

 zipper

 v1.1.0

 Table of contents

 	Zipper

 	LICENSE

 	Modules

 	zipper

 	zipper_default

Zipper [image: GitHub Actions CI]

Generic zipper implementation in Erlang.
Zippers: what are they good for?
Zippers let you traverse immutable data structures with ease and flexibility.
Contact Us
If you find any bugs or have a problem while using this library, please
open an issue in this repo (or a pull request :)).
And you can check all of our open-source projects at inaka.github.io
Usage
For a map tree structure like the following:
Root = #{type => planet,
 attrs => #{name => "Earth"},
 children => [
 #{type => continent,
 attrs => #{name => "America"},
 children => [
 #{type => country,
 attrs => #{name => "Argentina"},
 children => []},
 #{type => country,
 attrs => #{name => "Brasil"},
 children => []}
]
 },
 #{type => continent,
 attrs => #{name => "Europe"},
 children => [
 #{type => country,
 attrs => #{name => "Sweden"},
 children => []},
 #{type => country,
 attrs => #{name => "England"},
 children => []}
]
 }
]
 },
You can build a zipper by providing three simple functions:
	IsBranchFun: takes a node and returns true if it is a branch node or
false otherwise.
	ChildrenFun: takes a node and returns a list of its children.
	MakeNodeFun: takes a node and a list of children and returns a new node
containing the supplied list as children.

This is an example of how you would define a zipper and then use it to traverse
the map tree structure above:
%% Create the zipper
IsBranchFun = fun
 (#{children := [_ | _]}) -> true;
 (_) -> false
 end,
ChildrenFun = fun(Node) -> maps:get(children, Node) end,
MakeNodeFun = fun(Node, Children) -> Node#{children => Children} end,
Zipper = zipper:new(fun is_map/1, ChildrenFun, MakeNodefun, Root),

%% Traverse the zipper with next
Zipper1 = zipper:next(Zipper),
Zipper2 = zipper:next(Zipper),

%% Get the current zipper node
Argentina = zipper:node(Zipper2).
io:format("~p", [Argentina]),
%%= #{type => country,
%%= attrs => #{name => "Argentina"},
%%= children => []}

%% Go up and get the node
Zipper3 = zipper:up(Zipper2).
America = zipper:node(Zipper2).
io:format("~p", [America]),
%%= #{type => country,
%%= attrs => #{name => "America"},
%%= children => [#{...}, #{...}]}
Tests
Circular dependency in test environment (Katana Test ->
Elvis Core -> Zipper) is
fixed by including Zipper as a dep in the test profile in rebar.config
...
{profiles, [
 {test, [
 {deps, [
 %% The tag will be replaced by the rebar.config.script
 {zipper, {git, "https://github.com/inaka/zipper.git", {tag, "irrelevant"}}},
 ...
]}
]}
]}.
...
but then, we still replace the tag with the current branch. This is done in rebar.config.script.
Therefore, it's really important to have the branch updated and pushed to github before running the
tests with rebar3 ct.
References
	The Zipper, GERARD HUET
	clojure.zip

LICENSE

Apache License

 Version 2.0, January 2004
 https://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2015 Erlang Solutions Ltd.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

zipper

Generic Zipper Implementation. Zippers let you traverse immutable data structures with ease and flexibility.

 Summary

 Types

 children_fun/1

 info/1

 is_branch_fun/1

 make_node_fun/1

 operation/0

 zipper/1

 Functions

 append_child(T, Zipper)

 Adds a node as the rightmost child of the current one.

 children(Zipper)

 Returns the list of children zippers.

 down(Zipper)

 Returns the zipper in the first child, if any.

 edit(Fun, Args, Zipper)

 Edits the current node by applying the given function. The parameters of said function will be [Node | Args].

 filter(Pred, Zipper)

 Returns a list of all the nodes in the zipper that match a predicate.

 fmap(Fun, Args, Zipper)

 Returns the root of the tree, where the value of each node (after the current location of Zipper) is replaced with the result from applying Fun to the node as the first argument and Args as additional arguments.

 fold(Fun, A, Zipper)

