

 zigler

 v0.11.0

 Table of contents

 	Zigler

 	Guides

 	Using Nifs

 	Collection Datatypes

 	Allocation using zigler

 	Nif options

 	Resources

 	CXX integration

 	Nif concurrency strategies

 	Global module options

 	Modules

 	:zigler

 	Zig

 	Zig.Type

 	Zig.Type.Array

 	Zig.Type.Bool

 	Zig.Type.Cpointer

 	Zig.Type.Enum

 	Zig.Type.Error

 	Zig.Type.Float

 	Zig.Type.Function

 	Zig.Type.Integer

 	Zig.Type.Manypointer

 	Zig.Type.Optional

 	Zig.Type.Resource

 	Zig.Type.Slice

 	Zig.Type.Struct

 	Zig.Assembler

 	Zig.Builder

 	Zig.Command

 	Zig.Compiler

 	Zig.Sema

 	Zig.EasyC

 	Zig.Nif.Basic

 	Zig.Nif.Concurrency

 	Zig.Nif.DirtyCpu

 	Zig.Nif.DirtyIo

 	Zig.Nif.Synchronous

 	Zig.Nif.Threaded

 	Zig.Manifest

 	Zig.Module

 	Zig.Nif

 	Zig.Resources

 	Zig.Analyzer

 	Zig.ErrorProng

 	Zig.Macro

 	Zig.Options

 	Zig.QuoteErl

 	Zig.Target

 	Zig.CompileError

 	Zig.Type.ParseError

 	beam

 	Mix Tasks

 	mix zig.get

 	mix zig.version

Zigler

Library test status:
[image:]

 Installation: Elixir

Zigler is available in Hex, and the package can be installed
by adding zigler to your list of dependencies in mix.exs:
def deps do
 [
 {:zigler, "~> 0.10.1", runtime: false}
]
end
Then you should run mix zig.get to download Zig 0.10.1

 Installation: Erlang

Erlang is only supported via rebar3. You must enable the rebar_mix plugin and
add zigler to your deps in rebar3.
Note that erlang support is highly experimental. Please submit issues if you
have difficulty.
{plugins, [rebar_mix]}.

{deps, [{zigler, "0.10"}]}.

 Documentation

Docs can be found at https://hexdocs.pm/zigler.

 Currently supported platforms

	Linux

	FreeBSD (tested, but not subjected to CI)

	MacOS

	Nerves cross-compilation is supported out of the box.

 Zig Nifs made easy

Wouldn't it be nice if you could make NIFs as easily as you can use the asm
keyword in C?
This is now possible, using the magic of Zig.
defmodule ExampleZig do
 use Zig, otp_app: :zigler
 ~Z"""
 pub fn example_fun(value1: f64, value2: f64) bool {
 return value1 > value2;
 }
 """
end

test "example nifs" do
 assert ExampleZig.example_fun(0.8, -0.8)
 refute ExampleZig.example_fun(0.1, 0.4)
end
Zigler will do automatic type marshalling between Elixir code and Zig code.
It will also convert trickier types into types you care about, for example:
defmodule ZigCollections do
 use Zig, otp_app: :zigler
 ~Z"""
 pub fn string_count(string: []u8) i64 {
 return @intCast(string.len);
 }

 pub fn list_sum(array: []f64) f64 {
 var sum: f64 = 0.0;
 for(array) | item | {
 sum += item;
 }
 return sum;
 }
 """
end

test "type marshalling" do
 assert 9 == ZigCollections.string_count("hello zig")
 assert 6.0 == ZigCollections.list_sum([1.0, 2.0, 3.0])
end
Memory allocation with zigler is easy! A standard BEAM allocator is provided for you,
so any zig code you import will play nice with the BEAM.
defmodule Allocations do
 use Zig, otp_app: :zigler
 ~Z"""
 const beam = @import("beam");

 pub fn double_atom(env: beam.env, string: []u8) beam.term {
 var double_string = beam.allocator.alloc(u8, string.len * 2) catch {
 return beam.raise_enomem(env);
 };

 defer beam.allocator.free(double_string);

 for (string) | char, i | {
 double_string[i] = char;
 double_string[i + string.len] = char;
 }

 return beam.make_atom(env, double_string);
 }
 """
end

test "allocations" do
 assert :foofoo == Allocations.double_atom("foo")
end
It is a goal for Zigler to make using it to bind C libraries easier
than using C to bind C libraries. Here is an example:
defmodule Blas do
 use Zig,
 otp_app: :zigler
 link_lib: {:system, "blas"},

 ~Z"""
 const beam = @import("beam");
 const blas = @cImport({
 @cInclude("cblas.h");
 });

 pub fn blas_axpy(env: beam.env, a: f64, x: []f64, y: []f64) beam.term {
 if (x.len != y.len) {
 return beam.raise_function_clause_error(env);
 }

 blas.cblas_daxpy(@intCast(x.len), a, x.ptr, 1, y.ptr, 1);

 return y;
 }
 """
end

test "we can use a blas shared library" do
 # returns aX+Y
 assert [11.0, 18.0] == Blas.blas_axpy(3.0, [2.0, 4.0], [5.0, 6.0])
end

 Documentation (Elixir-only)

You can document nif functions, local functions, zig structs, variables, and types.
If you document a nif function, it will be a part of the module documentation, and
accessible using the iex h method, etc.
Example:
defmodule Documentation do
 use Zig, otp_app: :zigler
 ~Z"""
 /// a zero-arity function which returns 47.
 pub fn zero_arity() i64 {
 return 47;
 }
 """
end

 Formatting (Elixir-only)

A mix format plugin is available through the zigler_format package.
See the installation instructions

 Erlang support

Use of Zigler with erlang is possible using parse transforms. Annotate the zig
code into a zig_code attribute and pass zigler options (identical to the elixir
options) into a zig_opts attribute. Zigler will then create appropriate
functions matching the zig functions.
-module(erlang_zigler_module).
-compile({parse_transform, zigler}).
-export([foo/1, foo/0]).

-zig_code("
pub fn foo() i32 {
 return 47;
}
").

-zig_opts([{otp_app, zigler}]).

foo(X) ->
 47 + X.

 Zigler Principles

	Make being a good citizen of the BEAM easy.
	Use magic, but sparingly, only to prevent errors.
	Let the user see behind the curtain.
	Let the user opt out of magic.
	Magic shouldn't get in the way.

Using Nifs

Nifs are the entrypoint between your BEAM code and your C ABI code. Zigler
provides semantics which are designed to make it easy to write safe NIF code
with the safety, memory guarantees that Zig provides.

 Preamble

Near the top of your module you should use the use Zig directive. This will
activate Zigler to seek zig code blocks and convert them to functions. You
must provide the otp_app option, which enables Zigler to find a directory to
place compilation artifacts (such as libraries) so that they can be shipped
with releases. By default, this will be /priv/lib.

 compilation artifacts

defaults for compilation artifacts may change in future versions of
zigler.

Note that we can ship zig code in any module in-place, so they will live
alongside other functions or even other macro alterations you make to the
module. In this case, we'll build our code into a module that will be tested
with ExUnit.
defmodule NifGuideTest do
 use Zig, otp_app: :zigler
 use ExUnit.Case, async: true

 Basic function writing

Once zigler has been activated for a module, write ~Z code anywhere and this
code will be assembled into a zig file that will be compiled into the nif
artifact.
Then write your desired zig function Zigler will also mount functions with the
same name as the function in the body of the module.

 Example: simple scalar values

~Z"""
pub fn add_one(input: i32) i32 {
 return input + 1;
}
"""

test "add one" do
 assert 48 == add_one(47)
end
Note that Zigler will automatically marshal input and output values across the
nif boundary. The following scalar types are accepted by zigler:
	signed integer (i0..i65535), including non-power-of-two values
	unsigned integer (u0..u65535), including non-power-of-two values
	usize, isize, architecture-dependent size (roughly size_t and
ssize_t in C)
	c_char, c_short, c_ushort, c_int, c_uint, c_ulong,
c_longlong, c_ulonglong, which are architecture-dependent
integer sizes mostly used for c interop.
	floats f16, f32, and f64.
	bool (use the atoms true or false exclusively)

Floating point datatypes
Floating point datatypes can take the atoms :infinity,
:neg_infinity, and :NaN.

Boolean datatypes
You must pass boolean datatypes true or false atoms.

Zigler can also marshal list parameters into array, and array-like
datatypes:

 Example: Array-like datatypes

~Z"""
pub fn sum(input: []f32) f32 {
 var total: f32 = 0.0;
 for (input) | value | { total += value; }
 return total;
}
"""

test "sum" do
 assert 6.0 == sum([1.0, 2.0, 3.0])
end
The following array-like datatypes are allowed for parameters:
	arrays [3]T (for example). Note the length is compile-time known.
	slices []T
	pointers to arrays *[3]T (for example).
	multipointers [*]T
	sentinel-terminated versions of all of the above.
	cpointers [*c]T

 Example: Array-like datatypes as binaries

For all scalar child types, Array-like datatypes may be passed as binaries,
thus the following code works with no alteration:
test "sum, with binary input" do
 assert 6.0 == sum(<<1.0 :: float-size(32)-native, 2.0 :: float-size(32)-native, 3.0 :: float-size(32)-native>>)
end
This also results in a natural interface for treating BEAM binaries as u8
arrays or slices.

 Example: Marshalling errors

Zigler will generate code that protects you from sending incompatible
datatypes to the desired function:
test "marshalling error" do
 assert_raise ArgumentError, """
 errors were found at the given arguments:

 * 1st argument:

 expected: <<_::_ * 32>> | list(float | :infinity | :neg_infinity | :NaN) (for `[]f32`)
 got: `:atom`
 """, fn ->
 sum(:atom)
 end
end
For more on marshalling collection datatypes, see collections.

 Marshalling types manually

You may also manually marshal types into and out of the beam by using the
beam.term datatype. To do so, you must first import
the beam package. The beam.term type is an opaque, wrapped
datatype that ensures safe manipulation of terms as a token in your zig code.
You will also need beam.env environment variable to reference
the execution environmet of your nif, to box and unbox data from the beam terms.
~Z"""
const beam = @import("beam");

pub fn manual_addone(env: beam.env, value_term: beam.term) !beam.term {
 const value = try beam.get(i32, env, value_term, .{});
 return beam.make(env, value + 1, .{});
}
"""

test "manual marshalling" do
 assert 48 == manual_addone(47)
end

 A few notes on the above code.

	to marshal a value out of a beam.term and into a zig static type,
use beam.get. This is a failable function, and in
this case we hoist the failure in the function return.
	to marshal a value into a beam.term from a zig static type, use
beam.make. This function does not fail.
	for more information on the final options parameter of get and
make, see their respective documentation.
	zigler will translate the hoisted marshalling failures into BEAM
exceptions.
	zigler automatically ignores the beam.env parameter in the first
position, and assigns the correct arity (1). Compilation will
fail if a beam.env parameter is present in any other location.

Collection Datatypes

 Returning array-like datatypes

For array-like datatypes, we saw in Using Nifs
how they can take both lists or binaries as inputs. However, when returning
statically-typed data from zig, a choice needs to be made as to whether to
return lists or binaries.

 Arrays

Arrays are the simplest array-like datatype to return.
~Z"""
pub fn return_array(input: f32) [3]f32 {
 var result: [3]f32 = undefined;

 // set each item in the array:
 for (&result, 0..) |*item, index| {
 item.* = input + @as(f32, @floatFromInt(index));
 }
 return result;
}
"""

test "returning an array" do
 assert [47.0, 48.0, 49.0] == return_array(47.0)
end

 Slices

Slices can also be returned. Note that in many cases, returning
a slice might need an allocation strategy
~Z"""
pub fn return_slice(input: []f32) []f32 {
 // set each item in the array:
 for (input, 0..) |*item, index| {
 item.* = item.* + @as(f32, @floatFromInt(index));
 }
 return input;
}
"""

test "returning a slice" do
 assert [47.0, 48.0, 49.0] == return_slice([47.0, 47.0, 47.0])
end

 u8 array-likes output as binary

u8 array-like datatypes are marshalled into binary
by default instead of list.

~Z"""
pub fn return_u8_array() [3]u8 {
 const result: [3]u8 = .{97, 98, 99};
 return result;
}
"""

test "u8 datatypes are returned as binary" do
 assert "abc" == return_u8_array()
end

 Selecting output type

It's also possible to return these collections as binaries,
however, in order to do so you will have to marshal manually.
For datatypes that are more than 1 byte, be aware that the endianness
of the resulting data is native.
~Z"""
const beam = @import("beam");

pub fn return_slice_binary(env: beam.env, input: []f32) beam.term {
 // set each item in the array:
 for (input, 0..) |*item, index| {
 item.* = item.* + @as(f32, @floatFromInt(index));
 }
 return beam.make(env, input, .{.output_type = .binary});
}
"""

test "returning a slice as binary" do
 assert <<47.0 :: float-size(32)-native,
 48.0 :: float-size(32)-native,
 49.0 :: float-size(32)-native>> == return_slice_binary([47.0, 47.0, 47.0])
end
Conversely, for u8 array-like datatypes, selecting .output_type = .list will
result in outputting a charlist.
You can also automatically marshal as binary by using
nif options

 Full list of qualified array-like return types

The central challenge of exporting array-like data to the BEAM is that length
information may not be known. In the case of arrays and slices, length
is either comptime or runtime known. For other data types, the scope of
datatypes accepted must be limited:
	array of any type ([_]T)
	single pointers to an array (*[_]T)
	slices ([]T)
	sentinel-terminated forms of the above ([_:0]T or [:0]T)
	sentinel-terminated many-item-pointer ([*:0]T)
	cpointer to u8 ([*c]u8). This will assume the cpointer is null-terminated,
if it can't be considered [*:0]u8 the behaviour is undefined.
	cpointer to a pointer ([*c]?*T). This will assume cpointer is
null-terminated, if it can't be considered [*:null]?*T then the
behaviour is undefined.

 Passing and returning enums

Enums are collections of integer values that are given special identifier
status in the zig programming language. At compile-time, it's possible
to get reflection on the string representation of those identifiers.
Zigler thus is enabled to use enums as a representation of atoms coming
from or going to the BEAM.

