). Zigler takes advantage of this and
allows you to construct BEAM tuples using zig tuples, when passed to beam.make.
~Z"""
pub fn tuple() beam.term {
 return beam.make(.{.ok, 47}, .{});
}
"""

test "tuples" do
 assert {:ok, 47} == tuple()
end

 Packed or Extern structs.

Packed or Extern structs can be passed as binaries.
~Z"""
pub const Packed = packed struct {x: u4, y: u4};

pub const Extern = extern struct {x: u16, y: u16};

pub fn diff_packed(value: Packed) u8 {
 return value.x - value.y;
}

pub fn diff_extern(value: Extern) u16 {
 return value.x - value.y;
}
"""

test "packed and extern structs as struct" do
 assert 2 = diff_packed(%{x: 7, y: 5})
 assert 5 = diff_extern(%{x: 47, y: 42})
end

test "packed and extern structs as binary" do
 assert 2 = diff_packed(<<0x57>>)
 assert 5 = diff_extern(<<47::unsigned-size(16)-native, 42::unsigned-size(16)-native>>)
end

 Packed And Extern Endianness

Be careful about the endianness of packed and extern structs!

 Pointers to structs.

Pointers to structs can also be used to marshal data in and out. This is enabled under the
assumption that you might want to use the struct in a mutable fashion.
~Z"""
pub fn swap_pointer(value: *Point2D) *Point2D {
 const temp = value.x;
 value.x = value.y;
 value.y = temp;

 return value;
}
"""

test "pointer to structs" do
 assert %{x: 47, y: 50} == swap_pointer(%{x: 50, y: 47})
end

 Nested collections

The process of marshalling parameters and returns also works with nested array-like and struct data.

 Arraylike of arraylike

~Z"""
pub fn array_of_array_sum(a_of_a: [][]u64) u64 {
 var sum: u64 = 0;
 for (a_of_a) |inner_array| {
 for (inner_array) |value| {
 sum += value;
 }
 }
 return sum;
}
"""

test "array of array" do
 assert 21 = array_of_array_sum([[1, 2, 3], [4], [5, 6]])
end

 Structs of structs

~Z"""
pub const Arrow = struct {
 head: Point2D,
 tail: Point2D
};

pub fn reflect_reverse_arrow(arrow: Arrow) Arrow {
 return .{
 .head = reflect(arrow.tail),
 .tail = reflect(arrow.head)
 };
}
"""

test "structs of structs" do
 assert %{
 head: %{x: 1, y: 2},
 tail: %{x: 3, y: 4}
 } == reflect_reverse_arrow(%{
 head: %{x: 4, y: 3},
 tail: %{x: 2, y: 1}
 })
end
Deep Argument Errors
Argument errors for deeply nested structs will help you understand where your arguments failed to
serialize:

note: skipped because map key order is nondeterministic before 1.15
@tag [skip: Version.compare(System.version(), "1.15.0") == :lt]
test "argument errors" do
 assert_raise ArgumentError, """
 errors were found at the given arguments:

 * 1st argument:

 expected: map | keyword (for `Arrow`)
 got: `%{head: %{x: 4, y: 3}, tail: %{x: 2, y: 1.0}}`
 in field `:tail`:
 | expected: map | keyword (for `Point2D`)
 | got: `%{x: 2, y: 1.0}`
 | in field `:y`:
 | | expected: integer (for `i32`)
 | | got: `1.0`
 """, fn ->
 reflect_reverse_arrow(%{
 head: %{x: 4, y: 3},
 tail: %{x: 2, y: 1.0}
 })
 end
end

 Arraylike of structs

~Z"""
pub fn sum_points(points: []Point2D) Point2D {
 var result: Point2D = .{.x = 0, .y = 0};
 for (points) |point| {
 result.x += point.x;
 result.y += point.y;
 }
 return result;
}
"""

test "array of struct" do
 assert %{x: 9, y: 12} = sum_points([%{x: 1, y: 2}, %{x: 3, y: 4}, %{x: 5, y: 6}])
end

 Structs of arraylikes

~Z"""
pub const PointSOA = struct{
 x: []u16,
 y: []u16
};

pub fn sum_point_soa(points: PointSOA) Point2D {
 var result: Point2D = .{.x = 0, .y = 0};
 for (points.x) |x| {
 result.x += x;
 }
 for (points.y) |y| {
 result.y += y;
 }
 return result;
}
"""

test "struct of array" do
 assert %{x: 9, y: 12} = sum_point_soa(%{x: [1, 3, 5], y: [2, 4, 6]})
end

 Interaction with allocators

if you directly return a datatype that was allocated, it won't be properly cleaned up. However, it
can be properly cleaned up by manually deferring its cleanup after calling
beam.make.
Cleanup routines in nif options will be introduced in a future release, which
will enable protection from these sorts of leaks.
For more on allocators, see allocators

~Z"""
pub fn leaks() !*Point2D {
 var point = try beam.allocator.create(Point2D);

 point.x = 47;
 point.y = 50;

 return point;
}

pub fn no_leak() !beam.term {
 var point = try beam.allocator.create(Point2D);
 defer beam.allocator.destroy(point);

 point.x = 47;
 point.y = 50;

 return beam.make(point, .{});
}
"""

test "both leaky and non-leaky struct returns work" do
 assert %{x: 47, y: 50} == leaks()
 assert %{x: 47, y: 50} == no_leak()
end

Allocations

Zig the language has no offically supported allocator, and the standard library datastructures are
all allocator-agnostic.
Zigler ships with three primary allocators, though you can certainly build allocator strategies on
top of those allocators.