 Applies Fun recursively on the zipper. The arguments of Fun will be (Node, Acc) where Acc is the result of the previous call or the initial value provided.

 insert_child(T, Zipper)

 Adds a node as the leftmost child of the current one.

 insert_left(T, Zipper)

 Inserts a node to the left of the current one.

 insert_right(T, Zipper)

 Inserts a node to the right of the current one.

 is_branch(_)

 Is this node a branch?

 is_end(Zipper)

 Is it the end of the zipper traversal.

 left(Zipper)

 Returns the zipper on the left, if any.

 leftmost(Zipper)

 Returns the leftmost zipper in the current zipper.

 map(Fun, Zipper)

 Applies a function to all nodes of the zipper. Returns a list with the results.

 new(IsBranch, Children, MakeNode, T)

 Builds a new zipper with nodes of type T.

 next(Zipper)

 Returns the next zipper.

 node(_)

 Returns the value of the current node in the zipper.

 prev(Zipper)

 Returns the previous zipper.

 remove(_)

 Removes current node from zipper. Moves down, if possible. If not, it moves to the rightmost node.

 replace(T, Zipper)

 Replaces the current node.

 right(Zipper)

 Returns the zipper on the right, if any.

 rightmost(Zipper)

 Returns the rightmost zipper in the current zipper.

 root(Zipper)

 Returns the node on the root of the zipper.

 size(Zipper)

 Returns the size of the zipper.

 traverse(Rest, Zipper)

 Traverses the zipper following the given list of operations. If, at some point, an operation is invalid, it will crash.

 up(Zipper)

 Returns the zipper in the parent node, if possible.

Types

 Link to this type

 children_fun/1

 View Source

 -type children_fun(T) :: fun((T) -> [T]).

 Link to this type

 info/1

 View Source

 -type info(T) ::
 #{lefts => [T],
 rights => [T],
 parent_node => undefined | T,
 parent_info => undefined | info(T),
 is_modified => boolean()}.

 Link to this type

 is_branch_fun/1

 View Source

 -type is_branch_fun(T) :: fun((T) -> boolean()).

 Link to this type

 make_node_fun/1

 View Source

 -type make_node_fun(T) :: fun((T, [T]) -> T).

 Link to this type

 operation/0

 View Source

 -type operation() :: next | prev | up | down | left | right | root | node | rightmost | leftmost.

 Link to this opaque

 zipper/1

 View Source

 (opaque)

 -opaque zipper(T)

Functions

 Link to this function

 append_child(T, Zipper)

 View Source

 -spec append_child(T, zipper(T)) -> zipper(T).

Adds a node as the rightmost child of the current one.

 Link to this function

 children(Zipper)

 View Source

 -spec children(zipper(T)) -> [zipper(T)].

Returns the list of children zippers.

 Link to this function

 down(Zipper)

 View Source

 -spec down(zipper(T)) -> zipper(T) | undefined.

Returns the zipper in the first child, if any.

 Link to this function

 edit(Fun, Args, Zipper)

 View Source

 -spec edit(fun((...) -> T), [term()], zipper(T)) -> zipper(T).

Edits the current node by applying the given function. The parameters of said function will be [Node | Args].

 Link to this function

 filter(Pred, Zipper)

 View Source

 -spec filter(fun((T) -> boolean()), zipper(T)) -> [T].

Returns a list of all the nodes in the zipper that match a predicate.

 Link to this function

 fmap(Fun, Args, Zipper)

 View Source

 -spec fmap(fun((...) -> T), [term()], zipper(T)) -> T.

Returns the root of the tree, where the value of each node (after the current location of Zipper) is replaced with the result from applying Fun to the node as the first argument and Args as additional arguments.

 Link to this function

 fold(Fun, A, Zipper)

 View Source

 -spec fold(fun((T, A) -> A), A, zipper(T)) -> A.

Applies Fun recursively on the zipper. The arguments of Fun will be (Node, Acc) where Acc is the result of the previous call or the initial value provided.

 Link to this function

 insert_child(T, Zipper)

 View Source

 -spec insert_child(T, zipper(T)) -> zipper(T).

Adds a node as the leftmost child of the current one.