 Enums as atoms

Enums can be created by referring to them by the atom that corresponds
to their value:
~Z"""
const EnumType = enum(u8) {
 foo,
 bar = 47
};

pub fn flip(input: EnumType) EnumType {
 return switch (input) {
 .foo => .bar,
 .bar => .foo
 };
}
"""

test "flipping enums" do
 assert :bar = flip(:foo)
 assert :foo = flip(:bar)
end

 Enums as integers

Functions taking an integer type can also by passed the associated integer
value in the place of the atom.
test "enums passed as integer" do
 assert :foo = flip(47)
end

 Enum literals

Enum literals can be converted to atoms using beam.make.
~Z"""
pub fn make_literal(env: beam.env) beam.term {
 return beam.make(env, .some_new_literal, .{});
}
"""

test "enum literals" do
 assert :some_new_literal = make_literal()
end
This is especially useful for emitting :ok or :error tuples.

 error atom

error is a reserved word in Zig, so to create error atom you must use
builtin syntax; the error enum literal is represented .@"error".

 Passing and returning structs

 Structs are atom-keyed maps

Most structs are interpreted as atom-keyed maps. Consider the following code:
~Z"""
pub const Point2D = struct{ x: i32, y: i32 };

pub fn reflect(input: Point2D) Point2D {
 return .{.x = input.y, .y = input.x};
}
"""

test "structs" do
 assert %{x: 48, y: 47} == reflect(%{x: 47, y: 48})
end

 Structs in parameters and returns

for a struct type to be used in parameters and returns,
it must be exported as pub in the module interface

 Anonymous structs can be returned

It's possible to return anonymous structs as well, using
beam.make.
~Z"""
pub fn anonymous_struct(env: beam.env) beam.term {
 return beam.make(env, .{.foo = .bar}, .{});
}
"""

test "anonymous structs" do
 assert %{foo: :bar} == anonymous_struct()
end

 Zig tuples are structs.

Tuples in zig are structs (with hidden integer-valued keys).
Zigler takes advantage of this and allows you to construct
BEAM tuples using zig tuples, when passed to beam.make.
~Z"""
pub fn tuple(env: beam.env) beam.term {
 return beam.make(env, .{.ok, 47}, .{});
}
"""

test "tuples" do
 assert {:ok, 47} == tuple()
end

 Packed or Extern structs.

Packed or Extern structs can be passed as binaries.
~Z"""
pub const Packed = packed struct {x: u4, y: u4};

pub const Extern = extern struct {x: u16, y: u16};

pub fn diff_packed(value: Packed) u8 {
 return value.x - value.y;
}

pub fn diff_extern(value: Extern) u16 {
 return value.x - value.y;
}
"""

test "packed and extern structs as struct" do
 assert 2 = diff_packed(%{x: 7, y: 5})
 assert 5 = diff_extern(%{x: 47, y: 42})
end

test "packed and extern structs as binary" do
 assert 2 = diff_packed(<<0x57>>)
 assert 5 = diff_extern(<<47::unsigned-size(16)-native, 42::unsigned-size(16)-native>>)
end

 Packed And Extern Endianness

Be careful about the endianness of packed and extern structs!

 Pointers to structs.

Pointers to structs can also be used to marshal data in and out. This
is enabled under the assumption that you might want to use the struct
in a mutable fashion.
~Z"""
pub fn swap_pointer(value: *Point2D) *Point2D {
 const temp = value.x;
 value.x = value.y;
 value.y = temp;

 return value;
}
"""

test "pointer to structs" do
 assert %{x: 47, y: 50} == swap_pointer(%{x: 50, y: 47})
end

 Nested collections

The process of marshalling parameters and returns also works with
nested array-like and struct data.

 Arraylike of arraylike

~Z"""
pub fn array_of_array_sum(a_of_a: [][]u64) u64 {
 var sum: u64 = 0;
 for (a_of_a) |inner_array| {
 for (inner_array) |value| {
 sum += value;
 }
 }
 return sum;
}
"""

test "array of array" do
 assert 21 = array_of_array_sum([[1, 2, 3], [4], [5, 6]])
end

 Structs of structs

~Z"""
pub const Arrow = struct {
 head: Point2D,
 tail: Point2D
};

pub fn reflect_reverse_arrow(arrow: Arrow) Arrow {
 return .{
 .head = reflect(arrow.tail),
 .tail = reflect(arrow.head)
 };
}
"""

test "structs of structs" do
 assert %{
 head: %{x: 1, y: 2},
 tail: %{x: 3, y: 4}
 } == reflect_reverse_arrow(%{
 head: %{x: 4, y: 3},
 tail: %{x: 2, y: 1}
 })
end
Deep Argument Errors
Argument errors for deeply nested structs will help you understand
where your arguments failed to serialize:

note: skipped because map key order is nondeterministic before 1.15
@tag [skip: Version.compare(System.version(), "1.15.0") == :lt]
test "argument errors" do
 assert_raise ArgumentError, """
 errors were found at the given arguments:

 * 1st argument:

 expected: map | keyword (for `Arrow`)
 got: `%{head: %{x: 4, y: 3}, tail: %{x: 2, y: 1.0}}`
 in field `:tail`:
 | expected: map | keyword (for `Point2D`)
 | got: `%{x: 2, y: 1.0}`
 | in field `:y`:
 | | expected: integer (for `i32`)
 | | got: `1.0`
 """, fn ->
 reflect_reverse_arrow(%{
 head: %{x: 4, y: 3},
 tail: %{x: 2, y: 1.0}
 })
 end
end

 Arraylike of structs

~Z"""
pub fn sum_points(points: []Point2D) Point2D {
 var result: Point2D = .{.x = 0, .y = 0};
 for (points) |point| {
 result.x += point.x;
 result.y += point.y;
 }
 return result;
}
"""

test "array of struct" do
 assert %{x: 9, y: 12} = sum_points([%{x: 1, y: 2}, %{x: 3, y: 4}, %{x: 5, y: 6}])
end

 Structs of arraylikes

~Z"""
pub const PointSOA = struct{
 x: []u16,
 y: []u16
};

pub fn sum_point_soa(points: PointSOA) Point2D {
 var result: Point2D = .{.x = 0, .y = 0};
 for (points.x) |x| {
 result.x += x;
 }
 for (points.y) |y| {
 result.y += y;
 }
 return result;
}
"""

test "struct of array" do
 assert %{x: 9, y: 12} = sum_point_soa(%{x: [1, 3, 5], y: [2, 4, 6]})
end

 Interaction with allocators

if you directly return a datatype that was allocated, it won't be
properly cleaned up. However, it can be properly cleaned up by
manually deferring its cleanup after calling beam.make.
Cleanup routines in nif options will be introduced
in a future release, which will enable protection from these sorts of leaks.
For more on allocators, see allocators

~Z"""
pub fn leaks() !*Point2D {
 var point = try beam.allocator.create(Point2D);

 point.x = 47;
 point.y = 50;

 return point;
}

pub fn no_leak(env: beam.env) !beam.term {
 var point = try beam.allocator.create(Point2D);
 defer beam.allocator.destroy(point);

 point.x = 47;
 point.y = 50;

 return beam.make(env, point, .{});
}
"""

test "both leaky and non-leaky struct returns work" do
 assert %{x: 47, y: 50} == leaks()
 assert %{x: 47, y: 50} == no_leak()
end

Allocation using zigler

Zig the language has no offically supported allocator, and the standard library
datastructures are all allocator-agnostic.
Zigler ships with three primary allocators, though you can certainly build
allocator strategies on top of those allocators.

 Raw Beam Allocator

The first allocator is raw_allocator. This allocator wraps the
nif allocator
provided by the BEAM. You should use this allocator over malloc because it
often saves a syscall by using existing preallocated memory pools, because
it allows the VM to track how much memory your NIF is using, and possibly
gives better memory placement to avoid cache misses in your execution
thread.
~Z"""
const beam = @import("beam");

pub fn allocate_raw(env: beam.env, count: usize) !beam.term {
 var slice = try beam.raw_allocator.alloc(u16, count);
 defer beam.raw_allocator.free(slice);

 for (slice, 0..) |*entry, index| {
 entry.* = @intCast(index);
 }
 return beam.make(env, slice, .{});
}
"""

test "raw allocator" do
 assert [0, 1, 2] = allocate_raw(3)
end

 raw allocator limitations

because the raw allocator directly wraps the beam allocator, according to
the documentation:
The returned pointer is suitably aligned for any built-in type that
fit (sic) in the allocated memory.
attempting to allocate memory aligned to a larger size (e.g. page-aligned
allocation) will fail using this allocator.

 Tracking memory.

 information in hidden globals

Generally storing information in hidden globals is not a good idea. Here
it is done to illustrate the memory usage. A better strategy would be to
use resources

~Z"""
var global_zigler: []u8 = undefined;

pub fn zigler_alloc() !void {
 global_zigler = try beam.raw_allocator.alloc(u8, 1_000_000);
}

pub fn zigler_free() void {
 beam.raw_allocator.free(global_zigler);
}

const c_stdlib = @cImport(@cInclude("stdlib.h"));

var global_cstd: [*c]u8 = undefined;
pub fn c_malloc() void {
 global_cstd = @ptrCast(c_stdlib.malloc(1_000_000));
}

pub fn c_free() void {
 c_stdlib.free(global_cstd);
}
"""

test "zigler memory is tracked" do
 Process.sleep(100)
 start = :erlang.memory[:total]
 zigler_alloc()
 assert :erlang.memory[:total] - start >= 1_000_000
 zigler_free()
end

test "malloc memory is not tracked" do
 Process.sleep(100)
 start = :erlang.memory[:total]
 c_malloc()
 assert :erlang.memory[:total] - start <= 1_000_000
 c_free()
end

 Large Allocator

Zigler provides a large allocator which allows you to allocate memory ranges
that have a higher alignment than the maximum alignment for builtin types.
Note that using this allocator comes with a memory penalty.
~Z"""
pub fn allocate_large_aligned(count: usize) !usize {
 const page = try beam.large_allocator.allocWithOptions(u8, count, 4096, null);
 defer beam.large_allocator.free(page);

 return @intFromPtr(page.ptr);
}
"""

test "aligned allocation" do
 assert 0 = rem(allocate_large_aligned(3), 4096)
end

 General Purpose Allocator

Zigler provides a version of the zig standard library's
GeneralPurposeAllocator which is built on top of the large allocator. Two
advantages of using the general purpose allocator include optimized memory
layouts for mixed allocation sizes and the ability to track memory leaks.
The state of the general purpose allocator is accessible using
beam.allocator_.general_purpose_allocator_instance
~Z"""
pub fn leaks() !bool {
 const memory = try beam.general_purpose_allocator.alloc(u8, 8);
 defer beam.general_purpose_allocator.free(memory);

 // note that we haven't freed it yet, that happens on deferral,
 // which lands after the return call.

 return beam.allocator_.general_purpose_allocator_instance.detectLeaks();
}

pub fn noleak() !bool {
 const memory = try beam.general_purpose_allocator.alloc(u8, 8);
 beam.general_purpose_allocator.free(memory);
 return beam.allocator_.general_purpose_allocator_instance.detectLeaks();
}
"""

test "leak checks with general purpose allocator" do
 assert leaks()
 refute noleak()
end

 beam.allocator

Zigler provides a threadlocal variable: beam.allocator. This is set on entry
into the nif and defaults to beam.raw_allocator
~Z"""
pub fn basic(env: beam.env) !beam.term {
 const slice = try beam.allocator.alloc(u16, 4);
 defer beam.allocator.free(slice);

 for (slice, 0..) |*item, index| {
 item.* = @intCast(index);
 }

 return beam.make(env, slice, .{});
}
"""

test "leak checks with allocator" do
 assert [0, 1, 2, 3] = basic()
end

 Raw nifs

For raw nifs, beam.allocator is not set, and may retain a value from an
arbitrary previous nif invocation. Consider usage of beam.allocator in a
raw nif to be undefined unless it is set in the raw nif.

 Custom allocators

Because zigler's allocators conform to zig's allocator interface, you can use
any composed allocator in the standard library or any composable allocator
from an imported zig package.
~Z"""
const std = @import("std");

pub fn with_arena(env: beam.env) !beam.term {
 var arena = std.heap.ArenaAllocator.init(beam.allocator);
 defer arena.deinit();

 const allocator = arena.allocator();

 const slice = try allocator.alloc(u16, 4);
 defer allocator.free(slice);

 for (slice, 0..) |*item, index| {
 item.* = @intCast(index);
 }

 return beam.make(env, slice, .{});
}
"""

test "arena allocator" do
 assert [0, 1, 2, 3] == with_arena()
end

Nif options

Zigler gives you several ways to configure compilation options for nifs. These
options are part of the use Zig directive, in the keyword options under the
key :nifs. This key itself points to a keyword list where the keys are the
names of the nif functions and the values are a keyword list of options that
apply to that function.
This guide shows you all of the nif options except for options related to
Resources, C integration, or
Concurrency.

 Automatic options (elixir)

To declare that functions should have their options automatically determined,
use ... in the nifs parameter list. Nifs which sholud have manually decided
options should come after the ... as a keyword list. If all options are
automatically determined, then omitting the :nif keyword completely is valid.
defmodule AutomaticOptions do
 use Zig,
 otp_app: :zigler,
 nifs: [...]

 ~Z"""
 pub fn noop() void {}
 """
end

 Automatic options (erlang)

Erlang cannot interpret the ... AST in elixir, so you must use [auto]
atom in the nifs options instead.
-zig_opts([{nifs, [auto]}])

 Raw calls

Raw calls can be signified with the raw option; this option takes the arity
of the function as the value associated with the key.

 multiple arities

Currently, multiple arities are not supported, but multiple arities will be
supported in a future release.