 Basic Allocator

The first allocator is allocator. This allocator wraps the nif
allocator provided by the BEAM in the zig
allocator interface. You should generally use this allocator over malloc because it often saves a
syscall by using existing preallocated memory pools, because it allows the VM to track how much
memory your NIF is using, and possibly gives better memory placement to avoid cache misses in your
execution thread.
~Z"""
const beam = @import("beam");

pub fn allocate_raw(count: usize) !beam.term {
 const slice = try beam.allocator.alloc(u16, count);
 defer beam.allocator.free(slice);

 for (slice, 0..) |*entry, index| {
 entry.* = @intCast(index);
 }
 return beam.make(slice, .{});
}
"""

test "raw allocator" do
 assert [0, 1, 2] = allocate_raw(3)
end

 allocator limitations

because the basic allocator directly wraps the beam allocator, according to the documentation:
The returned pointer is suitably aligned for any built-in type that fit (sic) in the allocated
memory.
attempting to allocate memory aligned to a larger size (e.g. page-aligned allocation) will fail
using this allocator.

 Tracking memory.

 information in hidden globals

Generally storing information in hidden globals is not a good idea. Here it is done to illustrate
the memory usage. A better strategy would be to use resources

~Z"""
var global_zigler: []u8 = undefined;

pub fn zigler_alloc() !void {
 global_zigler = try beam.allocator.alloc(u8, 1_000_000);
}

pub fn zigler_free() void {
 beam.allocator.free(global_zigler);
}

const c_stdlib = @cImport(@cInclude("stdlib.h"));

var global_cstd: [*c]u8 = undefined;
pub fn c_malloc() void {
 global_cstd = @ptrCast(c_stdlib.malloc(1_000_000));
}

pub fn c_free() void {
 c_stdlib.free(global_cstd);
}
"""

test "zigler memory is tracked" do
 Process.sleep(100)
 start = :erlang.memory[:total]
 zigler_alloc()
 assert :erlang.memory[:total] - start >= 1_000_000
 zigler_free()
end

test "malloc memory is not tracked" do
 Process.sleep(100)
 start = :erlang.memory[:total]
 c_malloc()
 assert :erlang.memory[:total] - start <= 1_000_000
 c_free()
end

 Wide Alignment Allocator

Zigler provides a wide_alignment_allocator which allows you to allocate memory ranges that have a
higher alignment than the maximum alignment for builtin types.

 memory penalty

Note that using this allocator comes with a memory penalty, so use as a general allocator is not
recommended.

~Z"""
pub fn allocate_large_aligned(count: usize) !usize {
 const page = try beam.wide_alignment_allocator.allocWithOptions(u8, count, 4096, null);
 defer beam.wide_alignment_allocator.free(page);

 return @intFromPtr(page.ptr);
}
"""

test "aligned allocation" do
 assert 0 = rem(allocate_large_aligned(3), 4096)
end

 General Purpose Allocator

Zigler provides a version of the zig standard library's GeneralPurposeAllocator which is built on
top of the large allocator. Two advantages of using the general purpose allocator include optimized
memory layouts for mixed allocation sizes and the ability to track memory leaks.
The state of the global general purpose allocator is accessible using beam.allocator_.general_purpose_allocator_instance
You may also create a custom general purpose allocator instance using
beam.make_general_purpose_allocator_instance, whcih is what happens on a per-nif basis if the nif
is checking for leaks.
~Z"""
pub fn leaks() !bool {
 const memory = try beam.general_purpose_allocator.alloc(u8, 8);
 defer beam.general_purpose_allocator.free(memory);

 // note that we haven't freed it yet, that happens on deferral,
 // which lands after the return call.

 return beam.allocator_.general_purpose_allocator_instance.detectLeaks();
}

pub fn noleak() !bool {
 const memory = try beam.general_purpose_allocator.alloc(u8, 8);
 beam.general_purpose_allocator.free(memory);
 return beam.allocator_.general_purpose_allocator_instance.detectLeaks();
}
"""

test "leak checks with general purpose allocator" do
 require Logger
 Logger.warning("====== the following leak message is expected: =========== START")
 Process.sleep(200)
 assert leaks()
 Logger.warning("=== END")

 refute noleak()
end

 Custom allocators

Because zigler's allocators conform to zig's allocator interface, you can use any composed allocator
in the standard library or any composable allocator from an imported zig package.
~Z"""
pub fn with_arena() !beam.term {
 const std = @import("std");

 var arena = std.heap.ArenaAllocator.init(beam.allocator);
 defer arena.deinit();

 const allocator = arena.allocator();

 const slice = try allocator.alloc(u16, 4);
 defer allocator.free(slice);

 for (slice, 0..) |*item, index| {
 item.* = @intCast(index);
 }

 return beam.make(slice, .{});
}
"""

test "arena allocator" do
 assert [0, 1, 2, 3] == with_arena()
end

 Custom allocators in beam.get

If you choose to use a custom allocator, you may use it in the beam.get functions to instantiate
data where it's the allocator's responsibility to free it at the end.
~Z"""
pub fn arena_sum(array: beam.term) !u64 {
 const std = @import("std");

 var arena = std.heap.ArenaAllocator.init(beam.allocator);
 defer arena.deinit();
 const arena_allocator = arena.allocator();

 const slice = try beam.get([]u64, array, .{.allocator = arena_allocator});

 var total: u64 = 0;

 for (slice) |item| { total += item; }

 return total;
}
"""

test "arena sum" do
 assert 6 == arena_sum([1, 2, 3])
end

Nif options

Zigler gives you several ways to configure compilation options for nifs. These options are part of
the use Zig directive, in the keyword options under the key :nifs. This key itself points to a
keyword list where the keys are the names of the nif functions and the values are a keyword list of
options that apply to that function.
This guide shows you all of the nif options except for options related to
Resources, C integration, or
Concurrency.

 Automatic options (elixir)

To declare that functions should have their options automatically determined, use ... in the nifs
parameter list. Nifs which sholud have manually decided options should come after the ... as a
keyword list. If all options are automatically determined, then omitting the :nif keyword
completely is valid.
defmodule AutomaticOptions do
 use Zig,
 otp_app: :zigler,
 nifs: [...]

