

 Zoi

 v0.17.0

 [image: Logo]

 Table of contents

 	Changelog

 	Zoi

 	Setup

 	Quickstart Guide

 	Recipes

 	Integrations

 	Rendering forms with Phoenix

 	Using Zoi to generate OpenAPI specs

 	Validating controller parameters

 	Utilities

 	Converting Keys From Object

 	Generating Schemas from JSON example

 	Localizing Zoi errors with Gettext

 	
 Modules

 	Main API

 	Zoi

 	Zoi.ISO

 	Schema

 	Zoi.Describe

 	Zoi.Schema

 	Zoi.Struct

 	Zoi.TypeSpec

 	Integrations

 	Zoi.Form

 	Zoi.JSONSchema

 	Internals

 	Zoi.Context

 	Zoi.Type

 	Exceptions

 	Zoi.Error

 Changelog

All notable changes to this project will be documented in this file.
0.17.0 - 2026-01-30
Added
	unrecognized_keys option for Zoi.map/2, Zoi.object/2, Zoi.keyword/2, and Zoi.struct/3 to control how unrecognized keys are handled:	:strip (default) - removes unrecognized keys from the output
	:error - returns an error when unrecognized keys are present
	:preserve - keeps unrecognized keys in the output without validation (not available for structs)
	{:preserve, {key_schema, value_schema}} - preserves unrecognized keys and validates them against the given schemas (not available for structs)

	deprecated option for all schema types to emit deprecation warnings during parsing. Zoi.describe/1 will also include the deprecation message in the generated documentation
	Zoi.to_json_schema/1 now emits deprecated: true when a schema is marked as deprecated
	Multi-line description support in Zoi.describe/1 with proper indentation

Changed
	strict option is now deprecated in favor of unrecognized_keys. Use unrecognized_keys: :error instead of strict: true
	Zoi.extend/3 now uses options from schema1 instead of merging options from both schemas
	Improved Zoi.Describe.Encoder output format:	Enum now uses | separator instead of "one of"
	Union now uses | separator instead of "or"
	Tuple now uses {X, Y} format instead of "tuple of X, Y values"

0.16.1 - 2026-01-20
Added
	Zoi.lazy/1 now supports MFA tuples {module, function, args} in addition to anonymous functions. This enables lazy schemas to be stored in module attributes and used at compile time:
MFA tuple, can be sued runtime and compiletime
@schema Zoi.lazy({MyModule, :user_schema, []})

Anonymous function, can be used runtime but not compiletime (like module attributes)
Zoi.lazy(fn -> user_schema() end)

0.16.0 - 2026-01-19
Added
	Zoi.discriminated_union/3 type for creating discriminated unions (#138)

Changed
	Add sponsor section to documentation (#140)
	Fix Elixir 1.20 deprecation warnings (#141)
	Fix string keys parsing on maps when coercion is enabled (#139)

0.15.0 - 2026-01-05
Added
	Zoi.pid/1 type for validating pid values
	Zoi.module/1 type for validating module values
	Zoi.reference/1 type for validating reference values
	Zoi.port/1 type for validating port values
	Zoi.macro/1 type for validating quoted expressions (Macro.t())
	typespec option for all types to override generated typespec:Zoi.integer(gte: 0, typespec: quote(do: non_neg_integer()))
Zoi.any(typespec: quote(do: pos_integer()))

0.14.1 - 2026-01-02
Changed
	Zoi.to_json_schema/1 now preserves string refinements (pattern, format) when encoding nested schemas inside Zoi.map/2, Zoi.array/1, Zoi.lazy/1, Zoi.default/2, and Zoi.codec/3. Previously, types like Zoi.uuid() and Zoi.email() would lose their regex pattern when nested inside an object.

0.14.0 - 2025-12-22
Added
	Zoi.map/2 now supports field-based mode with %{field: type} notation, following Elixir's type system where fields are required by default
	Zoi.function/1 type for validating function values with optional arity constraint
	Zoi.struct/1 now accepts just a module to validate struct type without field validation
	Zoi.Describe.Encoder protocol for generating human-readable type descriptions
	Zoi.json/1 type for validating any JSON-compatible value (string, number, boolean, null, array, or object with string keys)
	Zoi.map/2 now accepts coerce: true option to convert structs to maps via Map.from_struct/1, enabling validation of database structs for API output

Changed
	Zoi.object/2 is now an alias for field-based Zoi.map/2. Both functions work identically
	Zoi.Types.Object has been consolidated into Zoi.Types.Map. The Zoi.object/2 API remains unchanged
	Zoi.keyword/2 default behavior: defaults now apply correctly when parsing keyword list with missing keys

0.13.1 - 2025-12-19
Changed
	Add references on documentation of 0.13 release

0.13.0 - 2025-12-19
Added
	Zoi.codec/3 for bidirectional transformations between types. Codecs enable parsing from one type to another and encoding back:
date_codec = Zoi.codec(
 Zoi.ISO.date(),
 Zoi.date(),
 decode: fn value -> Date.from_iso8601(value) end,
 encode: fn value -> Date.to_iso8601(value) end
)

{:ok, ~D[2025-01-15]} = Zoi.parse(date_codec, "2025-01-15")
{:ok, "2025-01-15"} = Zoi.encode(date_codec, ~D[2025-01-15])

	Zoi.encode/3 and Zoi.encode!/3 functions to encode values using a codec's encode function.