The normal header for a BEAM nif is as follows:
static ERL_NIF_TERM hello(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
In order to support usage of BEAM nifs in the most flexible fashion, you may
write your nifs as raw nifs, which looks as follows:
defmodule RawCallTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [
 raw_call_beam: [raw: 1],
 raw_call_erl_nif: [raw: 1]
]

 ~Z"""
 const beam = @import("beam");
 const e = @import("erl_nif");

 pub fn raw_call_beam(env: beam.env, count: c_int, list: [*]const beam.term) beam.term {
 return beam.make(env, .{.count = count, .item = list[0]}, .{});
 }

 pub fn raw_call_erl_nif(env: beam.env, count: c_int, list: [*]const e.ErlNifTerm) e.ErlNifTerm {
 return beam.make(env, .{.count = count, .item = beam.term{.v = list[0]}}, .{}).v;
 }
 """

 test "raw call with beam package" do
 assert %{count: 1, item: {:foo, "bar"}} = raw_call_beam({:foo, "bar"})
 end

 test "raw call with erl_nif package" do
 assert %{count: 1, item: {:foo, "bar"}} = raw_call_erl_nif({:foo, "bar"})
 end
end
Note that either the beam.term or the e.ErlNifTerm forms can be used.

 Return type

In Collections we saw how certain collection types could
be manually marshalled into alternative representations using
beam.make. This can be handled as a nif configuration as
follows. The advantage to doing it this way is that the typespec for the
function will correctly reflect the return type.
defmodule ReturnTypeTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [
 returns_binary: [return: :binary],
 returns_charlist: [return: :list]
]

 ~Z"""
 pub fn returns_binary() [3]u16 {
 return [3]u16{47, 48, 49};
 }

 pub fn returns_charlist() []const u8 {
 return "Hello world!";
 }
 """

 test "returns binary" do
 assert <<47, 0, 48, 0, 49, 0>> = returns_binary()
 end

 test "returns charlist" do
 assert ~C'Hello world!' = returns_charlist()
 end
end

 Alias

It's possible to create a new function which is an alias of another function.
This is how it's done:
defmodule AliasTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [
 ...,
 new_function: [alias: :old_function]
]

 ~Z"""
 pub fn old_function() u32 {
 return 47;
 }
 """

 test "both main and alias functions work" do
 assert 47 == old_function()
 assert 47 == new_function()
 end
end

 Args options

Arguments can also take options, using args: [...]

 Noclean

If you want to disable automatic allocator cleanup of datatypes, you can do so
either in the :return or :args section by including the :noclean option.
This is most useful if your args or return data are going to be persisted
beyond the lifetime of the nif call, though doing this in many cases is not
recommended.
This flag can be stacked with previous options, for example:
return: [:noclean, :binary].

 Leak Check

It's possible to wrap each function call in its own instance of
beam.general_purpose_allocator
bound into the beam.allocator threadlocal variable.
If you tag your nif as leak_check, it will check that beam.allocator has
cleared all of its contents at the end of the function call, and if that hasn't
happened, it raises.

 leak check warning

leak check doesn't seem to be working in 0.11.0 and will return in 0.11.1

defmodule LeakCheckTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 nifs: [check_me: [leak_check: true]]

 ~Z"""
 const beam = @import("beam");
 pub fn check_me() !void {
 _ = try beam.allocator.create(u8);
 }
 """

 @tag :skip
 test "leak check" do
 assert_raise RuntimeError, "memory leak detected in function `check_me/0`", fn ->
 check_me()
 end
 end
end
leak_check can also be applied to all nifs in the module:
defmodule LeakCheckAllTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 leak_check: true

 ~Z"""
 const beam = @import("beam");
 pub fn check_me() !void {
 _ = try beam.allocator.create(u8);
 }
 """

 @tag :skip
 test "leak check" do
 assert_raise RuntimeError, "memory leak detected in function `check_me/0`", fn ->
 check_me()
 end
 end
end

 conditional leak checks

It's not currently possible to make conditional leak checks, but this will be
fixed in the future.

 Typespec override (Elixir-only)

Typespecs can be overridden by using the spec option, this syntax should
match that of a normal typespec. Note that overriding the autogenerated
typespec is the only way to specify the type of function which uses
beam.term in its arguments or return.
For example:
defmodule Override do
 use Zig,
 otp_app: :zigler,
 nifs: [typespec_override: [spec: (integer -> integer)]]

 ~Z"""
 const beam = @import("beam");
 pub fn typespec_override(env: beam.env, term: beam.term) !beam.term {
 const input = try beam.get(u32, env, term, .{});
 return beam.make(env, input + 1, .{});
 }
 """
end

 Disable documentation

Documentation can be disabled with the docs: false option.
defmodule DisableDoc do
 use Zig,
 otp_app: :zigler,
 nifs: [nodocs: [docs: false]]

 ~Z"""
 pub fn nodocs() void {}
 """
end

 Ignore

Public functions can be ignored and not converted into nifs by filling out
the :ignore option in use Zig directive.
defmodule IgnoreTest do
 use ExUnit.Case, async: true

 use Zig,
 otp_app: :zigler,
 ignore: [:ignored]

 ~Z"""
 pub fn ignored(number: u32) u32 {
 return number + 1;
 }

 pub fn available(number: u32) u32 {
 return ignored(number);
 }
 """

 test "available function works" do
 assert 48 = available(47)
 end

 test "ignored function is not available" do
 refute function_exported?(__MODULE__, :ignored, 0)
 end
end
#module

Resources

Resources are datatypes which are managed by the BEAM reference-counted garbage
collector. If you are passing data between function calls, generally it is
best practice to pass them as a resource instead of as a pointer or a global
variable.
For documentation of how resources work in general, see the erlang
documentation
on the topic. Note that the conveniences in beam.Resource
generic type exist to make operations type-safe.

 Resources are references

In managed language environments resources are passed as reference/0
tokens.

Under the hood the BEAM allocates a chunk of memory on resource creation, and
this memory is cleared when the garbage collector is triggered. The BEAM also
allows you to add in trigger hooks for when this event happens, so custom
cleanup can be tied into these GC events.

 Passing references between modules

This is not currently supported by Zigler, but support is planned.

 Declaring a resource

In order to use a resource, you must do at a minimum three things:
	declare the resource in your use Zig directive, under the :resource
key. This is a list of atoms, which match the name of the resource type.
	declare the wrapped type. This is the type of the data that is placed in
the memory space of the resource.
	use beam.Resource to declare the resource type.
note that this resource type must be pub.

defmodule ResourceTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 resources: [
 :StructResource,
 :PointerResource
]

 ~Z"""
 const beam = @import("beam");
 const root = @import("root");

 const MyStruct = struct {
 payload: u64
 };

 pub const StructResource = beam.Resource(MyStruct, root, .{});
 """

 Using resources in functions

~Z"""
pub fn create_resource_term(env: beam.env, number: u64) !beam.term {
 const res = try StructResource.create(.{.payload = number}, .{});
 return beam.make(env, res, .{});
}

pub fn retrieve_resource_term(env: beam.env, term: beam.term) !u64 {
 const res = try beam.get(StructResource, env, term, .{});
 return res.unpack().payload;
}
"""

test "lifecyle operations through terms" do
 resource = create_resource_term(47)
 assert is_reference(resource)
 assert 47 = retrieve_resource_term(resource)
end
Resources can be marshalled into and out of beam.term
values using beam.make and beam.get
functions as with any other types.
In order to convert between the resource type and the wrapped type, you'll
need to use the create and unpack functions. Note that create is
failable since under the hood it uses the BEAM resource allocator.

 Direct marshalling

It's possible to directly return resources from a nif function and also
pass them as parameters: The nif marshalling functions will be able to
detect these types and assign them correctly.
~Z"""
pub fn create_resource_direct(number: u64) !StructResource {
 return StructResource.create(.{.payload = number}, .{});
}

pub fn retrieve_resource_direct(resource: StructResource) u64 {
 return resource.unpack().payload;
}
"""

test "direct lifecyle operations" do
 resource = create_resource_direct(47)
 assert is_reference(resource)
 assert 47 = retrieve_resource_direct(resource)
end

test "must be the correct type of reference" do
 assert_raise ArgumentError, """
 errors were found at the given arguments:

 * 1st argument:

 expected: reference (for `beam.Resource(MyStruct, @import(\"root\"), .{...})`)
 got: `%{payload: 42}`
 """, fn ->
 retrieve_resource_direct(%{payload: 42})
 end

 non_resource_ref = make_ref()

 message = """
 errors were found at the given arguments:

 * 1st argument:

 expected: reference (for `beam.Resource(MyStruct, @import(\"root\"), .{...})`)
 got: `#{inspect non_resource_ref}`
 note: the reference passed is not associated with a resource of the correct type
 """

 assert_raise ArgumentError, message, fn ->
 retrieve_resource_direct(non_resource_ref)
 end
end

 no coercion

You can't pass a term of the same type as the wrapped type and use it within
the function.

 Wrapping pointers and cleanup

In many cases you won't want to move large data structures into or out of
the resource-allocated memory space; this incurs a data copy cost. In that
case, you might want to store a pointer in the resource memory space.
In order to do properly clean up after this, you'll need to write a
callback function and store it in a struct namespace that gets associated
with the resource type in using the beam.Resource function .Callbacks
option.
Note that the destructor can also be used in cases where other resources need
to be cleaned up, for example file descriptors.
The following functions are supported in the Callbacks, and are all optional.
	dtor: called when the GC collects the
	stop: called on stop on behalf of e.enif_select
	down: called on resource down, on behalf of e.enif_monitor_process
	dyncall: called on dynamic resource call, on behalf of enif_dynamic_resource_call

~Z"""
pub const PointerResource = beam.Resource(*MyStruct, root, .{.Callbacks = PointerResourceCallbacks});

pub const PointerResourceCallbacks = struct {
 pub fn dtor(env: beam.env, s: **MyStruct) void {
 _ = env;
 beam.raw_allocator.destroy(s.*);
 }
};

pub fn create_pointer_resource(number: u64) !PointerResource {
 const new_struct = try beam.raw_allocator.create(MyStruct);
 new_struct.payload = number;
 return PointerResource.create(new_struct, .{});
}

pub fn retrieve_pointer_resource(resource: PointerResource) u64 {
 return resource.unpack().*.payload;
}
"""

test "pointer-based lifecyle operations" do
 resource = create_pointer_resource(47)
 assert is_reference(resource)
 assert 47 = retrieve_pointer_resource(resource)
end

 pointer allocation strategy

It is strongly recommended to use beam.raw_allocator
for your pointer payload allocators, as beam.allocator
is undefined in the callback context.
alternatively, if you do use your own managed allocator, you can pack a
pointer to the allocator into your datastructure and use this pointer to
clean up.

 Release and Keep

Resources are associated with release and keep functionality.
These increment and decrement the reference count on the resource which
allows a nif to prevent the GC from destroying the memory and calling the
destructor. Normally the nif management functions select default
release and keep settings so that the functions do the most expected
outcome - nif functions keep resources while running and then release them
when they're finished.

 release on creation

A Struct resource is normally released on creation. This can be disabled
by passing .release = false into the options parameter of
beam.Resource(...).create(...)

 keep on get

By default, beam.get will keep the resource when the
internal term retrieved. This can be disabled by passing .keep = false
into the options parameter of beam.get

 get without keeping

for wrapped datatypes that require a cleanup step (e.g. pointers) it is not
recommended to get without keeping, as there could be a race condition where
dereferencing the pointer occurs after another nif running in a different OS
thread has performed a cleanup against the same resource.

 release when function argument

If a function is passed a beam.Resource(...) type, it will release it
at the end of the call. This can be disabled by setting :noclean
flag in the function argument options. (see nif options)

These functions are provided in the resource type as
beam.Resource(...).release(...) and beam.Resource(...).keep(...)
functions, respectively:
~Z"""
pub fn release(resource: StructResource) void {
 resource.release();
}

pub fn keep(resource: StructResource) void {
 resource.keep();
}
"""

CXX integration

Zigler offers several tools to integrate your code with C and C++ code.

 compiling C using the C toolchain

If you want to compile C or C++ files using the C and C++ toolchain bundled
with the zig programming language, you should include a path to your
include directory and a source path or list of source paths to be compiled,
via the include_dir and c_src module options.

 source paths

source paths may contain a trailing *, which will pull all c or c++ files
in that directory, (but not subdirectory)

 included.h

// forwarded function definition
int plus_one(int);

 src/src.c

int plus_one(int value) {
 return value + 1;
}
defmodule CompilingC do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 include_dir: "include",
 c_src: "src/*"

 ~Z"""
 const c = @cImport(@cInclude("included.h"));

 pub const plus_one = c.plus_one;
 """

 test "c plus one" do
 assert 48 = plus_one(47)
 end
end

 linking against a C abi library

This example shows you how to link in a system library (which can be .a,
.so, .obj, or .dll). Zig will resolve the extension based on the
operating system native rules. To use the functions in the library, there
must also be an associated .h file with extern functions.
In this example we'll use the cblas_dasum function, which takes a length,
an pointer to double-precision floating point list, and a integer stride.
The result is a sum of the numbers in the list.
The rules for collections apply to functions that
are directly imported from C files.
if {:unix, :linux} == :os.type() do
currently we only have access to the BLAS library on linux CI actions, so
it's unavailable for other operating systems for automated testing purposes

 defmodule LibraryTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 link_lib: {:system, "blas"}

 ~Z"""
 pub const dasum = @cImport(@cInclude("cblas.h")).cblas_dasum;
 """

 test "dasum" do
 assert 6.0 == dasum(3, [1.0, 2.0, 3.0], 1)
 end
 end

 linking against libcpp:

if you need to link against libcpp, the library has a special-cased option:
link_libcpp: true

 Easy-C

It's also possible to also automatically create nifs without writing zig
function shims. This works either with linking an external library with
link_lib or building your own code with c_src.
Because the C ABI exposes all functions publically in a global namespace,
we can't use zigler's automatic detection to decide which functions to
surface.
Here are the steps to using easy_c:
	declare which header file you'd like to use with the easy_c module option	you may want to add include_dir if the header isn't a system C header.

	add a link_lib or c_src option to make sure that the functions are built.
	declare which functions you'd like to hoist into the module.

In this example we'll use the cblas_daxpy function, which takes a length,
a double-precision a value, a list (x) of double-precision values, a stride
for the x values, a list (y) of double-precision values, and a stride for
y.
It then calculates the linear transformation ax + y using these vectors.