 ~Z"""
 pub fn noop() void {}
 """
end

 Automatic options (erlang)

Erlang cannot interpret the ... AST in elixir, so you must use [auto] atom in the nifs options
instead.
-zig_opts([{nifs, [auto]}])

 Return type

In Collections we saw how certain collection types could be manually
marshalled into alternative representations using beam.make. This can be handled
as a nif configuration as follows. The advantage to doing it this way is that the typespec for the
function will correctly reflect the return type.
defmodule ReturnTypeTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [
 returns_binary: [return: :binary],
 returns_list: [return: :list]
]

 ~Z"""
 pub fn returns_binary() [3]u16 {
 return [3]u16{47, 48, 49};
 }

 pub fn returns_list() []const u8 {
 return "Hello world!";
 }
 """

 test "returns binary" do
 assert <<47, 0, 48, 0, 49, 0>> = returns_binary()
 end

 test "returns list" do
 assert ~C'Hello world!' = returns_list()
 end
end

 Alias

It's possible to create a new function which is an alias of another function. This is how it's done:
defmodule AliasTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [
 ...,
 new_function: [alias: :old_function]
]

 ~Z"""
 pub fn old_function() u32 {
 return 47;
 }
 """

 test "both main and alias functions work" do
 assert 47 == old_function()
 assert 47 == new_function()
 end
end

 Args options

Arguments can also take options, using args: [...]

 Noclean

If you want to disable automatic allocator cleanup of datatypes, you can do so either in the
:return or :args section by including the :noclean option. This is most useful if your args or
return data are going to be persisted beyond the lifetime of the nif call, though doing this in many
cases is not recommended.
This flag can be stacked with previous options, for example: return: [:noclean, :binary].

 Leak Check

It's possible to wrap each function call in its own instance of
beam.general_purpose_allocator bound into the
beam.allocator threadlocal variable. If you tag your nif as leak_check,
it will check that beam.allocator has cleared all of its contents at the end of the function call,
and if that hasn't happened, it raises.
defmodule LeakCheckTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [check_me: [leak_check: true]]

 ~Z"""
 const beam = @import("beam");
 pub fn check_me() !void {
 _ = try beam.context.allocator.create(u8);
 }
 """

 test "leak check" do
 require Logger
 Logger.warning("====== the following leak message is expected: =========== START")
 Process.sleep(200)
 assert_raise RuntimeError, "memory leak detected in function `LeakCheckTest.check_me/0`", fn ->
 check_me()
 end
 Logger.warning("=== END")
 end
end
leak_check can also be applied to all nifs in the module:
defmodule LeakCheckAllTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 leak_check: true

 ~Z"""
 const beam = @import("beam");
 pub fn check_me() !void {
 _ = try beam.context.allocator.create(u8);
 }
 """

 test "leak check" do
 require Logger
 Logger.warning("====== the following leak message is expected: =========== START")
 Process.sleep(200)

 assert_raise RuntimeError, "memory leak detected in function `LeakCheckAllTest.check_me/0`", fn ->
 check_me()
 end
 Logger.warning("=== END")
 end
end

 Typespec override

Typespecs generation can be suppressed by setting spec: false. If you want typespecs for such
functions, specify using @spec elsewhere in your module.
For example:
defmodule Override do
 use Zig,
 otp_app: :zigler,
 nifs: [typespec_override: [spec: false]]

 @spec typespec_override(integer) :: integer
 ~Z"""
 const beam = @import("beam");
 pub fn typespec_override(term: beam.term) !beam.term {
 const input = try beam.get(u32, term, .{});
 return beam.make(input + 1, .{});
 }
 """
end

 Disable documentation

Documentation can be disabled with the docs: false option.
defmodule DisableDoc do
 use Zig,
 otp_app: :zigler,
 nifs: [nodocs: [docs: false]]

 ~Z"""
 pub fn nodocs() void {}
 """
end
#module

Resources

Resources are datatypes which are managed by the BEAM reference-counted garbage collector. If you
are passing data between function calls, generally it is best practice to pass them as a resource
instead of as a pointer or a global variable.
For documentation of how resources work in general, see the erlang
documentation on the topic. Note
that the conveniences in beam.Resource generic type exist to make operations
type-safe.

 Resources are references

In managed language environments resources are passed as reference/0 tokens.

Under the hood the BEAM allocates a chunk of memory on resource creation, and this memory is cleared
when the garbage collector is triggered. The BEAM also allows you to add in trigger hooks for when
this event happens, so custom cleanup can be tied into these GC events.

 Passing references between modules

This is not currently supported by Zigler, but support is planned.

 Declaring a resource

In order to use a resource, you must do at a minimum three things:
	declare the resource in your use Zig directive, under the :resource key. This is a list of
atoms, which match the name of the resource type.
	declare the wrapped type. This is the type of the data that is placed in the memory space of the
resource.
	use beam.Resource to declare the resource type. note that this resource type
must be pub.

defmodule ResourceTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 resources: [
 :StructResource,
 :PointerResource
]

 ~Z"""
 const beam = @import("beam");
 const root = @import("root");

 const MyStruct = struct {
 payload: u64
 };

 pub const StructResource = beam.Resource(MyStruct, root, .{});
 """

 Using resources in functions

~Z"""
pub fn create_resource_term(number: u64) !beam.term {
 const res = try StructResource.create(.{.payload = number}, .{});
 return beam.make(res, .{});
}

pub fn retrieve_resource_term(term: beam.term) !u64 {
 const res = try beam.get(StructResource, term, .{});
 return res.unpack().payload;
}
"""

test "lifecyle operations through terms" do
 resource = create_resource_term(47)
 assert is_reference(resource)
 assert 47 = retrieve_resource_term(resource)
end
Resources can be marshalled into and out of beam.term values using
beam.make and beam.get functions as with any other types.
In order to convert between the resource type and the wrapped type, you'll need to use the create
and unpack functions. Note that create is failable since under the hood it uses the BEAM
resource allocator.