	Zoi.multiple_of/3 refinement for validating that a number is a multiple of a given value. Works with integer/0, float/0, number/0, and decimal/0 types:

	Zoi.TypeSpec protocol for opt-in Elixir type specification generation. Custom types can now implement this protocol separately from Zoi.Type:
defimpl Zoi.TypeSpec do
 def spec(_schema, _opts) do
 quote(do: binary())
 end
end

Changed
	Zoi.JSONSchema.Encoder for Zoi.object/2 now respects the strict option. When strict: true, the generated JSON Schema will have additionalProperties: false. When strict: false (default), it will have additionalProperties: true.
	type_spec/2 moved from Zoi.Type protocol to the new Zoi.TypeSpec protocol. This is not a breaking change as the public API (Zoi.type_spec/1) remains unchanged.

0.12.1 - 2025-12-09
Added
	Zoi.default/2 implements Zoi.JSONSchema protocol to include default values in generated JSON Schemas.

0.12.0 - 2025-12-05
Added
	Zoi.lazy/1 type for deferring schema evaluation until parse time, enabling recursive and self-referencing schemas.

0.11.1 - 2025-12-04
Added
	Improved the documentation for "Rendering forms with Phoenix" guide, adding example on how to handle errors with changesets or custom errors.

0.11.0 - 2025-11-24
Changed
	Protocol-based validation architecture: All validations now use Zoi.Validations.* protocols instead of the centralized Zoi.Refinements module. This improves:	Introspection: Constraint values stored as struct fields (e.g., min_length: 5) instead of opaque MFAs
	Ergonomics: Pass constraints directly in constructors: Zoi.string(min_length: 5, max_length: 100)
	Integration: External libraries can easily inspect schema constraints for JSON Schema, OpenAPI, etc.

	Validation protocols: Gte, Lte, Gt, Lt, Length, Url, Regex, StartsWith, EndsWith, OneOf
	Each type implements relevant protocols (String implements all, Integer/Float/Number implement Gte/Lte/Gt/Lt, etc.)
	Now all types opts params are validated at type creation time, using Zoi internals, raising errors if invalid options are provided.
	Zoi.gt/2 and Zoi.lt/2 refinements will now work with Zoi.integer(), Zoi.float() and Zoi.number() only. Zoi.array/2 and Zoi.string/2 types should use Zoi.min/2 and Zoi.max/2 instead for length validations.

0.10.7 - 2025-11-16
Added
	Recipes guide with common use cases and examples of Zoi usage.

0.10.6 - 2025-11-13
Added
	Zoi.one_of/2 type to accept a value that matches exactly one of the provided literal values.

0.10.5 - 2025-11-13
Changed
	Zoi.enum/2 typespec for binary now returns binary() instead of literals.

0.10.4 - 2025-11-10
Changed
	Fix Zoi.Struct.enforce_keys/1 to work when Zoi.default/2 wraps a Zoi.optional/2 type

0.10.3 - 2025-11-10
Added
	wrap Zoi.Type.t() into Zoi.schema() type
	Group guides on hexdocs

0.10.2 - 2025-11-10
Added
	Zoi.Schema.traverse/2 for recursively walking and transforming schema structures. This function applies a transformation to all nested fields while leaving the root schema unchanged, making it easy to apply operations like coercion, nullish, or defaults across an entire schema tree.
	Zoi.coerce/1 helper function to enable type coercion on schemas that support it.

Changed
	Zoi.transform/2 and Zoi.refine/2 are now chained in the order they were added, allowing more flexible validation and transformation flows.

0.10.1 - 2025-11-09
Added
	Zoi.describe/1 now supports Zoi.struct/2 type.

0.10.0 - 2025-11-09
Added
	Zoi.Form module with prepare/1 and parse/2 functions for seamless Phoenix form integration.
	Phoenix.HTML.FormData protocol implementation for Zoi.Context, enabling Phoenix form rendering without losing the original params.
	Partial parsing data is now preserved inside %Zoi.Context{} (and surfaced through forms) even when validation fails, allowing Phoenix forms to keep previously valid entries.
	Keyword schemas defined with another schema as the value now keep the successfully parsed entries even if a sibling entry fails validation.
	Zoi.Form.prepare/1 now forces coercion on every nested field so Phoenix form strings are cast into their target types automatically.
	Zoi.Form.parse/2 automatically normalizes LiveView's map-based array format (with numeric string keys) into regular lists in ctx.input, eliminating the need for manual conversion when manipulating array fields dynamically.
	Architecture diagram in main module documentation (Zoi) showing the parsing flow and validation pipeline with Mermaid visualization.