 "in-out" parameters

The y parameter in this function is an "in-out" parameter. Instead of
returning a result, the results are written into the y pointer.
to specify that it's an in-out parameter, we put an integer (which is the
0-indexed index of the argument which is the out parameter).
since the returned pointer doesn't have a specified value, we have to
specify a length option, which could either be a fixed number, or
{:arg, n} where n is the argument index corresponding to a variable
length.
We can also use nif options like alias
and the return option binary
alongside these special easy_c options.

 defmodule EasyCTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 easy_c: "cblas.h",
 link_lib: {:system, "blas"},
 nifs: [
 cblas_daxpy: [return: [4, length: {:arg, 0}]],
 cblas_daxpy_bin: [alias: :cblas_daxpy, return: [4, :binary, length: {:arg, 0}]]
]

 test "daxpy as a list" do
 assert [7.0, 11.0, 15.0] == cblas_daxpy(3, 3.0, [1.0, 2.0, 3.0], 1, [4.0, 5.0, 6.0], 1)
 end

 test "daxpy as a binary" do
 assert <<7.0::float-native, 11.0::float-native, 15.0::float-native>> ==
 cblas_daxpy_bin(3, 3.0, [1.0, 2.0, 3.0], 1, [4.0, 5.0, 6.0], 1)
 end
 end
end
module

Nif concurrency strategies

When execution flow enters a Nif, control is fully relinquished from the
managed environment of the BEAM VM to a context where the BEAM is more or
less unaware of what is going on.
In general the VM cannot tolerate native code running for longer than
approximately one millisecond.
There are several tools that the BEAM nif system provides for you to

 Synchronous

The default mode for Nifs to run is synchronous. Only use this mode if
you are confident that your code can run in under 1ms.

 Dirty CPU

dirty_cpu mode is usable when your VM has created Dirty CPU schedulers. By
default, the VM creates one dirty CPU scheduler per CPU core available to it.
Nifs tagged as dirty_cpu are allowed to run longer than 1 millisecond.
In order to tag a function as dirty_cpu, use the :dirty_cpu flag in the
options list for the function in the :nif call.

 beam.yield in Dirty CPU

The beam.yield function in dirty CPU mode will detect
if the parent process has died and will return error.processterminated.
defmodule DirtyCpu do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 nifs: [long_running: [:dirty_cpu]]

 ~Z"""
 const beam = @import("beam");
 const e = @import("erl_nif");
 // this is a dirty_cpu nif.
 pub fn long_running(env: beam.env, pid: beam.pid) !void {
 // following code triggered when process is killed.
 defer {
 // note that the environment of the parent process is dead,
 // so we have to manually create a new environment and send
 // from it.

 const env2 = beam.alloc_env();
 const msg = beam.make(env2, .killed, .{});
 var pid2 = pid;
 _ = e.enif_send(null, &pid2, env2, msg.v);
 beam.free_env(env2);
 }

 while(true) {
 _ = try beam.send(env, pid, .unblock);
 try beam.yield(env);
 }
 }
 """

 test "dirty cpu can be cancelled" do
 this = self()
 dirty_cpu = spawn(fn -> long_running(this) end)
 assert_receive :unblock
 Process.exit(dirty_cpu, :kill)
 assert_receive :killed
 end
end

 queue limitations

if you consume all of your dirty cpu schedulers with nif calls, the next
dirty_cpu call will block until a scheduler frees up; this could cause
undesired latency characteristics.

 Dirty IO

It's not recommended to use dirty_io unless you're performing IO operations
and blocking using nif events and blocking operations.
In order to tag a function as dirty_io, use the :dirty_io flag in the
options list for the function in the :nif call.

 Threaded

threaded mode is usable when your OS supports spawning threads. This is
effectively all current platforms supporting the BEAM VM today. Zigler
will wrap your function code
In order to tag a function as threaded, use the :threaded flag in the
options list for the function in the :nif call. Generally, no other
changes must be made to execute a function in threaded mode.

 env in Threaded mode

The env variable when you run in threaded mode is not a process-bound
environment.

 beam.yield in Threaded mode

The beam.yield function in dirty CPU mode will detect
if the parent process has died and will return error.processterminated.

 return from yield quickly!

You must return from the yield quickly (within 750us). If you are
unable to return quickly, then zigler run will cause the thread
metadata to leak. This will be fixed in zigler 0.11.

defmodule Threaded do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 nifs: [long_running: [:threaded]]

 ~Z"""
 const beam = @import("beam");
 const std = @import("std");
 pub fn long_running(env: beam.env, pid: beam.pid) !void {
 // following code triggered when process is killed.
 // note that unlike dirty functions, the lifetime of
 // env matches the lifetime of the function.

 defer {
 _ = beam.send(env, pid, .killed) catch {};
 }

 while(true) {
 _ = try beam.send(env, pid, .unblock);
 try beam.yield(env);
 }
 }
 """

 @tag :threaded
 test "threaded can be cancelled" do
 this = self()
 threaded = spawn(fn -> long_running(this) end)
 #assert_receive :unblock
 Process.sleep(100)
 Process.exit(threaded, :kill)
 assert_receive :killed
 Process.sleep(1000)
 end
end

 Yielding

 yielding nifs

Yielding nifs are not available in this release of Zigler

module

Global module options

 module callbacks

Sometimes it's necessary to execute nif code on module lifecycle events. Zigler
supports binding function into these

 pub and ignore

callback functions must be exported from the module nifs definition code as
pub functions.
Don't forget to include any callback functions in the ignore
list.

 callback api

the callback system api may get revised in the future to enable better features
and make the priv data system typesafe.

 load

The load callback is triggered when the module is first loaded. This
is useful for, for example, setting up global configuration for the
module, and saving data to be accessed using the enif_priv_data function.

 load function type signature

The type signature of the load function is expected to be:
fn (beam.env, [*c]?*anyopaque, beam.term)
The second term is a pointer to the location of the priv data. the load
function can optionally set this pointer, which will enable access to
that priv_data pointer via enif_priv_data.
This API may change in the future to avoid the opaque c double pointer.

defmodule ZiglerTest.LoadTest do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 callbacks: [
 on_load: :load_function,
],
 ignore: [:load_function]

 ~Z"""
 const beam = @import("beam");
 const e = @import("erl_nif");
 const std = @import("std");

 var priv_data: u64 = undefined;

 pub fn load_function(env: beam.env, priv_data_ptr: [*c]?*anyopaque, init_term: beam.term) c_int {
 priv_data = 47;
 priv_data_ptr.* = &priv_data;
 _ = init_term;
 _ = env;
 return 0;
 }

 pub fn get_priv_data(env: beam.env) u64 {
 const priv_data_ptr: *u64 = @ptrCast(@alignCast(e.enif_priv_data(env)));
 return priv_data_ptr.*;
 }

 pub fn loaded_value() u64 {
 return priv_data;
 }
 """

 test "module load" do
 assert 47 = loaded_value()
 assert 47 = get_priv_data()
 end

end

 load_nif data

The third term (init_data) is supplied on invocation of :erlang.load_nif/2.
Assigning this value is not supported in this version of zigler.

 upgrade

The upgrade callback is triggered when the module is upgraded from a
previous version of the module during a hot swap event.

 upgrade not supported

the upgrade callback is not supported in this version of zigler

 unload

The unload callback is triggered when the module is deregistered from
the BEAM module catalog.

 unload not supported

the unload callback is not supported in this version of zigler

 adding packages

It's possible to add zig files as packages using the packages
keyword option. The name of the package is the key, and the value
is a tuple of the path to the zig file that acts as the package and
a list of dependencies for the package.

 Example extra.zig

pub const value = 47;
defmodule PackageFile do
 use ExUnit.Case, async: true
 use Zig,
 otp_app: :zigler,
 packages: [extra: {"test/_support/package/extra.zig", [:beam]}]

 ~Z"""
 const extra = @import("extra");

 pub fn extra_value() u64 {
 return extra.value;
 }
 """

 test "package file" do
 assert 47 = extra_value()
 end
end
#module

:zigler

Parse transform module for using Zigler with erlang.
For the canonical example, see:
https://www.erlang.org/doc/man/erl_id_trans.html

 Prerequisites

In order to use Zigler in an erlang project, you must have the Elixir
runtime. You may do this any way you wish, but Zigler recommends
rebar_mix:
https://github.com/Supersonido/rebar_mix
There are instructions on how to make sure Elixir is available at
compile time for your erlang project.

 Building a Zig Module

General documentation on parse transforms is very light. To use zigler as
a parse transform:
-module(my_erlang_module).
-compile({parse_transform, zigler}).
-export([...]).

-zig_code("
pub fn hello_world() [] const u8 {
 return "Hello, world!";
}
")

-zig_opts([{otp_app, my_app}]).
This creates the hello_world/0 function in your
module which returns the "Hello, world!" binary.
for options to be delivered in the zig_opts attribute, see the
Zig module documentation.
Note that the ... for the nifs option is not representable in erlang AST.
Instead, use the atom auto.

 Note

Erlang integration is highly experimental and the interface
may be changed in the future.

 Summary

 Functions

 parse_transform(ast, opts)

 performs a parse transformation on the AST for an erlang module,
converting public functions in the

 Functions

 Link to this function

 parse_transform(ast, opts)

 View Source

performs a parse transformation on the AST for an erlang module,
converting public functions in the

Zig

Inline NIF support for Zig

 Motivation

Zig is a general-purpose programming language designed for robustness,
optimality, and maintainability.

The programming philosophy of Zig matches up nicely with the programming
philosophy of the BEAM VM and in particular its emphasis on simplicity and
structure should very appealing to the practitioners of Elixir.
The following features make Zig extremely amenable to inline language
support in a BEAM language:
	simplicity. Zig's syntax is definable in a simple YACC document and
Zig takes a stance against making its featureset more complex (though
it may evolve somewhat en route to 1.0)
	Composability. Zig is unopinionated about how to go about memory
allocations. Its allocator interface is very easily able to be backed
by the BEAM's, which means that you have access to generic memory
allocation strategies through its composable allocator scheme.
	C integration. It's very easy to design C-interop between Zig and C.
Zigler has been designed to make it easier to use Zigler to build
C libraries than to use C directly see Easy C.

 Guides

Please consult the following guides for detailed topics:
	Using Nifs
	Collection datatypes
	Allocator strategies
	Nif options
	Resources
	C integration
	Concurrency strategies
	Global module options

 Zig version support

although the large-scale archictecture of zigler is settled,
zigler features may break backwards compatibility until zig reaches
1.0

 Nerves Support

Nerves is supported out of the box, and Zigler will be able to seamlessly
detect the cross-compilation information (os, architecture, runtime) and
build correctly for that target.

 Basic usage

In the BEAM, you can define a NIF by consulting the following document and implementing the appropriate
shared object/DLL callbacks. However, Zigler will take care of all of
this for you.
Simply use Zig in your module, providing the app atom in the property
list.
Then, use the sigil_Z/2 macro and write zig code. To present a function
as a nif in your module, simply export it from your code namespace by
making it a pub function in your zig code.
Example
defmodule MyModule do
 use Zig, otp_app: :my_app

 ~Z"""
 pub fn my_func(val: i64) i64 {
 return val + 1;
 }
 """

end
Zig will automatically fill out the appropriate NIF C template, compile
the shared object, and bind it into the module pre-compilation. In the case
of the example, there will be a MyModule.my_func/1 function call found in
the module.
Zig will also make sure that your statically-typed Zig data are guarded
when you marshal it from the dynamically-typed BEAM world. However, you may
only pass in and return certain types. As an escape hatch, you may use
the beam.term type which is a wrapped
ERL_NIF_TERM type.
See erl_nif.
Environment
For many functions, you'll need to import the beam package and
create a function that takes a beam.env as its first
argument. This will enable you to directly access or create wrapped beam
term data. The equivalent of the above code will be:
Example
defmodule MyModule do
 use Zig, otp_app: :my_app

 ~Z"""
 const beam = @import("beam");

 pub fn my_func(env: beam.env, val_term: beam.term) !beam.term {
 const val = try beam.get(i64, env, val_term, .{});
 return beam.make(env, val + 1, .{});
 }
 """
end
For more details on get and make
functions see the beam documentation.
Manual Term marshalling
If you don't use automatic marshalling, Zigler will not be able
to provide the following conveniences:
	argument error details. The zig code will raise a generic
BEAM ArgumentError but it won't have specific details about
what the expected type was and which argument was in error.

	dialyzer type information for your function. You will have
to supply that type information in your nif configuration.

 Functions missing from beam

The beam module doesn't comprehensively contain all nif functions.
For functions that correspond to erl_nif.h
you can import the erl_nif package, which has the erl_nif C API
const erl_nif = @import("erl_nif");

 Importing external files

If you need to write zig code outside of the module, just place it in
the same directory as your module.
Example
~Z"""
const extra_code = @import("extra_code.zig");

pub fn use_extra_code(val: i64) i64 {
 return extra_code.extra_fn(val);
}

pub const forwarded_function = extra_code.forwarded_function;
"""
If you would like to include a custom c header file, create an subdirectory
of your module's directory and add it as an available include directory,
as shown here (in this case the subdirectory is called include). The
Zig build system will add the include path(s) in the analysis and
compilation pipelines.
defmodule MyModule
 use Zig,
 otp_app: :my_app,
 include_dir: "include"

 ~Z"""
 const c = @cImport({
 @cInclude("my_c_header.h");
 });
 ...
 """
end
If the c header defines extern functions, it's your responsibility to make
sure those externed functions are available by
compiling other c files or
using an external library.