 Link to this function

 insert_left(T, Zipper)

 View Source

 -spec insert_left(T, zipper(T)) -> zipper(T).

Inserts a node to the left of the current one.

 Link to this function

 insert_right(T, Zipper)

 View Source

 -spec insert_right(T, zipper(T)) -> zipper(T).

Inserts a node to the right of the current one.

 Link to this function

 is_branch(_)

 View Source

 -spec is_branch(zipper(_)) -> boolean().

Is this node a branch?

 Link to this function

 is_end(Zipper)

 View Source

 -spec is_end(zipper(_)) -> boolean().

Is it the end of the zipper traversal.

 Link to this function

 left(Zipper)

 View Source

 -spec left(zipper(T)) -> zipper(T) | undefined.

Returns the zipper on the left, if any.

 Link to this function

 leftmost(Zipper)

 View Source

 -spec leftmost(zipper(T)) -> zipper(T).

Returns the leftmost zipper in the current zipper.

 Link to this function

 map(Fun, Zipper)

 View Source

 -spec map(fun((T) -> U), zipper(T)) -> [U].

Applies a function to all nodes of the zipper. Returns a list with the results.

 Link to this function

 new(IsBranch, Children, MakeNode, T)

 View Source

 -spec new(is_branch_fun(T), children_fun(T), make_node_fun(T), T) -> zipper(T).

Builds a new zipper with nodes of type T.

 Link to this function

 next(Zipper)

 View Source

 -spec next(zipper(T)) -> zipper(T).

Returns the next zipper.

 Link to this function

 node(_)

 View Source

 -spec node(zipper(T)) -> T.

Returns the value of the current node in the zipper.

 Link to this function

 prev(Zipper)

 View Source

 -spec prev(zipper(T)) -> zipper(T) | undefined.

Returns the previous zipper.

 Link to this function

 remove(_)

 View Source

 -spec remove(zipper(T)) -> zipper(T).

Removes current node from zipper. Moves down, if possible. If not, it moves to the rightmost node.

 Link to this function

 replace(T, Zipper)

 View Source

 -spec replace(T, zipper(T)) -> zipper(T).

Replaces the current node.

 Link to this function

 right(Zipper)

 View Source

 -spec right(zipper(T)) -> zipper(T) | undefined.

Returns the zipper on the right, if any.

 Link to this function

 rightmost(Zipper)

 View Source

 -spec rightmost(zipper(T)) -> zipper(T).

Returns the rightmost zipper in the current zipper.

 Link to this function

 root(Zipper)

 View Source

 -spec root(zipper(T)) -> T.

Returns the node on the root of the zipper.

 Link to this function

 size(Zipper)

 View Source

 -spec size(zipper(_)) -> non_neg_integer().

Returns the size of the zipper.

 Link to this function

 traverse(Rest, Zipper)

 View Source

 -spec traverse([operation()], zipper(T)) -> zipper(T) | T | undefined.

Traverses the zipper following the given list of operations. If, at some point, an operation is invalid, it will crash.

 Link to this function

 up(Zipper)

 View Source

 -spec up(zipper(T)) -> zipper(T) | undefined.

Returns the zipper in the parent node, if possible.

zipper_default

 Summary

 Types

 bin_tree_node/1

 Functions

 bin_tree(Root)

 Generates a zipper for binary trees.

 list(Root)

 Generates a zipper for lists.

 map_tree(M, CK)

 Generates a zipper for maps.

Types

 Link to this type

 bin_tree_node/1

 View Source

 -type bin_tree_node(T) :: nil | {T, bin_tree_node(T), bin_tree_node(T)}.

Functions

 Link to this function

 bin_tree(Root)

 View Source

 -spec bin_tree(bin_tree_node(T)) -> zipper:zipper(bin_tree_node(T)).

Generates a zipper for binary trees.

 Link to this function

 list(Root)

 View Source

 -spec list(list()) -> zipper:zipper(list()).

Generates a zipper for lists.

 Link to this function

 map_tree(M, CK)

 View Source

 -spec map_tree(M, CK) -> zipper:zipper(M) when M :: #{K => _}, CK :: K.

Generates a zipper for maps.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