Changed
	Achieved 100% test coverage across the entire codebase (previously 99.8%).

0.9.1 - 2025-11-06
Added
	Zoi.JSONSchema now accepts Zoi.decimal/1, converting it to type: "number".

0.9.0 - 2025-11-06
Added
	Zoi.array/2 now accepts :coerce option to force Map and Tuple types into an array.

Changed
	Zoi.type_spec/1 for object with string keys now returns generic map() type spec due to how Elixir handles this type internally.

0.9.0-rc.1 - 2025-11-04
Added
	Zoi.object/2 and Zoi.keyword/2 now accept :empty_values option to define which values are considered empty when parsing objects and keyword lists. By default, this option is set to [], meaning no values are considered empty. You can customize this option to include values like nil, empty strings (""), or any other value you want to treat as empty and it will return a :required error when those values are encountered for required fields.

0.9.0-rc.0 - 2025-11-04
Changed
	All errors have been reworked to include more context on the error code and issue. Now errors will have the following structure (example):

%Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected string", [expected: :string]},
 message: "invalid type: expected string",
 path: [:user, :name]
}
And it's also possible to have errors with dynamic messages:
%Zoi.Error{
 code: :invalid_literal,
 message: "invalid literal: expected true",
 issue: {"invalid literal: expected %{expected}", [expected: true]},
 path: []
}
This will give more flexibility when handling errors programmatically, and better support with tools such as Gettext for localization.
	Removed Zoi.gt/3 and Zoi.lt/3 refinements for strings. Use Zoi.min/3 and Zoi.max/3 instead.
	Allow all refinements to accept custom error messages.
	Zoi.url/2 now uses elixir's built-in URI.parse/1 for URL validation.

0.8.4 - 2025-11-01
Changed
	Fix nested Zoi.keyword/2 error when parsing invalid values
	Fix Zoi.Describe when dealing with Decimal optional dependency

0.8.3 - 2025-10-31
Added
	All types now implements the Inspect protocol. This should improve the ergonomics when working with Zoi types in IEx or when inspecting/debugging it's types.

0.8.2 - 2025-10-30
Added
	Zoi.non_negative/2 refinement for numbers to accept values from 0 and above
	Zoi.describe/1 returns a structured documentation for keyword and object types

Changed
	Zoi.keyword/2 now can accept a schema in the first argument to validate the values of the keyword list
	Zoi.keyword/2 type_spec now reflects correctly the keyword list definition

0.8.1 - 2025-10-27
Changed
	Update readme with new metadata examples and reference to main api

0.8.0 - 2025-10-26
Added
	Zoi.nullish/2 type to accept nil or a value of a specific type
	@spec for all public functions
	@typedoc for all public types
	Zoi.description/1 option to add description metadata to types for documentation purposes
	Zoi.example/1 option to add example metadata to types for documentation purposes

Changed
	Zoi.to_json_schema/1 now reads description, example opts from types to include them in the generated JSON Schema

0.7.4 - 2025-10-25
Changed
	Zoi.regex/3 fix regex compilation, now the regex.opts are properly handled

0.7.3 - 2025-10-20
Added
	Zoi.email/1 now accepts pattern option to customize the email regex

Changed
	Zoi.enum/2 now accepts coerce option to coerce values to the key or to the value

0.7.2 - 2025-10-13
Added
	Fixed example in guides/using_zoi_to_generate_openapi_specs.md

0.7.1 - 2025-10-12
Added
	Zoi.to_json_schema/1 support for metadata (e.g., example, description)
	guides/quickstart_guide.md added to the documentation

0.7.0 - 2025-10-10
Added
	Zoi.to_json_schema/1 function to convert Zoi schemas to JSON Schema format

Changed
	Zoi.array/2 fixed path in errors when parsing arrays
	Zoi.regex/2 fixed regex compile errors when used in module attributes

0.6.6 - 2025-10-08
Added
	Zoi.metadata/1 - option to add metadata to types for documentation purposes

Changed
	Zoi.example/1 deprecated in favor of Zoi.metadata/1

0.6.5 - 2025-10-07
Added
	Zoi.example/1 option to add example values to types for documentation and testing purposes

0.6.4 - 2025-09-30
Added
	Zoi.downcase/1 refinement to validate if a string is in lowercase
	Zoi.upcase/1 refinement to validate if a string is in uppercase
	Zoi.hex/1 refinement to validate if a string is a valid hexadecimal

0.6.3 - 2025-09-27
Added
	keys in Zoi.object/2 data structure
	Zoi.struct/2 type to parse structs and maps into structs
	Zoi.Struct module with helper functions to work with structs. This module offers two main functions:	Zoi.Struct.enforce_keys/1: List of keys that must be present in the struct
	Zoi.Struct.struct_keys/1: List of keys and their default values to be used with defstruct

0.6.2 - 2025-09-26
Added
	Zoi.literal/2 type to accept only a specific literal value