 External Libraries

If you need to bind static (*.a) or dynamic (*.so) libraries into your
module, you may link them with the :libs argument.
Note that zig statically binds shared libraries into the assets it creates.
This simplifies deployment for you.
Example (explicit library path)
defmodule Blas do
 use Zig,
 otp_app: :my_app,
 link_lib: "path/to/libblas.a"

 ~Z"""
 const blas = @cImport({
 @cInclude("cblas.h");
 ...
 """
end
You can also link system libraries. This relies on zig build's ability
to locate system libraries. Note that you will need to follow your system's
library convention, for example in the case of linux, that means removing the
"lib" prefix and the ".so" extension.
Example (system libraries)
defmodule Blas do
 use Zig,
 otp_app: :my_app,
 link_lib: {:system, "blas"}

 ~Z"""
 const blas = @cImport({
 @cInclude("cblas.h");
 ...
 """
end

 Compiling C/C++ files

You can direct zigler to compile C or C++ files that are in
your directory tree. Currently, you must explicitly pick each file, in the
future, there may be support for directories (and selecting compile options)
based on customizeable rules.
To do this, fill the "sources" option with a list of files (represented as
strings), or a file/options pair (represented as a tuple).
defmodule UsesCOrCpp do
 use Zig,
 otp_app: :my_app,
 link_libcpp: true, # note: optional for c-only code
 include_dir: ["include"],
 c_src: [
 "some_c_source.c",
 {"some_cpp_source.cpp", ["-std=c++17"]},
 {"directory_of_files/*", ["-std=c99"]},
]

 ~Z"""
 ...
 """
end

 Easy C

In some cases, you may have a C project that ships with a library and a
header file that you would like to mount as NIF functions in your module.
In this case, you can use the easy_c option to automate the work of
stitching your library into the module. Note that in this case, you must
declare all of the function that you would like to import. Here is an
example of importing three functions from the blas example as above.
For details of what the nif options mean, see: Zig.EasyC
defmodule BlasWithEasyC do
 use Zig,
 otp_app: :my_app,
 easy_c: "cblas.h",
 link_lib: {:system, "blas"},
 nifs: [
 :cblas_dasum,
 cblas_daxpy: [return: [4, length: {:arg, 0}]],
 daxpy_bin: [alias: :cblas_daxpy, return: [4, :binary, length: {:arg, 0}]]
]
end

 Compilation debug

If something should go wrong, Zigler will translate the Zig compiler error
into an Elixir compiler error, and let you know which line in the
~Z block it came from.

 Documentation

Use the builtin zig /// docstring to write your documentation. If it's in
front of the nif declaration, it will wind up in the correct place in your
elixir documentation.
Note that the //! docstring is not supported. Use @moduledoc instead.

 Bring your own version of Zig

If you would like to use your system's local zig command, specify
this in your use Zig statement options.
use Zig, otp_app: :my_app, local_zig: true
This will use System.find_executable/1 to obtain the zig command. If
you want to specify a specific zig path, use the following:
use Zig, otp_app: :my_app, zig_path: "path/to/zig/command"

 Summary

 Functions

 code(module)

 retrieves the zig code from any given module that was compiled with zigler

 nif_name(module, use_suffixes \\ true)

 outputs a String name for the module.

 sigil_Z(arg, list)

 declares a string block to be included in the module's .zig source file.

 sigil_z(code, list)

 like sigil_Z/2, but lets you interpolate values from the outside
elixir context using string interpolation (the #{value} form)

 version()

 default version of zig supported by this version of zigler.

 Functions

 Link to this function

 code(module)

 View Source

retrieves the zig code from any given module that was compiled with zigler

 Link to this function

 nif_name(module, use_suffixes \\ true)

 View Source

outputs a String name for the module.
note that for filesystem use, you must supply the extension. For internal (BEAM) use, the
filesystem extension will be inferred. Therefore we provide two versions of this function.

 Link to this macro

 sigil_Z(arg, list)

 View Source

 (macro)

declares a string block to be included in the module's .zig source file.

 Link to this macro

 sigil_z(code, list)

 View Source

 (macro)

like sigil_Z/2, but lets you interpolate values from the outside
elixir context using string interpolation (the #{value} form)

 Link to this function

 version()

 View Source

default version of zig supported by this version of zigler.

 API warning

this API may change in the future.

Zig.Type protocol

 Summary

 Types

 t()

 Functions

 error_prongs(type, context)

 catch prongs to correctly perform error handling, atom is a reference to function in Zig.ErrorProng

 from_json(json, module)

 get_result(type, opts)

 generates make clauses in zig

 marshal_param(type, variable, index, platform)

 marshal_return(type, variable, platform)

 marshals_param?(type)

 beam-side type conversions that might be necessary to get an elixir parameter into a zig parameter

 marshals_return?(type)

 beam-side type conversions that might be necessary to get a zig return into an elixir return

 missing_size?(type)

 needs_make?(type)

 parse(string)

 return_allowed?(type)

 sigil_t(arg, _)

 spec(atom)

 spec(type, context, opts)

 to_call(type)

 Types

 Link to this type

 t()

 View Source

 @type t() ::
 Zig.Type.Bool.t()
 | Enum.t()
 | Zig.Type.Float.t()
 | Zig.Type.Integer.t()
 | Zig.Type.Struct.t()
 | :env
 | :pid
 | :port
 | :term

 Functions

 Link to this function

 error_prongs(type, context)

 View Source

 @spec error_prongs(t(), :argument | :return) :: [{atom(), [atom()]}]

catch prongs to correctly perform error handling, atom is a reference to function in Zig.ErrorProng

 Link to this function

 from_json(json, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 @spec get_result(
 t(),
 keyword()
) :: String.t()

generates make clauses in zig

 Link to this function

 marshal_param(type, variable, index, platform)

 View Source

 @spec marshal_param(t(), Macro.t(), non_neg_integer(), :elixir | :erlang) :: Macro.t()

 Link to this function

 marshal_return(type, variable, platform)

 View Source

 @spec marshal_return(t(), Macro.t(), :elixir | :erlang) :: Macro.t()

 Link to this function

 marshals_param?(type)

 View Source

 @spec marshals_param?(t()) :: boolean()

beam-side type conversions that might be necessary to get an elixir parameter into a zig parameter

 Link to this function

 marshals_return?(type)

 View Source

 @spec marshals_return?(t()) :: boolean()

beam-side type conversions that might be necessary to get a zig return into an elixir return

 Link to this function

 missing_size?(type)

 View Source

 @spec missing_size?(t()) :: boolean()

 Link to this function

 needs_make?(type)

 View Source

 @spec needs_make?(t()) :: boolean()

 Link to this function

 parse(string)

 View Source

 Link to this function

 return_allowed?(type)

 View Source

 @spec return_allowed?(t()) :: boolean()

 Link to this macro

 sigil_t(arg, _)

 View Source

 (macro)

 Link to this function

 spec(atom)

 View Source

 Link to this function

 spec(type, context, opts)

 View Source

 @spec spec(t(), spec_context(), keyword()) :: Macro.t()

 Link to this function

 to_call(type)

 View Source

 @spec to_call(t()) :: String.t()

Zig.Type.Array

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 of(type, len, opts \\ [])

 return_allowed?(array)

 spec(type, atom, opts)

 to_call(array)

 to_string(array)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Array{
 child: Zig.Type.t(),
 has_sentinel?: boolean(),
 len: non_neg_integer(),
 mutable: boolean(),
 repr: String.t()
}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 of(type, len, opts \\ [])

 View Source

 Link to this function

 return_allowed?(array)

 View Source

 Link to this function

 spec(type, atom, opts)

 View Source

 Link to this function

 to_call(array)

 View Source

 Link to this function

 to_string(array)

 View Source

Zig.Type.Bool

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(_)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 return_allowed?(_)

 spec(_, _, _)

 to_call(_)

 to_string(_)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Bool{}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(_)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 return_allowed?(_)

 View Source

 Link to this function

 spec(_, _, _)

 View Source

 Link to this function

 to_call(_)

 View Source

 Link to this function

 to_string(_)

 View Source

Zig.Type.Cpointer

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 of(child)

 return_allowed?(pointer)

 spec(map, atom, opts)

 to_call(slice)

 to_string(slice)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Cpointer{child: Zig.Type.t()}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 of(child)

 View Source

 Link to this function

 return_allowed?(pointer)

 View Source

 Link to this function

 spec(map, atom, opts)

 View Source

 Link to this function

 to_call(slice)

 View Source

 Link to this function

 to_string(slice)

 View Source

Zig.Type.Enum

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 inspect(enum, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 return_allowed?(_)

 spec(map, _, opts)

 to_call(enum)

 to_string(enum)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Enum{name: String.t(), tags: %{optional(atom()) => String.t()}}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 inspect(enum, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 return_allowed?(_)

 View Source

 Link to this function

 spec(map, _, opts)

 View Source

 Link to this function

 to_call(enum)

 View Source

 Link to this function

 to_string(enum)

 View Source

Zig.Type.Error

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 of(child)

 return_allowed?(optional)

 spec(map, context, opts)

 to_call(optional)

 to_string(optional)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Error{child: Zig.Type.t()}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 of(child)

 View Source

 Link to this function

 return_allowed?(optional)

 View Source

 Link to this function

 spec(map, context, opts)

 View Source

 Link to this function

 to_call(optional)

 View Source

 Link to this function

 to_string(optional)

 View Source

Zig.Type.Float

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map)

 get_result(type, opts)

 inspect(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 parse(binary)

 return_allowed?(_)

 spec(_, _, _)

 to_call(float)

 to_string(float)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Float{bits: 16 | 32 | 64}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 inspect(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 parse(binary)

 View Source

 Link to this function

 return_allowed?(_)

 View Source

 Link to this function

 spec(_, _, _)

 View Source

 Link to this function

 to_call(float)

 View Source

 Link to this function

 to_string(float)

 View Source

Zig.Type.Function

module representing the zig type, as identified by performing semantic
analysis on the zig code.

 Summary

 Types

 t()

 Functions

 from_json(map, module)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Function{
 arity: non_neg_integer(),
 name: atom(),
 params: [Zig.Type.t()],
 return: Zig.Type.t()
}

 Functions

 Link to this function

 from_json(map, module)

 View Source

Zig.Type.Integer

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map)

 get_bits!(number_str, full_type)

 get_result(type, opts)

 inspect(type, opts)

 marshal_param(type, variable, index, arg4)

 marshal_return(type, variable, arg3)

 marshals_param?(arg1)

 marshals_return?(arg1)

 missing_size?(_)

 needs_make?(_)

 parse(t)

 return_allowed?(_)

 spec(type, _, arg3)

 to_call(integer)

 to_string(integer)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Integer{bits: 0..65535 | :big, signedness: :unsigned | :signed}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map)

 View Source

 Link to this function

 get_bits!(number_str, full_type)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 inspect(type, opts)

 View Source

 Link to this function

 marshal_param(type, variable, index, arg4)

 View Source

 Link to this function

 marshal_return(type, variable, arg3)

 View Source

 Link to this function

 marshals_param?(arg1)

 View Source

 Link to this function

 marshals_return?(arg1)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 parse(t)

 View Source

 Link to this function

 return_allowed?(_)

 View Source

 Link to this function

 spec(type, _, arg3)

 View Source

 Link to this function

 to_call(integer)

 View Source

 Link to this function

 to_string(integer)

 View Source

Zig.Type.Manypointer

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 of(type, opts \\ [])

 return_allowed?(pointer)

 spec(map, atom, opts)

 to_call(slice)

 to_string(slice)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Manypointer{
 child: Zig.Type.t(),
 has_sentinel?: boolean(),
 repr: String.t()
}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 of(type, opts \\ [])

 View Source

 Link to this function

 return_allowed?(pointer)

 View Source

 Link to this function

 spec(map, atom, opts)

 View Source

 Link to this function

 to_call(slice)

 View Source

 Link to this function

 to_string(slice)

 View Source

Zig.Type.Optional

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 of(child)

 return_allowed?(optional)

 spec(map, context, opts)

 to_call(optional)

 to_string(optional)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Optional{child: Zig.Type.t()}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 of(child)

 View Source

 Link to this function

 return_allowed?(optional)

 View Source

 Link to this function

 spec(map, context, opts)

 View Source

 Link to this function

 to_call(optional)

 View Source

 Link to this function

 to_string(optional)

 View Source

Zig.Type.Resource

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(_, _)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 return_allowed?(resource)

 spec(resource, context, opts)

 to_call(resource)

 to_string(resource)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Resource{name: atom()}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(_, _)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 return_allowed?(resource)

 View Source

 Link to this function

 spec(resource, context, opts)

 View Source

 Link to this function

 to_call(resource)

 View Source

 Link to this function

 to_string(resource)

 View Source

Zig.Type.Slice

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(map, module)

 get_result(type, opts)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 of(child, opts \\ [])

 return_allowed?(slice)

 spec(map, context, opts)

 to_call(slice)

 to_string(slice)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Type.Slice{
 child: Zig.Type.t(),
 has_sentinel?: boolean(),
 repr: String.t()
}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(map, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 of(child, opts \\ [])

 View Source

 Link to this function

 return_allowed?(slice)

 View Source

 Link to this function

 spec(map, context, opts)

 View Source

 Link to this function

 to_call(slice)

 View Source

 Link to this function

 to_string(slice)

 View Source

Zig.Type.Struct

 Summary

 Types

 t()

 Functions

 error_prongs(_, atom)

 from_json(json, module)

 get_result(type, opts)

 marshal_param(arg1, _)

 marshal_param(_, _, _, _)

 marshal_return(_, _, _)

 marshals_param?(_)

 marshals_return?(_)

 missing_size?(_)

 needs_make?(_)

 return_allowed?(struct)

 spec(struct, atom, opts)

 to_call(struct)

 to_string(struct)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %{
 name: String.t(),
 packed: nil | non_neg_integer(),
 extern: nil | non_neg_integer(),
 required: %{optional(atom()) => Zig.Type.t()},
 optional: %{optional(atom()) => Zig.Type.t()},
 mutable: boolean()
}

 Functions

 Link to this function

 error_prongs(_, atom)

 View Source

 Link to this function

 from_json(json, module)

 View Source

 Link to this function

 get_result(type, opts)

 View Source

 Link to this function

 marshal_param(arg1, _)

 View Source

 Link to this function

 marshal_param(_, _, _, _)

 View Source

 Link to this function

 marshal_return(_, _, _)

 View Source

 Link to this function

 marshals_param?(_)

 View Source

 Link to this function

 marshals_return?(_)

 View Source

 Link to this function

 missing_size?(_)

 View Source

 Link to this function

 needs_make?(_)

 View Source

 Link to this function

 return_allowed?(struct)

 View Source

 Link to this function

 spec(struct, atom, opts)

 View Source

 Link to this function

 to_call(struct)

 View Source

 Link to this function

 to_string(struct)

 View Source

Zig.Assembler

Assembles the staging directory for zig content.
The staging directory contains:
	build.zig for the library file.