 Direct marshalling

It's possible to directly return resources from a nif function and also pass them as parameters: The
nif marshalling functions will be able to detect these types and assign them correctly.
~Z"""
pub fn create_resource_direct(number: u64) !StructResource {
 return StructResource.create(.{.payload = number}, .{});
}

pub fn retrieve_resource_direct(resource: StructResource) u64 {
 return resource.unpack().payload;
}
"""

test "direct lifecyle operations" do
 resource = create_resource_direct(47)
 assert is_reference(resource)
 assert 47 = retrieve_resource_direct(resource)
end

test "must be the correct type of reference" do
 assert_raise ArgumentError, """
 errors were found at the given arguments:

 * 1st argument:

 expected: reference (for `beam.Resource(MyStruct, @import(\"root\"), .{...})`)
 got: `%{payload: 42}`
 """, fn ->
 retrieve_resource_direct(%{payload: 42})
 end

 non_resource_ref = make_ref()

 message = """
 errors were found at the given arguments:

 * 1st argument:

 expected: reference (for `beam.Resource(MyStruct, @import(\"root\"), .{...})`)
 got: `#{inspect non_resource_ref}`
 note: the reference passed is not associated with a resource of the correct type
 """

 assert_raise ArgumentError, message, fn ->
 retrieve_resource_direct(non_resource_ref)
 end
end

 no coercion

You can't pass a term of the same type as the wrapped type and use it within the function.

 Wrapping pointers and cleanup

In many cases you won't want to move large data structures into or out of the resource-allocated
memory space; this incurs a data copy cost. In that case, you might want to store a pointer in the
resource memory space.
In order to do properly clean up after this, you'll need to write a callback function and store it
in a struct namespace that gets associated with the resource type in using the beam.Resource
function .Callbacks option.
Note that the destructor can also be used in cases where other resources need to be cleaned up, for
example file descriptors.
The following functions are supported in the Callbacks, and are all optional.
	dtor: called when the GC collects the
	stop: called on stop on behalf of e.enif_select
	down: called on resource down, on behalf of e.enif_monitor_process
	dyncall: called on dynamic resource call, on behalf of enif_dynamic_resource_call

~Z"""
pub const PointerResource = beam.Resource(*MyStruct, root, .{.Callbacks = PointerResourceCallbacks});

pub const PointerResourceCallbacks = struct {
 pub fn dtor(s: **MyStruct) void {
 beam.allocator.destroy(s.*);
 }
};

pub fn create_pointer_resource(number: u64) !PointerResource {
 const new_struct = try beam.allocator.create(MyStruct);
 new_struct.payload = number;
 return PointerResource.create(new_struct, .{});
}

pub fn retrieve_pointer_resource(resource: PointerResource) u64 {
 return resource.unpack().*.payload;
}
"""

test "pointer-based lifecyle operations" do
 resource = create_pointer_resource(47)
 assert is_reference(resource)
 assert 47 = retrieve_pointer_resource(resource)
end

 pointer allocation strategy

It is strongly recommended to use beam.allocator for your pointer payload
allocators, as beam.allocator is undefined in the callback context.
alternatively, if you do use your own managed allocator, you can pack a pointer to the allocator
into your datastructure and use this pointer to clean up.

 Release and Keep

Resources are associated with release and keep functionality. These increment and decrement the
reference count on the resource which allows a nif to prevent the GC from destroying the memory and
calling the destructor. Normally the nif management functions select default release and keep
settings so that the functions do the most expected outcome - nif functions keep resources while
running and then release them when they're finished.

 release on creation

A Struct resource is normally released on creation. This can be disabled by passing .release = false into the options parameter of beam.Resource(...).create(...)

 keep on get

By default, beam.get will keep the resource when the internal term retrieved.
This can be disabled by passing .keep = false into the options parameter of beam.get

 get without keeping

for wrapped datatypes that require a cleanup step (e.g. pointers) it is not recommended to get
without keeping, as there could be a race condition where dereferencing the pointer occurs after
another nif running in a different OS thread has performed a cleanup against the same resource.

 release when function argument

If a function is passed a beam.Resource(...) type, it will release it at the end of the call. This
can be disabled by setting :noclean flag in the function argument options. (see nif
options)

These functions are provided in the resource type as beam.Resource(...).release(...) and
beam.Resource(...).keep(...) functions, respectively:
~Z"""
pub fn release(resource: StructResource) void {
 resource.release();
}

pub fn keep(resource: StructResource) void {
 resource.keep();
}
"""

CXX integration

Zigler offers several tools to integrate your code with C and C++ code.

 compiling C using the C toolchain

If you want to compile C or C++ files using the C and C++ toolchain bundled with the zig programming
language, you should include a path to your include directory and a source path or list of source
paths to be compiled, via the include_dir and src module options.

 source paths

source paths may contain a trailing *, which will pull all c or c++ files in that directory, (but
not subdirectory)

 included.h

// forwarded function definition
int plus_one(int);

 src/src.c

int plus_one(int value) {
 return value + 1;
}

 Elixir code

defmodule CompilingC do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 c: [include_dirs: "include", src: "src/*"]

 ~Z"""
 const c = @cImport(@cInclude("included.h"));

 pub const plus_one = c.plus_one;
 """

 test "c plus one" do
 assert 48 = plus_one(47)
 end
end

 linking against a C abi library

This example shows you how to link in a system library (which can be .a, .so, .obj, or
.dll). Zig will resolve the extension based on the operating system native rules. To use the
functions in the library, there must also be an associated .h file with extern functions.
In this example we'll use the cblas_dasum function, which takes a length, an pointer to
double-precision floating point list, and a integer stride. The result is a sum of the numbers in
the list.
The rules for collections apply to functions that are directly imported from
C files.
if {:unix, :linux} == :os.type() do
currently we only have access to the BLAS library on linux CI actions, so
it's unavailable for other operating systems for automated testing purposes

 defmodule LibraryTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 c: [link_lib: {:system, "blas"}]

 ~Z"""
 pub const dasum = @cImport(@cInclude("cblas.h")).cblas_dasum;
 """

 test "dasum" do
 assert 6.0 == dasum(3, [1.0, 2.0, 3.0], 1)
 end
 end

 linking against libcpp:

if you need to link against libcpp, the library has a special-cased option: link_libcpp: true

 Easy-C

It's also possible to also automatically create nifs without writing zig function shims. This works
either with linking an external library with link_lib or building your own code with src.
Because the C ABI exposes all functions publically in a global namespace, we can't use zigler's
automatic detection to decide which functions to surface.
Here are the steps to using easy_c:
	declare which header file you'd like to use with the easy_c module option	you may want to add include_dir if the header isn't a system C header.

	add a link_lib or src option to make sure that the functions are built.
	declare which functions you'd like to hoist into the module.