Changed
	Refactor all errors to be generated on type creation instead of parsing time

0.6.1 - 2025-09-08
Added
	Zoi.null/1 type to accept only nil values
	Zoi.positive/1 refinement for numbers to accept only positive values
	Zoi.negative/1 refinement for numbers to accept only negative values

0.6.0 - 2025-09-07
Added
	Zoi.required/2 type to enforce presence of a value in keyword and object types

Changed
	Zoi.object/2 now uses mfa to call inner transform function
	Zoi.keyword/2 have all fields set as optional by default, use Zoi.required/2 to enforce presence of a value

0.5.7 - 2025-09-06
Changed
	Zoi.parse!/3 Error message

0.5.6 - 2025-09-05
Added
	Zoi.parse!/3 function that raises an error if parsing fails
	Zoi.type_spec/2 function that returns the Elixir type spec for a given Zoi schema, implemented for all types

0.5.5 - 2025-09-03
Added
	Zoi.keyword/2 type

Changed
	Zoi.struct/2 now works with the new Zoi.keyword/2 type
	Improved Zoi.transform/2 documentation

0.5.4 - 2025-08-29
Added
	Guide for converting keys from maps
	Guide for generating schema from JSON structure

0.5.3 - 2025-08-29
Changed
	Fix transform and refinement types

0.5.2 - 2025-08-28
Added
	Zoi.prettify_errors/2 added docs
	Zoi.extend/3 type

Changed
	Zoi.map/3 now parses key and value types correctly
	Fix encapsulated types ignoring refinements and transforms when parsing

0.5.1 - 2025-08-17
Changed
	Zoi.prettify_errors/1 don't return \n at the end of the string anymore

0.5.0 - 2025-08-17
Added
	Zoi.atom/1 type
	Zoi.string_boolean/1 type
	Zoi.union/2 custom error messages
	Zoi.intersection/2 custom error messages
	Zoi.to_struct/2 transform

Changed
	Zoi.boolean/1 does not coerce values besides "true" and "false" anymore. For coercion of other values, use Zoi.string_boolean/1 type.

0.4.0 - 2025-08-14
Added
	Zoi.Context module to provide context when parsing data

Changed
	Zoi.object/2 will not automatically parse objects with inputs that differ from the string/atom keys map format. For example:

schema = Zoi.object(%{
 name: Zoi.string(),
 age: Zoi.integer()
})
Zoi.object(schema, %{"name" => "John", "age" => 30})
{:error, _errors}
To make this API work, you can pass coerce: true option to Zoi.object/2. This will make the object parser to check from the Map input if the keys are strings or atoms and fetch it's values automatically.
schema = Zoi.object(%{
 name: Zoi.string(),
 age: Zoi.integer()
})
Zoi.object(schema, %{"name" => "John", "age" => 30}, coerce: true)
{:ok, %{name: "John", age: 30}}
0.3.4 - 2025-08-09
Added
	Zoi.min/2, Zoi.max/2, Zoi.gt/2, Zoi.gte/2, Zoi.lt/2, Zoi.lte/2 refinements for Zoi.time/1 type
	Zoi.min/2, Zoi.max/2, Zoi.gt/2, Zoi.gte/2, Zoi.lt/2, Zoi.lte/2 refinements for Zoi.date/1 type
	Zoi.min/2, Zoi.max/2, Zoi.gt/2, Zoi.gte/2, Zoi.lt/2, Zoi.lte/2 refinements for Zoi.datetime/1 type
	Zoi.min/2, Zoi.max/2, Zoi.gt/2, Zoi.gte/2, Zoi.lt/2, Zoi.lte/2 refinements for Zoi.naive_datetime/1 type

0.3.3 - 2025-08-09
Added
	Zoi.time/1 type
	Zoi.date/1 type
	Zoi.datetime/1 type
	Zoi.naive_datetime/1 type

0.3.2 - 2025-08-09
Added
	Zoi.decimal/1 type
	Zoi.min/2, Zoi.max/2, Zoi.gt/2, Zoi.gte/2, Zoi.lt/2, Zoi.lte/2 refinements for Zoi.decimal/1 type

0.3.1 - 2025-08-08
Added
	Zoi.ISO.time/1 type
	Zoi.ISO.date/1 type
	Zoi.ISO.datetime/1 type
	Zoi.ISO.to_time_struct/1 transform
	Zoi.ISO.to_date_struct/1 transform
	Zoi.ISO.to_datetime_struct/1 transform
	Zoi.ISO.to_naive_datetime/1 transform
	Zoi.prettify_errors/1 function to format errors in a human-readable way

0.3.0 - 2025-08-07
Added
	Zoi.email/0 format
	Zoi.url/0 format
	Zoi.uuid/1 format

Changed
	Removed Zoi.email/1, now use Zoi.email/0 that will automatically use the Zoi.string/1 type
	All refinements now accept a :message option to customize the error message