 Summary

 Functions

 assemble(module, opts)

 directory(module)

 staging directory for the zigler assembly

 Functions

 Link to this function

 assemble(module, opts)

 View Source

 Link to this function

 directory(module)

 View Source

staging directory for the zigler assembly

Zig.Builder

Code for interfacing with std.build.Builder, the interface for programmatically invoking
build code with the zig build command.

 Summary

 Functions

 build(module, opts)

 Functions

 Link to this function

 build(module, opts)

 View Source

Zig.Command

contains all parts of the Zig library involved in calling the
zig compiler toolchain, especially with regards to the zig command, except
for assembling the build.zig file, which is performed by the
Zig.Builder module.

 Summary

 Functions

 compile(module, opts)

 fetch!(version)

 fmt(file)

 get_arch()

 get_os()

 run_sema(file, opts)

 targets()

 unarchive_zig(archive)

 Functions

 Link to this function

 compile(module, opts)

 View Source

 Link to this function

 fetch!(version)

 View Source

 Link to this function

 fmt(file)

 View Source

 Link to this function

 get_arch()

 View Source

 Link to this function

 get_os()

 View Source

 Link to this function

 run_sema(file, opts)

 View Source

 Link to this function

 targets()

 View Source

 Link to this function

 unarchive_zig(archive)

 View Source

Zig.Compiler

handles instrumenting elixir code with hooks for zig NIFs.

 Summary

 Functions

 assembly_dir(env, module)

 compile(base_code, module, code_dir, opts)

 Functions

 Link to this function

 assembly_dir(env, module)

 View Source

 Link to this function

 compile(base_code, module, code_dir, opts)

 View Source

Zig.Sema

 Summary

 Functions

 analyze_file!(map, opts)

 run_sema(file, module \\ nil, opts \\ [])

 run_sema!(file, module \\ nil, opts \\ [include_dir: []])

 Functions

 Link to this function

 analyze_file!(map, opts)

 View Source

 @spec analyze_file!(module :: map(), opts :: keyword()) :: keyword()

 Link to this function

 run_sema(file, module \\ nil, opts \\ [])

 View Source

 Link to this function

 run_sema!(file, module \\ nil, opts \\ [include_dir: []])

 View Source

Zig.EasyC

 Summary

 Functions

 build_from(assigns)

 normalize_aliasing(opts)

 Functions

 Link to this function

 build_from(assigns)

 View Source

 Link to this function

 normalize_aliasing(opts)

 View Source

Zig.Nif.Basic

Architecture:
Synchronous has two different cases. The first case is that the nif can be called
directly. In this case, the function is mapped directly to function name. In the
case that the nif needs marshalling, the function is mapped to marshalled-<nifname>.
and the called function contains wrapping logic.
To understand wrapping logic, see Zig.Nif.Marshaller

 Summary

 Functions

 cleanup_for(arg_opts, param_type, index)

 context(arg)

 entrypoint(nif)

 render_elixir(nif)

 render_erlang(nif)

 render_zig(nif)

 resources(_)

 type_cleanup(param_type, index)

 Functions

 Link to this function

 cleanup_for(arg_opts, param_type, index)

 View Source

 Link to this function

 context(arg)

 View Source

 Link to this function

 entrypoint(nif)

 View Source

 Link to this function

 render_elixir(nif)

 View Source

 Link to this function

 render_erlang(nif)

 View Source

 Link to this function

 render_zig(nif)

 View Source

 Link to this function

 resources(_)

 View Source

 Link to this function

 type_cleanup(param_type, index)

 View Source

Zig.Nif.Concurrency behaviour

behaviour module which describes the interface for "plugins" which
generate concurrency-specific code.

 Summary

 Types

 concurrency()

 table_entry()

 Callbacks

 render_elixir(t)

 render_erlang(t)

 render_zig(t)

 resources(t)

 table_entries(t)

 returns "table_entry" tuples which are then used to generate the nif table.
if a nif function needs multiple parts, for example, for concurrency
management, then multiple entries should be returned.

 Types

 Link to this type

 concurrency()

 View Source

 @type concurrency() :: :synchronous | :dirty_cpu | :dirty_io

 Link to this type

 table_entry()

 View Source

 @type table_entry() ::
 {name :: atom(), arity :: non_neg_integer(), function_pointer :: atom(),
 bootstrap :: concurrency()}

 Callbacks

 Link to this callback

 render_elixir(t)

 View Source

 @callback render_elixir(Zig.Nif.t()) :: Macro.t()

 Link to this callback

 render_erlang(t)

 View Source

 @callback render_erlang(Zig.Nif.t()) :: term()

 Link to this callback

 render_zig(t)

 View Source

 @callback render_zig(Zig.Nif.t()) :: iodata()

 Link to this callback

 resources(t)

 View Source

 @callback resources(Zig.Nif.t()) :: [{:root, atom()}]

 Link to this callback

 table_entries(t)

 View Source

 @callback table_entries(Zig.Nif.t()) :: [table_entry()]

returns "table_entry" tuples which are then used to generate the nif table.
if a nif function needs multiple parts, for example, for concurrency
management, then multiple entries should be returned.

Zig.Nif.DirtyCpu

Dirty Cpu Nifs run dirty, on the cpu

Zig.Nif.DirtyIo

Dirty Cpu Nifs run dirty, on the cpu

Zig.Nif.Synchronous

Zig.Nif.Threaded

Zig.Manifest

 Summary

 Types

 t()

 Functions

 create(code)

 resolve(manifest, file, line)

 resolver(manifest, file \\ nil)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Functions

 Link to this function

 create(code)

 View Source

 Link to this function

 resolve(manifest, file, line)

 View Source

 Link to this macro

 resolver(manifest, file \\ nil)

 View Source

 (macro)

Zig.Module

abstraction representing multiple zig nif functions bound into a single
module

 Summary

 Functions

 module_file(assigns)

 render_elixir(code, function_code, module, manifest, opts)

 render_erlang(code, function_code, module, manifest, opts)

 render_zig(nifs, resources, callbacks, module)

 Functions

 Link to this function

 module_file(assigns)

 View Source

 Link to this function

 render_elixir(code, function_code, module, manifest, opts)

 View Source

 Link to this function

 render_erlang(code, function_code, module, manifest, opts)

 View Source

 Link to this function

 render_zig(nifs, resources, callbacks, module)

 View Source

Zig.Nif

module encapsulating all of the information required to correctly generate
a nif function.
Note that all information obtained from semantic analysis of the function is
stashed in the Zig.Nif.Function module.

 Summary

 Types

 t()

 Functions

 indexed_args(params_list)

 indexed_parameters(params_list)

 maybe_catch(arg1)

 new(name, opts)

 based on nif options for this function keyword at (opts :: nifs :: function_name)

 render_elixir(nif)

 render_erlang(nif, opts \\ [])

 render_zig(nif)

 spec(nif)

 table_entries(nif)

 validate_return!(function, file, line)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Nif{
 alias: nil | atom(),
 args: [keyword()],
 concurrency:
 Zig.Nif.Synchronous
 | Zig.Nif.Threaded
 | Zig.Nif.Yielding
 | Zig.Nif.DirtyCpu
 | Zig.Nif.DirtyIo,
 doc: nil | String.t(),
 export: boolean(),
 leak_check: boolean(),
 name: atom(),
 raw: nil | :beam | :erl_nif | :c,
 return: keyword(),
 spec: Macro.t(),
 type: Zig.Type.Function.t()
}

 Functions

 Link to this function

 indexed_args(params_list)

 View Source

 Link to this function

 indexed_parameters(params_list)

 View Source

 Link to this function

 maybe_catch(arg1)

 View Source

 Link to this function

 new(name, opts)

 View Source

based on nif options for this function keyword at (opts :: nifs :: function_name)

 Link to this function

 render_elixir(nif)

 View Source

 Link to this function

 render_erlang(nif, opts \\ [])

 View Source

 Link to this function

 render_zig(nif)

 View Source

 Link to this function

 spec(nif)

 View Source

 Link to this function

 table_entries(nif)

 View Source

 Link to this function

 validate_return!(function, file, line)

 View Source

Zig.Resources

 Summary

 Types

 t()

 Functions

 init_resource_type(resource, module)

 render(assigns)

 resource_decl(resource)

 resource_prong(resource)

 Types

 Link to this type

 t()

 View Source

 @type t() :: atom() | {:root, atom()}

 Functions

 Link to this function

 init_resource_type(resource, module)

 View Source

 Link to this function

 render(assigns)

 View Source

 Link to this function

 resource_decl(resource)

 View Source

 Link to this function

 resource_prong(resource)

 View Source

Zig.Analyzer

tools to analyze AST generated by Zig.Parser

 Summary

 Functions

 find(ast, list)

 info_for(parser_output, symbol)

 translate_location(parsed, file, line)

 Functions

 Link to this function

 find(ast, list)

 View Source

 Link to this function

 info_for(parser_output, symbol)

 View Source

 Link to this function

 translate_location(parsed, file, line)

 View Source

Zig.ErrorProng

 Summary

 Functions

 argument_error_prong(atom, _)

 error_return_prong(atom, ignored)

 Functions

 Link to this function

 argument_error_prong(atom, _)

 View Source

 Link to this function

 error_return_prong(atom, ignored)

 View Source

Zig.Macro

 Summary

 Functions

 inspect(macro, opts)

 Functions

 Link to this function

 inspect(macro, opts)

 View Source

Zig.Options

parses and normalizes zig options.
Also sets up
options.zig file which is mapped to @import("zigler_options") in
beam.zig. This is then exposed as @import("beam").options in your code.

 Summary

 Functions

 elixir_normalize!(opts)

 Performs early normalization of options. For Elixir only, this converts
all AST representations which must be escaped before moving on to presenting
options to the Zigler compiler.

 erlang_normalize!(opts)

 normalize!(opts)

 normalize_nifs(opts)

 set_auto(new_opts, old_opts)

 Functions

 Link to this function

 elixir_normalize!(opts)

 View Source

 @spec elixir_normalize!(keyword()) :: keyword()

Performs early normalization of options. For Elixir only, this converts
all AST representations which must be escaped before moving on to presenting
options to the Zigler compiler.

 Link to this function

 erlang_normalize!(opts)

 View Source

 Link to this function

 normalize!(opts)

 View Source

 @spec normalize!(keyword()) :: keyword()

 Link to this function

 normalize_nifs(opts)

 View Source

 Link to this function

 set_auto(new_opts, old_opts)

 View Source

Zig.QuoteErl

 Summary

 Functions

 quote_erl(quoted, substitutions \\ [])

 Functions

 Link to this function

 quote_erl(quoted, substitutions \\ [])

 View Source

Zig.Target

interfaces for cross-compilation logic.
this function primarily exists to support Nerves deployments, though
it is possible to set an arbitrary cross-compilation target using a
setting in your use Zig directive. This selects the architecture
by checking your "CC" environment variable, which is in turn set by
Nerves, then adjusts gcc's machine type to a string which allows zig to
select the appropriate cross-compilation settings and libc.

 Summary

 Types

 t()

 Functions

 for_builder(target \\ resolve())

 resolve()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zig.Target{abi: String.t(), arch: String.t(), os: String.t()}

 Functions

 Link to this function

 for_builder(target \\ resolve())

 View Source

 Link to this function

 resolve()

 View Source

 @spec resolve() :: nil | t()

Zig.CompileError exception

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 to_error(error, opts)

 Functions

 Link to this function

 message(error)

 View Source

Callback implementation for Exception.message/1.

 Link to this function

 to_error(error, opts)

 View Source

Zig.Type.ParseError exception

 Summary

 Functions

 message(error)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(error)

 View Source

Callback implementation for Exception.message/1.

beam

This struct contains adapters designed to facilitate interfacing the
BEAM's c-style helpers for NIFs with a more idiomatic Zig-style of
programming, for example, the use of slices instead of null-terminated
arrays as strings.
This struct derives from zig/beam/beam.zig, and is provided to the
project as a package. You may import it into any project zig code
using the following code:
const beam = @import("beam")
If there's something you need which is not provided, you can also
import erl_nif package which provides direct access to the
equivalent calls from erl_nif.h

 Summary

 Types

 Compared

 result type for compare

 ExecutionContext

 a tag identifying the context in which the nif is running

 Payload(anytype)

 creates a tuple type that corresponds to the call signature of passed
function.

 Resource(type, type, resource.ResourceOpts)

 TermType

 A zig enum equivalent to e.ErlNifTermType

 Thread(function: anytype)

 Builds a datastructure that encapsulates information needed by a threaded
nif

 ThreadedCallbacks(callbacks: type)

 Builds a datastructure that defines callbacks for a threaded nif.

 env

 identical to ?*e.ErlNifEnv

 event

 identical to e.ErlNifEvent. This is an event datatype that the BEAM
documentation does not describe.

 loader

 boilerplate functions for nif module initialization. Contains

 monitor

 identical to e.ErlNifMonitor. This is a monitor datatype that the BEAM
documentation does not describe.

 pid

 identical to ?*e.ErlNifPid

 port

 identical to ?*e.ErlNifPort

 term

 wrapped term.

 tid

 identical to e.ErlNifTid. This is a thread id datatype that the BEAM.
documentation does not describe.

 Functions (Exceptions)

 raise_elixir_exception(env_: env, module: []u8, data: anytype) term

 The equivalent of Kernel.raise/1 from elixir.

 raise_exception(env_: env, reason: anytype) term

 The equivalent of error
in erlang.

 raise_with_error_return(env_: env, err: anytype, maybe_return_trace: std.builtin.StackTrace) term

 Raises a special error datatype that contains an term-encoded stacktrace
datastructure. See also make_stacktrace

 Functions (Concurrency)

 yield(env) !void

 periodic check-in function for long-running nifs.