In this example we'll use the cblas_daxpy function, which takes a length, a double-precision a
value, a list (x) of double-precision values, a stride for the x values, a list (y) of
double-precision values, and a stride for y.
It then calculates the linear transformation ax + y using these vectors.

 "in-out" parameters

The y parameter in this function is an "in-out" parameter. Instead of returning a result, the
results are written into the y pointer.
to specify that it's an in-out parameter, we put an integer (which is the 0-indexed index of the
argument which is the out parameter).
since the returned pointer doesn't have a specified value, we have to specify a length option,
which could either be a fixed number, or {:arg, n} where n is the argument index corresponding
to a variable length.
We can also use nif options like alias and the return option
binary alongside these special easy_c options.

 defmodule EasyCTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 easy_c: "cblas.h",
 c: [link_lib: {:system, "blas"}],
 nifs: [
 cblas_daxpy: [params: %{4 => :in_out}, return: [length: {:arg, 0}]],
 cblas_daxpy_bin: [alias: :cblas_daxpy, params: %{4 => :in_out}, return: [:binary, length: {:arg, 0}]]
]

 test "daxpy as a list" do
 assert [7.0, 11.0, 15.0] == cblas_daxpy(3, 3.0, [1.0, 2.0, 3.0], 1, [4.0, 5.0, 6.0], 1)
 end

 test "daxpy as a binary" do
 assert <<7.0::float-native, 11.0::float-native, 15.0::float-native>> ==
 cblas_daxpy_bin(3, 3.0, [1.0, 2.0, 3.0], 1, [4.0, 5.0, 6.0], 1)
 end
 end
end
module

Nif concurrency strategies

When execution flow enters a Nif, control is fully relinquished from the managed environment of the
BEAM VM to a context where the BEAM is more or less unaware of what is going on.
In general the VM cannot tolerate native code running for longer than approximately one
millisecond.
There are several tools that the BEAM nif system provides for you to

 Synchronous

The default mode for Nifs to run is synchronous. Only use this mode if you are confident that your
code can run in under 1ms.

 Dirty CPU

dirty_cpu mode is usable when your VM has created Dirty CPU schedulers. By default, the VM
creates one dirty CPU scheduler per CPU core available to it. Nifs tagged as dirty_cpu are allowed
to run longer than 1 millisecond.
In order to tag a function as dirty_cpu, use the :dirty_cpu flag in the options list for the
function in the :nif call.

 beam.yield in Dirty CPU

The beam.yield function in dirty CPU mode will detect if the parent process has
died and will return error.processterminated.
defmodule DirtyCpu do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 nifs: [long_running: [:dirty_cpu]]

 ~Z"""
 const beam = @import("beam");
 // this is a dirty_cpu nif.
 pub fn long_running(pid: beam.pid) !void {
 defer {
 // code in the defer block is triggered when process is killed.
 // we need to create a new thread-independent context because
 // the context from the running process is now invalid.
 const env = beam.alloc_env();
 beam.send(pid, .killed, .{.env = env}) catch unreachable;
 beam.free_env(env);
 }

 try beam.send(pid, .unblock, .{});

 while(true) {
 try beam.yield();
 }
 }
 """

 test "dirty cpu can be cancelled" do
 this = self()
 dirty_cpu = spawn(fn -> long_running(this) end)
 assert_receive :unblock
 Process.exit(dirty_cpu, :kill)
 assert_receive :killed
 end
end

 queue limitations

if you consume all of your dirty cpu schedulers with nif calls, the next dirty_cpu call will block
until a scheduler frees up; this could cause undesired latency characteristics.

 Dirty IO

It's not recommended to use dirty_io unless you're performing IO operations and blocking using nif
events and blocking operations.
In order to tag a function as dirty_io, use the :dirty_io flag in the options list for the
function in the :nif call.

 Threaded

threaded mode is usable when your OS supports spawning threads. This is effectively all current
platforms supporting the BEAM VM today. Zigler will wrap your function code
In order to tag a function as threaded, use the :threaded flag in the options list for the
function in the :nif call. Generally, no other changes must be made to execute a function in
threaded mode.

 env in Threaded mode

The env variable when you run in threaded mode is not a process-bound environment.

 beam.yield in Threaded mode

The beam.yield function in dirty CPU mode will detect if the parent process has
died and will return error.processterminated.

 return from yield quickly!

You must return from the yield quickly (within 750us). If you are unable to return quickly, then
zigler run will cause the thread metadata to leak. This will be fixed in zigler 0.11.

defmodule Threaded do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 nifs: [long_running: [:threaded]]

 ~Z"""
 const beam = @import("beam");
 const std = @import("std");
 pub fn long_running(pid: beam.pid) !void {
 // following code triggered when process is killed.

 defer {
 beam.send(pid, .killed, .{}) catch {};
 }

 while(true) {
 _ = try beam.send(pid, .unblock, .{});
 try beam.yield();
 }
 }
 """

 @tag :threaded
 test "threaded can be cancelled" do
 this = self()
 threaded = spawn(fn -> long_running(this) end)
 #assert_receive :unblock
 Process.sleep(100)
 Process.exit(threaded, :kill)
 assert_receive :killed
 Process.sleep(1000)
 end
end

 Yielding

 yielding nifs

Yielding nifs are not available in this release of Zigler

module

Global module options

 ignore

Public functions can be ignored and not converted into nifs by filling out the :ignore option in
use Zig directive.
defmodule IgnoreTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 ignore: [:ignored]