0.2.3 - 2025-08-06
Added
	Zoi.map/3 type
	Zoi.intersection/2 type
	Zoi.gt/2 refinement
	Zoi.gte/2 refinement
	Zoi.lt/2 refinement
	Zoi.lte/2 refinement

0.2.2 - 2025-08-06
Added
	Guides for using Zoi in Phoenix controllers
	New Zoi.tuple/2 type
	New Zoi.any/1 type
	New Zoi.nullable/2 type

Changed
	Improved error messages for all validations and types
	Zoi.treefy_errors/1 now returns a more human-readable structure
	Zoi.optional/2 cannot accept nil as a value anymore. Use Zoi.nullable/2 instead.
	Zoi.optional/2 inside Zoi.object/2 now handles optional fields correctly

0.2.1 - 2025-08-06
Added
	Custom error messages for primitive types

Changed
	Zoi.number/2 now returns proper error message

0.2.0 - 2025-08-05
Added
	mfa to Zoi.refine/2 and Zoi.transform/2 functions
	accumulator errors to Zoi.refine/2 and Zoi.transform/2 functions
	Zoi.array/2 type
	Zoi.length/2, Zoi.min/2 and Zoi.max/2 validators for arrays

Changed
	errors are now returned as a list of %Zoi.Error{} structs

 Zoi

[image: Zoi][image: CI]
[image: Coverage Status]
[image: Hex.pm]
[image: HexDocs.pm]
[image: License]
Zoi is a schema validation library for Elixir, designed to provide a simple and flexible way to define and validate data.
Sponsors
💜 If you or your company benefit from Zoi, consider becoming a sponsor. It helps keep the project active and benefits the Elixir ecosystem.
Installation
Add zoi to your list of dependencies in mix.exs:
def deps do
 [
 {:zoi, "~> 0.17"}
]
end
Usage
You can create schemas for various data types, including strings, integers, floats, booleans, arrays, maps, and more. Zoi supports a wide range of validation rules and transformations.
Parsing Data
Here's a simple example of how to use Zoi to validate a string:
Define a schema with a string type
iex> schema = Zoi.string() |> Zoi.min(3)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, "hi")
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 issue: {"too small: must have at least %{count} character(s)", [count: 3]},
 message: "too small: must have at least 3 character(s)",
 path: []
 }
]}

Add transforms to a schema
iex> schema = Zoi.string() |> Zoi.trim()
iex> Zoi.parse(schema, " world ")
{:ok, "world"}
You can also validate structured maps:
Validate a structured data in a map
iex> schema = Zoi.map(%{name: Zoi.string(), age: Zoi.integer(), email: Zoi.email()})
iex> Zoi.parse(schema, %{name: "John", age: 30, email: "john@email.com"})
{:ok, %{name: "John", age: 30, email: "john@email.com"}}
iex> {:error, errors} = Zoi.parse(schema, %{email: "invalid-email"})
iex> Zoi.treefy_errors(errors)
%{name: ["is required"], email: ["invalid email format"], age: ["is required"]}
or arrays:
Validate an array of integers
iex> schema = Zoi.array(Zoi.integer() |> Zoi.min(0)) |> Zoi.min(2)
iex> Zoi.parse(schema, [1, 2, 3])
{:ok, [1, 2, 3]}
iex> Zoi.parse(schema, [1, "2"])
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected integer", [type: :integer]},
 message: "invalid type: expected integer",
 path: [1]
 }
]}
keywords:
Validate a keyword list
iex> schema = Zoi.keyword(email: Zoi.email(), allow?: Zoi.boolean())
iex> Zoi.parse(schema, [email: "john@email.com", allow?: true])
{:ok, [email: "john@email.com", allow?: true]}
iex> Zoi.parse(schema, [allow?: "yes"])
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected boolean", [type: :boolean]},
 message: "invalid type: expected boolean",
 path: [:allow?]
 }
]}
And many more possibilities, including nested schemas, custom validations and data transformations. Check the official docs for more details.
Types
Zoi can infer types from schemas, allowing you to leverage Elixir's @type and @spec annotations for documentation
defmodule MyApp.Schema do
 @schema Zoi.string() |> Zoi.min(2) |> Zoi.max(100)
 @type t :: unquote(Zoi.type_spec(@schema))
end
This will generate the following type specification:
@type t :: binary()
This also applies to complex types, such as Zoi.map/2:
defmodule MyApp.User do
 @schema Zoi.map(%{
 name: Zoi.string() |> Zoi.min(2) |> Zoi.max(100),
 age: Zoi.integer() |> Zoi.optional(),
 email: Zoi.email()
 })
 @type t :: unquote(Zoi.type_spec(@schema))
end
Which will generate:
@type t :: %{
 required(:name) => binary(),
 optional(:age) => integer(),
 required(:email) => binary()
}
Errors
When validation fails, Zoi returns a list of errors, each containing a message and the path to the invalid data. Even when errors are nested, Zoi will return all errors in a flattened list.
iex> schema = Zoi.map(%{name: Zoi.string(), age: Zoi.integer()})
iex> Zoi.parse(schema, %{name: 123, age: "thirty"})
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected string", [type: :string]},
 message: "invalid type: expected string",
 path: [:name]
 },
 %Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected integer", [type: :integer]},
 message: "invalid type: expected integer",
 path: [:age]
 }
]}
You can view the error in a map format using the Zoi.treefy_errors/1 function:

iex> schema = Zoi.map(%{name: Zoi.string(), age: Zoi.integer()})
iex> {:error, errors} = Zoi.parse(schema, %{name: 123, age: "thirty"})
iex> Zoi.treefy_errors(errors)
%{
 name: ["invalid type: expected string"],
 age: ["invalid type: expected integer"]
}
You can also customize error messages:
iex> schema = Zoi.string(error: "not a string")
iex> Zoi.parse(schema, :hi)
{:error,
 [
 %Zoi.Error{
 code: :custom,
 issue: {"not a string", [type: :string]},
 message: "not a string",
 path: []
 }
]}
Phoenix forms
Zoi works seamlessly with Phoenix forms through the Phoenix.HTML.FormData protocol:
Define schema inline
@user_schema Zoi.map(%{
 name: Zoi.string() |> Zoi.min(3),
 email: Zoi.email()
}) |> Zoi.Form.prepare()

Parse and render (just like changesets!)
ctx = Zoi.Form.parse(@user_schema, params)
form = to_form(ctx, as: :user)

socket |> assign(:form, form)

Use in your forms
~H"""
<.form for={@form} phx-submit="save">
 <.input field={@form[:name]} label="Name" />
 <.input field={@form[:email]} label="Email" />
 <div>
 <.button>Save</.button>
 </div>
</.form>
"""
	See Rendering forms with Phoenix for a complete LiveView example.
	See Localizing errors with Gettext for translation support.

Metadata
Zoi supports 4 types of metadata:
	description: Description of the schema.
	example: An example value that conforms to the schema.
	deprecated: Mark the schema as deprecated, it will emit a warning when parsing.
	metadata: A keyword list of arbitrary metadata.

You can use in all types, for example:
iex> schema = Zoi.string(description: "Hello", example: "World!", metadata: [identifier: "string"])
iex> Zoi.description(schema)
"Hello"
iex> Zoi.example(schema)
"World!"
iex> Zoi.metadata(schema)
[identifier: "string"]
You can use this feature to create self-documenting schemas, with example and tests. For example:
defmodule MyApp.UserSchema do
 @schema Zoi.map(
 %{
 name: Zoi.string(description: "The user first name") |> Zoi.min(2) |> Zoi.max(100),
 first_name: Zoi.string(deprecated: "Please use `name` instead"),
 age: Zoi.integer(description: "The user age") |> Zoi.optional()
 },
 description: "A user schema with name and optional age",
 example: %{name: "Alice", age: 30},
 metadata: [
 moduledoc: "This module represents a schema of a user"
]
)

 @moduledoc """
 #{Zoi.metadata(@schema)[:moduledoc]}
 """

 @doc """
 #{Zoi.description(@schema)}

 Options:

 #{Zoi.describe(@schema)}
 """
 def schema, do: @schema
end

defmodule MyApp.UserSchemaTest do
 use ExUnit.Case
 alias MyApp.UserSchema

 test "example matches schema" do
 example = Zoi.example(UserSchema.schema())
 assert {:ok, example} == Zoi.parse(UserSchema.schema(), example)
 end
end
description, example are also used when generating OpenAPI specs. See the Using Zoi to generate OpenAPI specs guide for more details.
Guides
Check the official guides for more examples and use cases:
	Quickstart Guide
	Recipes
	Main API Reference
	Using Zoi to generate OpenAPI specs
	Validating controller parameters
	Converting Keys From Object
	Generating Schemas from JSON

Acknowledgements
Zoi is inspired by different schema validation libraries, including:
	Zod
	Ecto.Changeset
	NimbleOptions

 Quickstart Guide

This guide will help you get started with Zoi on your Elixir project.
Installation
Add zoi to your list of dependencies in mix.exs:
def deps do
 [
 {:zoi, "~> 0.17"}
]
end
Defining Schemas
You can define schemas using a variety of built-in types and validation rules. Here are some examples:
String schema with minimum length
schema = Zoi.string() |> Zoi.min(3)
Integer schema with range
schema = Zoi.integer() |> Zoi.min(1) |> Zoi.max(100)
Email schema
schema = Zoi.email()
Object schema with nested fields
schema = Zoi.map(%{
 name: Zoi.string() |> Zoi.regex(~r/^[a-zA-Z]+$/),
 age: Zoi.integer() |> Zoi.min(0),
 email: Zoi.email()
})
Array schema with item validation
schema = Zoi.array(Zoi.integer() |> Zoi.min(0)) |> Zoi.min(2)
Validating Data
You can validate data against your defined schemas using the Zoi.parse/2 function:
iex> schema = Zoi.map(%{
...> name: Zoi.string() |> Zoi.regex(~r/^[a-zA-Z]+$/),
...> age: Zoi.integer() |> Zoi.min(0),
...> email: Zoi.email()
...> })
iex> Zoi.parse(schema, %{name: "John Doe", age: 30, email: "john@email.com"})
{:ok, %{name: "John Doe", age: 30, email: "john@email.com"}}
iex> {:error, errors} = Zoi.parse(schema, %{name: "John123", age: -5, email: "invalid-email"})
iex> Zoi.treefy_errors(errors)
%{
 name: ["invalid format: must match pattern ^[a-zA-Z]+$"],
 age: ["too small: must be at least 0"],
 email: ["invalid email format"]
}
Use Cases
You can use Zoi in various scenarios, such as:
	Validating user input in web forms
	Validating API request parameters
	Normalizing data before processing
	Generating OpenAPI specifications
	Integrating with external systems and validating responses
	And more!