 Functions (Env)

 alloc_env() env

 Synonym for e.enif_alloc_env

 copy(env_: env, term_: term) term

 copies a term from one env to to another

 free_env(env) void

 Synonym for e.enif_free_env

 Functions (Term Management)

 binary_to_slice(erl_nif_binary) []u8

 converts a e.ErlNifBinary
to []const u8.

 binary_to_term(env, string: []u8) !term

 converts a []u8 to a term/0. The binary must be encoded using erlang term format.

 cleanup(value: anytype, options: anytype) void

 generic cleanup function that can be used to cleanup values that have
been created by get.

 compare(lhs: term, rhs: term) Compared

 compares two terms.

 get(dest_type: T, beam.env, source_term: beam.term, options: anytype) T

 converts BEAM term dynamic types into static zig types

 make(env, value: anytype, options: anytype) term

 converts static zig types into BEAM term dynamic types

 make_empty_list(env) term

 returns the empty list term [].

 make_error_atom(env: env) term

 shortcut for make(env, .@"error", .{})

 make_error_pair(env: env, value: anytype, options: anytype) term

 shortcut for make(env, .{.@"error", value}, options)

 make_into_atom(env, string: []const u8) term

 turns a []const u8 into a the corresponding atom/0 term.

 make_list_cell(env, head: term, tail: term) term

 performs a list cons operation for head and tail variables

 make_pid(env, pid) term

 turns a e.ErlNifPid
into a pid/0 term.

 make_ref(env) term

 causes the VM to generate a new reference term
equivalent to Kernel.make_ref/0

 make_stacktrace(env, stacktrace) term

 converts a zig std.builtin.StackTrace into a special term
that is designed to be translated and concatenated onto a BEAM
stacktrace.

 release_binary(erl_nif_binary_pointer) void

 marks a e.ErlNifBinary as qualified to be garbage
collected.
This is a thin wrapper over e.enif_release_binary.

 self(env) !pid

 returns a pid value that represents the current or
parent process.

 send(env, pid, data: anytype) !term

 sends data (as a term) to a target process' mailbox.

 term_to_binary(env, binary: term) !erl_nif_binary

 converts a term/0 to a e.ErlNifBinary
using erlang term format serialization.

 Functions

 make_general_purpose_allocator_instance() std.heap.GeneralPurposeAllocator(...)

 Constants

 general_purpose_allocator: mem.Allocator

 implements std.mem.Allocator using the std.mem.GeneralPurposeAllocator
factory, backed by beam.large_allocator.

 large_allocator: mem.Allocator

 provides a BEAM allocator that can perform allocations with greater
alignment than the machine word.

 raw_allocator: mem.Allocator

 wraps e.enif_alloc
and e.enif_free
into the zig standard library allocator interface.

 Variables

 allocator: mem.Allocator

 stores the allocator strategy for the currently running nif.

 context: beam.ExecutionContext

 threadlocal variable that stores the execution context for the nif

 Types

 Link to this type

 Compared

 View Source

 @type Compared :: .lt | .gt | .eq

result type for compare
these atoms are used to conform to Elixir's Compare interface
see: https://hexdocs.pm/elixir/1.13/Enum.html#sort/2-sorting-structs

 Link to this type

 ExecutionContext

 View Source

 @type ExecutionContext :: .yielding | .threaded | .synchronous | .callback | .dirty

a tag identifying the context in which the nif is running
See nif documentation
for more detailed information about the concurrency strategies.
	.synchronous: the execution context of a synchronous nif
	.threaded: the execution context of a nif that runs in its own os
 thread
	.dirty: the execution context of a nif that runs on a dirty
 scheduler
	.yielding: the execution context of a nif that runs cooperatively with
 the BEAM scheduler
	.callback: the execution context of module setup/teardown callbacks or
 a resource destruction callback

See context for the threadlocal variable that stores this.
raw beam functions
nifs called in raw mode are not assigned an execution context.

 Link to this type

 Payload(anytype)

 View Source

 @type Payload(anytype)

creates a tuple type that corresponds to the call signature of passed
function.
Using this tuple type, it is possible to call the function using
the @call builtin.
this is how calling functions can be easily made generic over multiple
concurrency types.

 Link to this type

 Resource(type, type, resource.ResourceOpts)

 View Source

 @type Resource(type, type, resource.ResourceOpts)

 Link to this type

 TermType

 View Source

 @type TermType ::
 .ref | .bitstring | .tuple | .fun | .map | .float | .port | .pid | .list | .integer | .atom

A zig enum equivalent to e.ErlNifTermType
retrievable from term using the term.term_type method.

 Link to this type

 Thread(function: anytype)

 View Source

 @type Thread(anytype)

Builds a datastructure that encapsulates information needed by a threaded
nif
this datastructure is intended to be wrapped in a resource, so that the
death of its parent process can be used to clean up the thread.

 Link to this type

 ThreadedCallbacks(callbacks: type)

 View Source

 @type ThreadedCallbacks(type)

Builds a datastructure that defines callbacks for a threaded nif.
The argument is Thread type. The datastructure
produces a struct with a dtor callback that can be used to ensure
proper cleanup of the data in the thread.
these callbacks are called when the thread resource is destroyed.
Most importantly, this callback sets the threadlocal tracker in
that yield investigates to determine if the parent
process should be terminated.
see Resource for more details on the callbacks.

 Link to this type

 env

 View Source

 @type env :: env

identical to ?*e.ErlNifEnv
env
env should be considered an opaque type that can be passed around without inspection of
its contents.

 Link to this type

 event

 View Source

 @type event :: erl_nif_event

identical to e.ErlNifEvent. This is an event datatype that the BEAM
documentation does not describe.

 Link to this type

 loader

 View Source

 @type loader :: {}

boilerplate functions for nif module initialization. Contains:
	blank_load
	blank_upgrade
	blank_unload

which are no-op versions of these functions.

 Link to this type

 monitor

 View Source

 @type monitor :: e.ErlNifMonitor

identical to e.ErlNifMonitor. This is a monitor datatype that the BEAM
documentation does not describe.

 Link to this type

 pid

 View Source

 @type pid :: pid

identical to ?*e.ErlNifPid

 Link to this type

 port

 View Source

 @type port :: e.ErlNifPort

identical to ?*e.ErlNifPort

 Link to this type

 term

 View Source

 @type term :: term

wrapped term.
e.ErlNifTerm
is, under the hood, an integer type. This is wrapped in a singleton struct
so that that semantic analysis can identify and distinguish between a
'plain' integer and a term.
The Zig compiler will optimize this away, so there is no runtime cost to
passing this around versus e.ErlNifTerm, and the following conversion
operations are no-ops:
	To convert to a raw e.ErlNifTerm, access the .v field.

	To convert a raw e.ErlNifTerm to this term, use an anonymous struct:
 .{.v = erl_nif_term_value}

 term_type

the struct function term_type returns the TermType of the
internal term.
const t = beam.term.make(env, 47, .{});
const term_type = t.term_type(env); // -> .integer

 Link to this type

 tid

 View Source

 @type tid :: e.ErlNifTid

identical to e.ErlNifTid. This is a thread id datatype that the BEAM.
documentation does not describe.

 Functions (Exceptions)

 Link to this nil

 raise_elixir_exception(env_: env, module: []u8, data: anytype) term

 View Source

 @spec raise_elixir_exception(env, []const u8, anytype) :: term

The equivalent of Kernel.raise/1 from elixir.
	module should be the name of the module that represents the exception
	data should be a struct (possibly anonymous) that represents the Elixir
 exception payload.

Exception structs are not checked
The validity of the exception struct is not checked when using this function.

 Link to this nil

 raise_exception(env_: env, reason: anytype) term

 View Source

 @spec raise_exception(env, anytype) :: term

The equivalent of error
in erlang.

 Link to this nil

 raise_with_error_return(env_: env, err: anytype, maybe_return_trace: std.builtin.StackTrace) term

 View Source

 @spec raise_with_error_return(env, anytype, ?stacktrace) :: term

Raises a special error datatype that contains an term-encoded stacktrace
datastructure. See also make_stacktrace
This datastructure is designed to be concatenated onto the existing
stacktrace. In order to concatenate this stacktrace onto your BEAM
exception, the function that wraps the nif must be able to catch the
error and append the zig error return trace to the existing stacktrace.

 Functions (Concurrency)

 Link to this nil

 yield(env) !void

 View Source

 @spec yield(env) :: !void

periodic check-in function for long-running nifs.
For threaded nifs:
	checks the status of the thread.
	If the thread's parent process has been killed, returns
 error.processterminated

For yielding nifs (not implemented yet):
	relinquishes control to the BEAM scheduler.
	If the thread's parent process has been killed, returns
 error.processterminated
	when control is returned from the scheduler, resumes
 with no error.
	creates an async suspend point.

For synchronous or dirty nifs:
	does nothing.
	there may be a slight performance regression as the function
 identifies the concurrency mode of the nif.

 Functions (Env)

 Link to this nil

 alloc_env() env

 View Source

 @spec alloc_env() :: env

Synonym for e.enif_alloc_env

 Link to this nil

 copy(env_: env, term_: term) term

 View Source

 @spec copy(env, term) :: term

copies a term from one env to to another

 Link to this nil

 free_env(env) void

 View Source

 @spec free_env(env) :: void

Synonym for e.enif_free_env

 Functions (Term Management)

 Link to this nil

 binary_to_slice(erl_nif_binary) []u8

 View Source

 @spec binary_to_slice(erl_nif_binary) :: []u8

converts a e.ErlNifBinary
to []const u8.
Does not perform allocations or copies
binary data
This points to the data location of the binary, which might either be
in the shared binary heap, or it might be in the process heap (for small
binaries). This should be considered read-only, attempts to sneakily
modify these data will have undefined effects, possibly including broken
comparison operations.

 Link to this nil

 binary_to_term(env, string: []u8) !term

 View Source

 @spec binary_to_term(env, []u8) :: !term

converts a []u8 to a term/0. The binary must be encoded using erlang term format.
This is a thin wrapper over e.enif_binary_to_term.

 Link to this nil

 cleanup(value: anytype, options: anytype) void

 View Source

 @spec cleanup(anytype, anytype) :: void

generic cleanup function that can be used to cleanup values that have
been created by get.
The second parameter is an options parameters, which should be passed a
struct (possibly anonymous) with the following fields:
	allocator: which allocator should be used to clean up allocations.
 optional, defaults to the threadlocal allocator value

 Link to this nil

 compare(lhs: term, rhs: term) Compared

 View Source

 @spec compare(term, term) :: beam.Compared

compares two terms.

 Link to this nil

 get(dest_type: T, beam.env, source_term: beam.term, options: anytype) T

 View Source

 @spec get(T, beam.env, beam.term, anytype) :: T

converts BEAM term dynamic types into static zig types
The arguments are as follows:
	destination type
	environment
	term to convert
	struct (usually passed as anonymous) of keyword options for additional features.
See supported options

See also make for the reverse operation.
The following type classes (as passed as 1st argument) are supported by get:

 integer

	unsigned and signed integers supported
	all integer sizes from 0..64 bits supported (including non-power-of-2
 sizes)
	for sizes bigger than 64, supported, but the passed term must be a
 native-endian binary.

Example
do_get(47)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x: i32 = beam.get(i32, env, term, .{}); // -> x = 47
 ...
}

 enum

	may be passed the integer value of the enum.
	may be passed the atom representation of the enum.
	zero- and one- item enum types are not currently supported

Example
do_get(:foo)
const EnumType = enum {foo, bar};
pub fn do_get(env: beam.env, term: beam.term) void {
 const x: EnumType = beam.get(EnumType, env, term, .{}); // -> x = .foo
 ...
}

 float

	supports f16, f32, and f64 types.
	may be passed a BEAM float/0 term
	atoms :infinity, :neg_infinity, :NaN are also supported

Example
do_get(47.0)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x: f32 = beam.get(f32, env, term, .{}); // -> x = 47.0
 ...
}

 struct

	may be passed map/0 with atom/0 keys and values of the appropriate type
	may be passed a keyword/0 list with atom/0 keys and values of the
 appropriate type.
	inner values are recursively converted to the appropriate type.
	NOTE: the struct types must be exported as pub in the module's
 top-level namespace.
	if the struct is packed or extern, supports binary data.

Example
do_get(%{foo: 47, bar: %{baz: :quux}})
pub const EnumType = enum {quux, mlem};

pub const InnerType = struct {
 baz: EnumType,
};

pub const StructType = struct {
 foo: i32,
 bar: InnerType
};

pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get(StructType, env, term, .{}); // -> x = .{foo: 47, bar: .{baz: .quux}}
 ...
}

 bool

	supports true and false boolean/0 terms only.

Example
do_get(true)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x: bool = beam.get(bool, env, term, .{}); // -> x = true
 ...
}

 array

	supports lists of terms that can be converted to the array's element type.
	note that arrays have compile-time known length.
	if the array's element is integers, floats, packed or extern structs,
 or arrays that support binaries, then the array can be passed binary data.
	does not perform allocation

 Allocation warning

as allocation is not performed, getting could be a very expensive operation.

Example
do_get([47, 48, 49])
do_get(<<47 :: signed-int-size(32), 48 :: signed-int-size(32), 49 :: signed-int-size(32)>>)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get([3]i32, env, term, .{}); // -> x = .{47, 48, 49}
 ...
}

 single-item pointer

	allocates memory based on allocator provided in the options, otherwise
 defaults to beam.allocator
	supports any type as above.
	returns an error if the allocation fails.

Example
do_get(%{foo: 47})
const MyStruct = struct { foo: i32 };

pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get(*MyStruct, env, term, .{}); // -> x = a pointer to .{.foo = 47}
 ...
}

 slice

	allocates memory based on allocator provided in the options, otherwise
 defaults to beam.allocator
	note that slice carries a runtime length
	supports list of any type
	supports binary of any type that can be represented as a fixed size binary.

Example
do_get([47, 48, 49])
do_get(<<47 :: signed-int-size(32), 48 :: signed-int-size(32), 49 :: signed-int-size(32)>>)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get([]i32, env, term, .{}); // -> x = a pointer to .{47, 48, 49}
 ...
}

 many-item-pointer

	allocates memory based on allocator provided in the options, otherwise
 defaults to beam.allocator

	supports list of any type

	supports binary of any type that can be represented as a fixed size binary.

	the runtime length is not a part of this datastructure, you are
 expected to keep track of it using some other mechanism

 Length warning

due to the fact that this datatype drops its length information, this
datatype should be handled with extreme care.