 ~Z"""
 pub fn ignored(number: u32) u32 {
 return number + 1;
 }

 pub fn available(number: u32) u32 {
 return ignored(number);
 }
 """

 test "available function works" do
 assert 48 = available(47)
 end

 test "ignored function is not available" do
 refute function_exported?(__MODULE__, :ignored, 0)
 end
end

 attributes

Attributes from your module can be used as compile-time constants communicated from elixir. All
attributes of the following types will be automatically available through the attributes module
import:
	integer (as comptime int values)
	float (as comptime float values)
	nil (as null)
	boolean (as bool values)
	binary (as comptime [:0]u8 values)
	atom (as enum literal values)
	tuple of only the above types (as tuple)

defmodule Attribute do
 use ExUnit.Case, async: true
 use Zig, otp_app: :zigler

 @supplied_value Mix.env()

 ~Z"""
 const beam = @import("beam");
 const attribs = @import("attributes");

 pub fn get_attrib() beam.term {
 return beam.make(.{.ok, attribs.supplied_value}, .{});
 }
 """

 test "getting an attribute" do
 assert {:ok, :test} = get_attrib()
 end
end

 adding packages

It's possible to add zig files as packages using the packages keyword option. The name of the
package is the key, and the value is a tuple of the path to the zig file that acts as the package
and a list of dependencies for the package.

 Example extra.zig

pub const value = 47;
defmodule PackageFile do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 packages: [extra: {"test/_support/package/extra.zig", [:beam]}]

 ~Z"""
 const extra = @import("extra");

 pub fn extra_value() u64 {
 return extra.value;
 }
 """

 test "package file" do
 assert 47 = extra_value()
 end
end
#module

 dump options

Zigler lets you dump various compile-time assets to the console for debugging purposes, which can be
enabled by setting any given one of the following options to true:
	dump: dumps the rendered elixir code generated by use Zig.
	dump_sema: dumps the json data emitted by the semantic analysis pass.
	dump_build_zig: dumps the autogenerated build.zig file

Raw nifs

All of the nifs shown to this point involve zigler constructing an adapter function with term
marshalling automatically generated. It is also possible to run a nif without doing any of those
steps.
The normal (C) header for a BEAM nif is as follows:
static ERL_NIF_TERM hello(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
Zigler can interpret certain headers as intended for being called as a raw nif.

 Allowed Signatures

The following two zig function signatures are interpreted as raw nifs:
	fn (beam.env, c_int, [*]beam.term) beam.term
	fn (beam.env, c_int, [*]e.ErlNifTerm) e.ErlNifTerm

 nif options setup

A raw nif MUST contain the arity option. This can be one of:
	a single integer, representing the desired arity of the nif function
	a single range, representing a range of arities for the nif function
	a list of integers and rannges, representing all the arities of the nif function.

 Example

defmodule RawCallTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [
 raw_call_beam: [arity: 1],
 raw_call_erl_nif: [arity: 1],
 raw_call_multi_arity: [arity: [0, 2..3]]
]

 ~Z"""
 const beam = @import("beam");
 const e = @import("erl_nif");

 pub fn raw_call_beam(env: beam.env, count: c_int, list: [*]const beam.term) beam.term {
 return beam.make(.{.count = count, .item = list[0]}, .{.env = env});
 }

 pub fn raw_call_erl_nif(env: beam.env, count: c_int, list: [*]const e.ErlNifTerm) e.ErlNifTerm {
 return beam.make(.{.count = count, .item = beam.term{.v = list[0]}}, .{.env = env}).v;
 }

 pub fn raw_call_multi_arity(env: beam.env, arity: c_int, _: [*]const beam.term) beam.term {
 return beam.make(arity, .{.env = env});
 }
 """

 test "raw call with beam format" do
 assert %{count: 1, item: {:foo, "bar"}} = raw_call_beam({:foo, "bar"})
 end

 test "raw call with erl_nif format" do
 assert %{count: 1, item: {:foo, "bar"}} = raw_call_erl_nif({:foo, "bar"})
 end

 test "raw call with multiple arities" do
 assert 0 = raw_call_multi_arity()
 assert 2 = raw_call_multi_arity(:foo, :bar)
 assert 3 = raw_call_multi_arity(:foo, :bar, :baz)

 refute function_exported?(__MODULE__, :raw_call_multi_arity, 1)
 end
end
#module

 beam.make and beam.get in raw nifs

Note that you MUST supply .{.env = env} in the options to beam.make or beam.get calls in raw nifs,
or functions called by raw nifs. The threadlocal beam.context variable which normally stores the
environment is not set when you make a raw call.

Module Callbacks

The BEAM provides for a module to have several event-callbacks that are fired when a module is
created. Zigler labels these callbacks in the following way:
	on_load - when the module is being loaded
	on_upgrade - when the module is being loaded to replace another module
	on_unload - when the module is being purged

These labeled are passed as options to the use Zig directive with the name of the function to be
used as the callback. All three are optional. You may use just the atom to stand a function with the
same name, e.g: callbacks: [:on_load] is shorthand for callbacks: [on_load: :on_load]

 Callbacks are pub

Be sure to make your callback functions pub. You do not need to add them to the module's
ignore option.

 Context in callbacks

For all callbacks, the context is set as follows:

	env: the e.ErlNifEnv value passed to the callback function;
	mode: .callback;
	allocator: beam.allocator;Thus you should be able to use beam.get, beam.make, or beam.send with the appropriate context
set without extra options.

 on_load

The on_load callback may have one of the following function signatures:
	fn (?*?*T, U) void: if the on_load function can never fail.
	fn (?*?*T, U) !void: if the on_load function can fail with an error. The module load integer will
reflect the integer value of the error.-Zig error integers
Note that the integer representation of a zig error may change between compilations. Translating
 this integer back to a meaningful value may be challenging.

	fn (?*?*T, U) int: the on_load function will be considered to fail if the integer value is not
0.
	fn (?*?*T, U) E: for an enum type E, the on_load function will be considered to fail if the
enum value is not zero. It's recommended that the enum type E be defined as so: const E = enum{ ok = 0, ...};
	fn (beam.env, ?*?*anyopaque, e.ErlNifTerm) c_int: this is a "raw" call that corresponds to the
expected signature of a upgrade callback.

 on_load Callback types

T may be any type at all, which is considered the private data of the module. Any information
may be stored in a *T, and the double pointer is passed to the callback for the pointer to be
communicated to the VM. The *T supplied will be accessible via the enif_priv_data function
U must be a type that can be passed as the first argument of beam.make, and the value of U
will be set by the result of an __on_load__/0 function defined in the module body. The result of
this function call will be passed to the on_load

 on_load and resources

The beam nif guide says that resources must be initialized in the load callback. The on_load
callback must NOT initialize resources. This is performed in a function that will wrap your
on_load callback.