Check out the other guides and the documentation for more advanced usage and features!

 Recipes

	Using Zoi.map/2 with string or atom keys
	Applying coercion globally in the schema
	Applying nullable or nullish or optional globally in the schema
	Generalizing types
	Custom error messages
	Conditional fields
	Creating a user registration schema

Using Zoi.map/2 with string or atom keys
When defining object schemas with Zoi.map/2, you can use either string keys or atom keys for the fields. Both approaches are supported but differ in how parsing will work:
Using atom keys
schema = Zoi.map(%{
 name: Zoi.string(),
 age: Zoi.integer()
})

Parsing with atom keys
Zoi.parse(schema, %{name: "Alice", age: 30})
=> {:ok, %{name: "Alice", age: 30}}

Parsing with string keys will fail
Zoi.parse(schema, %{"name" => "Alice", "age" => 30})
=> {:error,
=> [
=> %Zoi.Error{
=> code: :required,
=> issue: {"is required", [key: :name]},
=> message: "is required",
=> path: [:name]
=> },
=> %Zoi.Error{
=> code: :required,
=> issue: {"is required", [key: :age]},
=> message: "is required",
=> path: [:age]
=> }
=>]}
If you want to parse data with string keys, you can define the schema with string keys:
Using string keys
schema = Zoi.map(%{
 "name" => Zoi.string(),
 "age" => Zoi.integer()
})

Parsing with string keys
Zoi.parse(schema, %{"name" => "Alice", "age" => 30})
=> {:ok, %{"name" => "Alice", "age" => 30}}
Alternatively, you may choose to allow your schema to process either string or atom keys when declaring the schema with atom keys. This can be done using the coerce: true option. Considering the first schema defined with atom keys:
schema = Zoi.map(%{
 name: Zoi.string(),
 age: Zoi.integer()
}, coerce: true)

Parsing with string keys
Zoi.parse(schema, %{"name" => "Alice", "age" => 30})
=> {:ok, %{name: "Alice", age: 30}}
Applying coercion globally in the schema
It can be a tedious task to add the coerce: true in every type in your schema. To simplify this, you can apply a traverse function that sets the coerce: true option for all types in your schema. Here's how you can do it:
schema = Zoi.map(%{
 name: Zoi.string(),
 age: Zoi.integer(),
 address: Zoi.map(%{
 street: Zoi.string(),
 city: Zoi.string()
 })
}) |> Zoi.Schema.traverse(&Zoi.coerce/1)
This will make all fields in the schema to coerce to its declared type.
Applying nullable or nullish or optional globally in the schema
Similar to coercion, you can apply any transformation into the traverse function:
schema = Zoi.map(%{
 name: Zoi.string(),
 age: Zoi.integer()
}) |> Zoi.Schema.traverse(fn node ->
 node
 |> Zoi.nullable()
 |> Zoi.optional()
end)
Generalizing types
In your application, you might have multiple schemas that share common fields. Instead of redefining these fields in each schema, you can create a generalized type and reuse it across different schemas. Since Zoi types are just functions, you can define a function that returns a schema and use it wherever needed.
defmodule MyApp.ZoiTypes do

 def user_info() do
 Zoi.map(%{
 name: Zoi.string(description: "user full name"),
 email: Zoi.email(description: "user email address")
 })
 end

 def supported_currencies() do
 Zoi.enum(["USD", "EUR", "GBP", "JPY"], description: "supported currency codes")
 end

 # For example, converting ecto enums to zoi enums
 def user_types() do
 Zoi.enum(Ecto.Enum.mappings(MyApp.Accounts.User, :type),
 description: "User types"
)
 end
end

Using the generalized types in your schemas
schema = Zoi.map(%{
 user: MyApp.ZoiTypes.user_info(),
 prefered_currency: MyApp.ZoiTypes.supported_currencies(),
 user_type: MyApp.ZoiTypes.user_types()
})