Example
do_get([47, 48, 49])
do_get(<<47 :: signed-int-size(32), 48 :: signed-int-size(32), 49 :: signed-int-size(32)>>)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get([*]i32, env, term, .{}); // -> x = a pointer to .{47, 48, 49}
 ...
}

 cpointer

	allocates memory based on allocator provided in the options, otherwise
 defaults to beam.allocator

	supports list of any type

	supports binary of any type that can be represented as a fixed size binary.

	the runtime length is not a part of this datastructure, you are
 expected to keep track of it using some other mechanism

 Length warning

due to the fact that this datatype drops its length information, this
datatype should only be used where c interop is needed

Example
do_get([47, 48, 49])
do_get(<<47 :: signed-int-size(32), 48 :: signed-int-size(32), 49 :: signed-int-size(32)>>)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get([*]i32, env, term, .{}); // -> x = a pointer to .{47, 48, 49}
 ...
}

 optional

	accepts atom/0 nil as well as whatever the child type is.
	note that zig has null so nil will get converted to null.

Example
do_get(nil)
pub fn do_get(env: beam.env, term: beam.term) void {
 const x = beam.get(?i32, env, term, .{}); // -> x = null
 ...
}

 Supported options

	allocator: the allocator to use for allocations. If not provided, defaults
 to beam.allocator.
	error_info: pointer to a term that can be populated with error
 information that gets propagated on failure to convert. If omitted, the code
 to produce these errors will get optimized out.

 Link to this nil

 make(env, value: anytype, options: anytype) term

 View Source

 @spec make(env, anytype, anytype) :: term

converts static zig types into BEAM term dynamic types
The arguments are as follows:
	environment
	value to convert to term
	options struct (usually passed as anonymous) of keyword options for additional features.
 See supported options. Note this struct must be
 comptime-known.

See also get for the reverse operation.
The following zig types are supported:

 term

	no conversion is performed
	this type is necessary for recursive make operations

 void

	returns atom :ok
	supporting this type makes metaprogramming easier.

 pid

	convrted into a term representing pid/0

 std.builtin.StackTrace

	special interface for returning stacktrace info to BEAM.

 integers

	unsigned and signed integers supported
	all integer sizes from 0..64 bits supported (including non-power-of-2
 sizes)
	returns a BEAM integer/0 term
	for sizes bigger than 64, supported, but the passed term will be
 converted into a binary term bearing the integer encoded with
 native endianness.
	comptime integers supported

Example
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, 47, .{});
}
do_make() # -> 47

 floats

	supports f16, f32, and f64 types.
	supports comptime float type.
	returns a BEAM float/0 term
	may also return one of the atom/0 type
 :infinity, :neg_infinity, :NaN

Example
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, 47.0, .{});
}
do_make() # -> 47.0

 bool

	supports bool types.
	returns a BEAM boolean/0 term

Example
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, true, .{});
}
do_make() # -> true

 enum or error enum

	supports enum or error types.
	doesn't support zero or one-item enums.
	returns a BEAM atom/0 term
	also supports enum literals.

Example
with an enum:
const EnumType = enum {foo, bar};

pub fn do_make(env: beam.env) beam.term {
 const e = EnumType.foo;
 return beam.make(env, e, .{});
}
with an error enum:
const ErrorType = error {foo, bar};

pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, error.foo, .{});
}
with an enum literal:
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, .foo, .{});
}
do_make() # -> :foo

 Enum literals

Enum literals are especially useful for returning atoms,
such as :ok or :error. Note that error is a reserved
word in zig, so you will need to use .@"error" to generate
the corresponding atom.

 optionals or null

	supports any child type supported by make
	returns the atom/0 type nil or the child type

Example
with null literal:
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, null, .{});
}
with an optional type:
pub fn do_make(env: beam.env) beam.term {
 const value: ?i32 = null;
 return beam.make(env, value, .{});
}
do_make() # -> null

 arrays

	supports arrays of any term that can be encoded using make
	note that arrays have compile-time known length.
	outputs as a list of the encoded terms
	arrays of u8 default to outputting binary, this is the only exception
 to the above rule.
	if the array's element is integers, floats, packed or extern structs,
 or arrays that support binaries, then the array can be output as binary
 data, by setting output_type option to .binary
	if the array's element is u8 and you would prefer outputting as a list,
 setting output_type option to .list will do this.

Examples
array, u8, output as binary/0:
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, "foo", .{});
}
do_make() # -> "foo"
array, u8, output as list/0:
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, "foo", .{.output_type = .list});
}
do_make() # -> ~C'foo'
array, u16, output as list/0:
pub fn do_make(env: beam.env) beam.term {
 const list = [_]u16{47, 48, 49}
 return beam.make(env, list, .{});
}
do_make() # -> [47, 48, 49]
array, u16, output as binary/0:
pub fn do_make(env: beam.env) beam.term {
 const list = [_]u16{47, 48, 49}
 return beam.make(env, list, .{.output_type = .binary});
}
do_make() # -> <<47, 00, 48, 00, 49, 00>>

 structs

	supports structs with fields of any term that can be encoded using make
	outputs as a map/0 with atom keys and the encoded terms as values
	for packed or extern structs, supports binary data by setting output_type
 option to .binary
	encoding options are passed recursively, if something more complex is needed,
 encoding should be performed manually.
	supports anonymous structs

Examples
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, .{.foo = 123, .bar = "bar", .baz = .baz}, .{});
}
do_make() # -> %{foo: 123, bar: "bar", baz: :baz}

 tuples

	supports tuples with any term that can be encoded using make
	outputs as a tuple/0.
	encoding options are passed recursively, if something more complex is needed,
 encoding should be performed manually.
	note that error atom should be encoded as .@"error"

Examples
pub fn do_make(env: beam.env) beam.term {
 return beam.make(env, .{.ok, "foo", 47}, .{});
}
do_make() # -> {:ok, "foo", 47}

 single-item-pointer

	these pointers are only supported for arrays and structs
	these are only supported because they are assumed to be pointers to
 mutable data
	content will be dereferenced and encoded as if it were the child type
	output_type rules (see arrays) apply.

Examples
pub fn do_make(env: beam.env) beam.term {
 const array = [_]i32{47, 48, 49}
 return beam.make(env, &array, .{});
}
do_make() # -> [47, 48, 49]

 slice

	supports arrays of any term that can be encoded using make
	note that arrays have compile-time known length.
	outputs as a list of the encoded terms
	slices of u8 default to outputting binary, this is the only exception
 to the above rule.
	if the slice's element is integers, floats, packed or extern structs,
 or arrays that support binaries, then the slice can be output as binary
 data, by setting output_type option to .binary
	output_type rules (see arrays) apply.

Examples
pub fn do_make(env: beam.env) beam.term {
 const slice = [_]i32{47, 48, 49}[0..]; // note this is now a slice
 return beam.make(env, &slice, .{});
}
do_make() # -> [47, 48, 49]

 many-item-pointer

	only supported if the pointer is sentinel-terminated.
	outputs as a list of the encoded terms
	pointers of u8 default to outputting binary, this is the only exception
 to the above rule.
	if the pointers's element is integers, floats, packed or extern structs,
 or arrays that support binaries, then the slice can be output as binary
 data, by setting output_type option to .binary
	output_type rules (see arrays) apply.

Examples
pub fn do_make(env: beam.env) beam.term {
 const slice = [_]i32{47, 48, 49, 0}[0..];
 const ptr = @ptrCast([*:0], &slice.ptr);
 return beam.make(env, &slice, .{});
}
do_make() # -> [47, 48, 49]

 cpointer

	only supported if the pointer has child type u8 or pointer.
	in the case of u8 interprets it as [*:0]u8.
	in the case of Pointer interprets it as [*:null]?Pointer.
	no other types are supported.
	note that the content will be interpreted as the pointer type,
 so rules on pointers (see single-item-pointers))
	output_type rules (see arrays) apply.

Examples
pub fn do_make(env: beam.env) beam.term {
 const slice = [_]i32{47, 48, 49, 0}[0..];
 const ptr = @ptrCast([*:0], &slice.ptr);
 return beam.make(env, &slice, .{});
}
do_make() # -> [47, 48, 49]

 Link to this nil

 make_empty_list(env) term

 View Source

 @spec make_empty_list(env) :: term

returns the empty list term [].
This is a thin wrapper over e.enif_make_empty_list.

 Link to this nil

 make_error_atom(env: env) term

 View Source

 @spec make_error_atom(env) :: term

shortcut for make(env, .@"error", .{})

 Link to this nil

 make_error_pair(env: env, value: anytype, options: anytype) term

 View Source

 @spec make_error_pair(env, anytype, anytype) :: term

shortcut for make(env, .{.@"error", value}, options)

 Link to this nil

 make_into_atom(env, string: []const u8) term

 View Source

 @spec make_into_atom(env, []const u8) :: term

turns a []const u8 into a the corresponding atom/0 term.
returns a raised ArgumentError if the length of the string exceeds the
vm atom size limit (255 bytes)
This is a thin wrapper over e.enif_make_atom_len.

 Link to this nil

 make_list_cell(env, head: term, tail: term) term

 View Source

 @spec make_list_cell(env, term, term) :: term

performs a list cons operation for head and tail variables
This is a thin wrapper over e.enif_make_list_cell.

 Link to this nil

 make_pid(env, pid) term

 View Source

 @spec make_pid(env, pid) :: term

turns a e.ErlNifPid
into a pid/0 term.
This is a thin wrapper over e.enif_make_pid.

 Link to this nil

 make_ref(env) term

 View Source

 @spec make_ref(env) :: term

causes the VM to generate a new reference term
equivalent to Kernel.make_ref/0
This is a thin wrapper over e.enif_make_ref.

 Link to this nil

 make_stacktrace(env, stacktrace) term

 View Source

 @spec make_stacktrace(env, stacktrace) :: term

converts a zig std.builtin.StackTrace into a special term
that is designed to be translated and concatenated onto a BEAM
stacktrace.

 Example term:

[
 %{
 line_info: %{file_name: "/path/to/project/lib/my_app/.Elixir.MyApp.MyModule.zig", line: 15},
 symbol_name: "my_fun",
 compile_unit_name: "Elixir.MyApp.MyModule"
 }
 ...
]

 Link to this nil

 release_binary(erl_nif_binary_pointer) void

 View Source

 @spec release_binary(erl_nif_binary_pointer) :: void

marks a e.ErlNifBinary as qualified to be garbage
collected.
This is a thin wrapper over e.enif_release_binary.

 Link to this nil

 self(env) !pid

 View Source

 @spec self(env) :: !pid

returns a pid value that represents the current or
parent process.
equivalent to Kernel.self/0
scope
This function succeeds in all contexts, except for
callback contexts. For threaded processes, it will return the
process that spawned the thread, whether or not that process is
still alive.

 Link to this nil

 send(env, pid, data: anytype) !term

 View Source

 @spec send(env, pid, anytype) :: !term

sends data (as a term) to a target process' mailbox.
equivalent to Kernel.send/2
This function is a context-aware wrapper over
e.enif_send.
that also serializes the message term using make

 send from raw nifs or out of bounds callbacks

This function has undefined behaviour when called from raw nifs or
callbacks that are out of bounds (e.g. if a new thread is started
from a posix call that is not managed by zigler)
in these cases, use e.enif_send directly instead. Note you may
have to create the beam.term from an environment first.

 Link to this nil

 term_to_binary(env, binary: term) !erl_nif_binary

 View Source

 @spec term_to_binary(env, term) :: !erl_nif_binary

converts a term/0 to a e.ErlNifBinary
using erlang term format serialization.
This is a thin wrapper over e.enif_term_to_binary.
returns error.OutOfMemory if the allocation fails.

 Functions

 Link to this nil

 make_general_purpose_allocator_instance() std.heap.GeneralPurposeAllocator(...)

 View Source

 @spec make_general_purpose_allocator_instance() :: std.heap.GeneralPurposeAllocator(...)

 Constants

 Link to this nil

 general_purpose_allocator: mem.Allocator

 View Source

 @spec general_purpose_allocator :: mem.Allocator

implements std.mem.Allocator using the std.mem.GeneralPurposeAllocator
factory, backed by beam.large_allocator.

 Link to this nil

 large_allocator: mem.Allocator

 View Source

 @spec large_allocator :: mem.Allocator

provides a BEAM allocator that can perform allocations with greater
alignment than the machine word.
Memory performance
This comes at the cost of some memory to store metadata

currently does not release memory that is resized. For this behaviour
use beam.general_purpose_allocator.
not threadsafe. for a threadsafe allocator, use beam.general_purpose_allocator

 Link to this nil

 raw_allocator: mem.Allocator

 View Source

 @spec raw_allocator :: mem.Allocator

wraps e.enif_alloc
and e.enif_free
into the zig standard library allocator interface.

 Variables

 Link to this nil

 allocator: mem.Allocator

 View Source

 (threadlocal)

 @spec allocator :: mem.Allocator

stores the allocator strategy for the currently running nif.
this variable is threadlocal, so that each called NIF can set it as a
global variable and not pass it around.
allocator starts undefined
This threadlocal is set to undefined because of architectural
differences: we cannot trust loaded dynamic libraries to properly set
this on thread creation. Each function is responsible for setting
allocator correctly whenever execution control is returned to it.
raw function calls do not set the allocator and
must either set it themselves or always use a specific allocator
strategy in its function calls.

 Link to this nil

 context: beam.ExecutionContext

 View Source

 (threadlocal)

 @spec context :: beam.ExecutionContext

threadlocal variable that stores the execution context for the nif
See ExecutionContext for the list of valid enums.
context starts undefined
This threadlocal is set to undefined because of architectural differences:
we cannot trust loaded dynamic libraries to properly set this on thread
creation.
raw function calls do not set context

mix zig.get

Get zig from online

 Summary

 Functions

 run(_)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(_)

 View Source

Callback implementation for Mix.Task.run/1.

mix zig.version

Get the zig version

 Summary

 Functions

 run(_)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(_)

 View Source

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