Example
defmodule OnLoadExample do
 use ExUnit.Case, async: true
 use Zig, otp_app: :zigler, callbacks: [on_load: :load_fn]

 defp __on_load__, do: 47

 ~Z"""
 const beam = @import("beam");
 const e = @import("erl_nif");

 pub fn load_fn(private: ?*?*u32, number: u32) !void {
 const stored_pointer = try beam.allocator.create(u32);
 stored_pointer.* = number;
 private.?.* = stored_pointer;
 }

 pub fn get_private() u32 {
 const priv_ptr: ?*anyopaque = e.enif_priv_data(beam.context.env);
 const priv_ptr_u32: *u32 = @ptrCast(@alignCast(priv_ptr.?));
 return priv_ptr_u32.*;
 }
 """

 test "on_load stores value into private" do
 assert 47 = get_private()
 end
end
#module

 on_upgrade

The on_upgrade callback may have one of the following function signatures:
	fn (?*?*T, ?*?*U, V) void: if the on_load function can never fail.
	fn (?*?*T, ?*?*U, V) !void: if the on_load function can fail with an error. The module load
integer will reflect the integer value of the error.-Zig error integers
Note that the integer representation of a zig error may change between compilations. Translating
 this integer back to a meaningful value may be challenging.

	fn (?*?*T, ?*?*U, V) int: the on_load function will be considered to fail if the integer value is
not 0.
	fn (?*?*T, ?*?*U, V) E: for an enum type E, the on_load function will be considered to fail if
the enum value is not zero. It's recommended that the enum type E be defined as so: const E = enum{ ok = 0, ...};
	fn (beam.env, ?*?*anyopaque, ?*?*anyopaque, e.ErlNifTerm) c_int: this is a "raw" call that
corresponds to the expected signature of a upgrade callback.

 on_upgrade Callback types

T and U may be any type at all, which is considered the private data of the module. Any
information may be stored in these pointers, and the double pointer is passed to the callback for
the pointer to be communicated to the VM. The *U data supplied will be accessible via the
enif_priv_data function
V must be a type that can be passed as the first argument of beam.make, and the value of V
will be set by the result of an __on_load__/0 function defined in the module body. The result of
this function call will be passed to the on_load

 on_upgrade and resources

The beam nif guide says that resources must be initialized in the upgrade callback. The
on_upgrade callback must NOT initialize resources. This is performed in a function that will wrap
your on_upgrade callback.

 on_unload

The on_unload callback may have one of the following function signatures:
	fn (?*T) void: if you would like your inbound private data to be typed.
	fn (beam.env, ?*anyopaque) void: this is a "raw" call that corresponds to the expected signature
of a upgrade callback.

:zigler

Parse transform module for using Zigler with erlang.
For the canonical example, see:
https://www.erlang.org/doc/man/erl_id_trans.html

 Prerequisites

In order to use Zigler in an erlang project, you must have the Elixir
runtime. You may do this any way you wish, but Zigler recommends
rebar_mix:
https://github.com/Supersonido/rebar_mix
There are instructions on how to make sure Elixir is available at
compile time for your erlang project.

 Building a Zig Module

General documentation on parse transforms is very light. To use zigler as
a parse transform:
-module(my_erlang_module).
-compile({parse_transform, zigler}).
-export([...]).

-zig_code("
pub fn hello_world() [] const u8 {
 return "Hello, world!";
}
")

-zig_opts([{otp_app, my_app}]).
This creates the hello_world/0 function in your
module which returns the "Hello, world!" binary.
for options to be delivered in the zig_opts attribute, see the
Zig module documentation.
Note that the ... for the nifs option is not representable in erlang AST.
Instead, use the atom auto.

 Note

Erlang integration is highly experimental and the interface
may be changed in the future.

 Summary

 Types

 Zig - zigler v0.13.1

Zig

Inline NIF support for Zig

 Motivation

Zig is a general-purpose programming language designed for robustness,
optimality, and maintainability.

The programming philosophy of Zig matches up nicely with the programming
philosophy of the BEAM VM and in particular its emphasis on simplicity and
structure should very appealing to the practitioners of Elixir.
The following features make Zig extremely amenable to inline language
support in a BEAM language:
	simplicity. Zig's syntax is definable in a simple YACC document and
Zig takes a stance against making its featureset more complex (though
it may evolve somewhat en route to 1.0)
	Composability. Zig is unopinionated about how to go about memory
allocations. Its allocator interface is very easily able to be backed
by the BEAM's, which means that you have access to generic memory
allocation strategies through its composable allocator scheme.
	C integration. It's very easy to design C-interop between Zig and C.
Zigler has been designed to make it easier to use Zigler to build
C libraries than to use C directly see Easy C.

 Guides

Please consult the following guides for detailed topics:
	Using Nifs
	Collection datatypes
	Allocator strategies
	Nif options
	Resources
	C integration
	Concurrency strategies
	Global module options
	Raw calling
	Module callbacks

 Zig version support

although the large-scale archictecture of zigler is settled,
zigler features may break backwards compatibility until zig reaches
1.0

 Nerves Support

Nerves is supported out of the box, and Zigler will be able to seamlessly
detect the cross-compilation information (os, architecture, runtime) and
build correctly for that target.

 Basic NIFs

In the BEAM, you can define a NIF by consulting the following document and implementing the appropriate
shared object/DLL callbacks. However, Zigler will take care of all of
this for you.
Simply use Zig in your module, providing the otp_app name as an option.
Then, use the sigil_Z/2 macro and write inline zig code. To present a
function as a nif in your module, simply export it from your code namespace
by making it a pub function in your zig code.
Example
defmodule BasicModule do
 use Zig, otp_app: :zigler

 ~Z"""
 pub fn add_one(number: i64) i64 {
 return number + 1;
 }
 """
end

test "basic module with nif" do
 assert 48 = BasicModule.add_one(47)
end
otp_app setting
You should replace :zigler in the following example with the name of
your own app. If no such app exists (e.g. you are using livebook or
are in the terminal or escript), you can use :zigler as a fallback.

Zigler will automatically fill out the appropriate NIF C template, compile
the shared object, and bind it into the module pre-compilation. In the above
example, there will be a BasiceModule.add_one/1 function call created.
Zigler will also make sure that your statically-typed Zig data are guarded
when you marshal it from the dynamically-typed BEAM world. However, you may
only pass in and return certain types. As an escape hatch, you may use
the beam.term type which is a wrapped
ERL_NIF_TERM type.
See erl_nif.
test "argument error when types are mismatched" do
 assert_raise ArgumentError, fn -> BasicModule.add_one("not a number") end
end

 I don't want to use inline Zig

\\ .noinline.zig
pub fn add_one(number: i64) i64 {
 return number + 1;
}
defmodule NoInline do
 use Zig, otp_app: :zigler, zig_code_path: ".noinline.zig"
end

test "non-inline zig" do
 assert 48 = NoInline.add_one(47)
end

 Advanced usage: Unsupported erl_nif functions

the beam import does not comprehensively provide support for all functions
in erl_nif.h. If you need access to a function in erl_nif.h that isn't
provided by zigler, you would do it in the following fashion:
	import erl_nif into your zig code, typically under the e namespace.
	retrieve beam.context.env and use that as your ErlNifEnv pointer.
	use beam.term for function return types, which is a struct with a single
field, v, of type ERL_NIF_TERM.

Example
defmodule WithErlNif do
 use Zig, otp_app: :zigler

 ~Z"""
 const e = @import("erl_nif");
 const beam = @import("beam");

 pub fn add_one(number: u64) beam.term {
 return .{.v = e.enif_make_uint64(beam.context.env, number + 1)};
 }
 """
end

test "raw erl_nif_function" do
 assert 48 = WithErlNif.add_one(47)
end
beam.context.env is a threadlocal
beam.context.env is a threadlocal variable, and is not available when
calling functions using raw mode. See Raw mode calling
for more information.

 Advanced usage: Manual marshalling

If you need to marshal your own data, you may use the beam.get and
beam.make functions to marshal data to and from the BEAM world.
Example
defmodule ManualMarshalling do
 use Zig, otp_app: :zigler, nifs: [add_one: [spec: false]]

 @spec add_one(integer) :: integer

 ~Z"""
 const beam = @import("beam");

 pub fn add_one(val: beam.term) !beam.term {
 const number = try beam.get(i64, val, .{});
 return beam.make(number + 1, .{});
 }
 """
end

test "manual marshalling" do
 assert 48 = ManualMarshalling.add_one(47)
end
For more details on get and make
functions see the beam documentation.
Manual Term marshalling
If you don't use automatic marshalling, Zigler will not be able
to provide the following conveniences:
	argument error details. The zig code will raise a generic
BEAM ArgumentError but it won't have specific details about
what the expected type was and which argument was in error.

	dialyzer type information for your function. You will have
to supply that type information outside ~Z block, as shown
in the example.

 Importing external files

If you need to write zig code outside of the module, just place it in
the same directory as your module.
You may either call imported functions from the external file, or
forward a function from the external file, either strategy will
work correctly.
Example
\\ .extra_code.zig
pub fn add_one(number: u64) u64 {
 return number + 1;
}
defmodule ExternalImport do
 use Zig, otp_app: :zigler

 ~Z"""
 const extra_code = @import(".extra_code.zig");
 pub fn add_one(number: u64) u64 {
 return extra_code.add_one(number);
 }

 pub const forwarded_add_one = extra_code.add_one;
 """
end

test "external imports by calling" do
 assert 48 = ExternalImport.add_one(47)
end

test "external imports by forwarding" do
 assert 48 = ExternalImport.forwarded_add_one(47)
end

 Advanced Usage: Custom source location

By default, Zigler places generated source code in the same directory
as the module that uses Zigler, however, you may specify a different
directory:
defmodule CustomSourceLocation do
 use Zig, otp_app: :zigler, dir: "test/.custom_location"

 ~Z"""
 pub fn add_one(number: u64) u64 {
 return number + 1;
 }
 """
end

test "custom_location is built" do
 assert File.dir?("test/custom_location")
 assert File.exists?("test/.custom_location/.Elixir.CustomSourceLocation.zig")
end

 Advanced usage: change staging directory location

By default, zigler stages files in /tmp/{modulename} directory. In some cases
this will cause user collisions and permissions errors when trying to build modules
on multitenant systems. If you need to change the staging directory, set the
ZIGLER_STAGING_ROOT environment variable to the desired directory. The
recommended staging directory is ~/.cache/zigler. NB: In the future, this
may become the default staging directory.

 Summary

 Functions

 Zig.Formatter - zigler v0.13.1

Zig.Formatter

 Summary

 Functions

 Zig.CompileError - zigler v0.13.1

Zig.CompileError exception

 Summary

 Functions

 Zig.Type.ParseError - zigler v0.13.1

Zig.Type.ParseError exception

 Summary

 Functions

 beam - zigler v0.13.1

beam

This struct contains adapters designed to facilitate interfacing the
BEAM's c-style helpers for NIFs with a more idiomatic Zig-style of
programming, for example, the use of slices instead of null-terminated
arrays as strings.
This struct derives from priv/beam/beam.zig, and is provided to the
project as a package. You may import it into any project zig code
using the following code:
const beam = @import("beam")
If there's something in the BEAM nif API you need which is not provided,
you can also import erl_nif package which provides direct access to the
equivalent calls from erl_nif.h
This can be done with the following code:
const e = @import("erl_nif");

 Summary

 Functions (Exceptions)

 OEBPS/dist/epub-CB7BJMUW.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function c(){["warnin