Zoi.parse(schema, %{
 user: %{name: "Alice", email: "alice@example.com"},
 prefered_currency: "USD",
 user_type: :admin
})
=> {:ok, %{user: %{name: "Alice", email: "alice@example.com"}, prefered_currency: "USD", user_type: :admin}}
Custom error messages
You can provide custom error messages for your validations using the refine function. This is useful when you want to give more specific feedback to users based on business logic.
schema = Zoi.map(%{
 age: Zoi.integer()
}) |> Zoi.refine(fn data ->
 if data.age >= 18 do
 :ok
 else
 {:error, "You must be at least 18 years old to register"}
 end
end)

Zoi.parse(schema, %{age: 16})
=> {:error,
=> [
=> %Zoi.Error{
=> code: :custom,
=> issue: {"You must be at least 18 years old to register", []},
=> message: "You must be at least 18 years old to register",
=> path: []
=> }
=>]}

Zoi.parse(schema, %{age: 21})
=> {:ok, %{age: 21}}
You can also target specific fields in your error messages by using the path option:
schema = Zoi.map(%{
 username: Zoi.string()
}) |> Zoi.refine(fn data ->
 if String.contains?(data.username, " ") do
 {:error, [%Zoi.Error{
 code: :custom,
 message: "Username cannot contain spaces",
 path: [:username],
 issue: {"Username cannot contain spaces", []}
 }]}
 else
 :ok
 end
end)

Zoi.parse(schema, %{username: "john doe"})
=> {:error,
=> [
=> %Zoi.Error{
=> code: :custom,
=> issue: {"Username cannot contain spaces", []},
=> message: "Username cannot contain spaces",
=> path: [:username]
=> }
=>]}
Conditional fields
You can use refine to require fields only when another field has a specific value.
schema = Zoi.map(%{
 account_type: Zoi.enum(["personal", "business"]),
 company_name: Zoi.string() |> Zoi.optional(),
 tax_id: Zoi.string() |> Zoi.optional()
})|> Zoi.refine(fn data ->
 cond do
 data[:account_type] == "business" and !data[:company_name] ->
 {:error, "Company name and Tax ID are required for business accounts"}
 data[:account_type] == "business" and !data[:tax_id] ->
 {:error, "Company name and Tax ID are required for business accounts"}
 true ->
 :ok
 end
end)

Zoi.parse(schema, %{account_type: "business"})
=> {:error,
=> [
=> %Zoi.Error{
=> code: :custom,
=> issue: {"Company name and Tax ID are required for business accounts", []},
=> message: "Company name and Tax ID are required for business accounts",
=> path: []
=> }
=>]}

Zoi.parse(schema, %{account_type: "personal"})
=> {:ok, %{account_type: "personal"}}

Zoi.parse(schema, %{account_type: "business", company_name: "Acme Corp", tax_id: "123456789"})
=> {:ok, %{account_type: "business", company_name: "Acme Corp", tax_id: "123456789"}}
Creating a user registration schema
Common example is having a user registration schema, that requires a valid email address and password with confirmation.
schema = Zoi.map(%{
 email: Zoi.email(description: "User email address"),
 password: Zoi.string() |> Zoi.min(8),
 password_confirmation: Zoi.string()
}) |> Zoi.refine(fn data ->
 if data.password == data.password_confirmation do
 :ok
 else
 {:error, "Password confirmation does not match"}
 end
end)

Zoi.parse(schema, %{
 email: "john@example.com",
 password: "securepassword",
 password_confirmation: "hello"
})
=> {:error,
=> [
=> %Zoi.Error{
=> code: :custom,
=> issue: {"Password confirmation does not match", []},
=> message: "Password confirmation does not match",
=> path: []
=> }
=>]}

Zoi.parse(schema, %{
 email: "john@example.com",
 password: "securepassword",
 password_confirmation: "securepassword"
})
=> {:ok, %{email: "john@example.com", password: "securepassword", password_confirmation: "securepassword"}}

 Rendering forms with Phoenix

Zoi works seamlessly with Phoenix forms through the Phoenix.HTML.FormData protocol. This guide walks through building a complete LiveView form step by step.
1. Define Your Schema
First, define your validation schema inline using Zoi.Form.prepare/1:
defmodule MyAppWeb.UserLive.FormComponent do
 use MyAppWeb, :live_view

 @user_schema Zoi.map(%{
 name: Zoi.string() |> Zoi.min(3),
 email: Zoi.email(),
 age: Zoi.integer() |> Zoi.min(18) |> Zoi.optional()
 }) |> Zoi.Form.prepare()
end
Zoi.Form.prepare/1 enables automatic coercion so form strings convert to the right types (integers, booleans, etc.).
2. Parse and Render
Parse params with Zoi.Form.parse/2 and convert the context to a Phoenix form:
def mount(_params, _session, socket) do
 params = %{} # Start with empty form
 ctx = Zoi.Form.parse(@user_schema, params)

 {:ok, assign(socket, to_form(ctx, as: :user)}
end

def render(assigns) do
 ~H"""
 <.form for={@form} phx-change="validate" phx-submit="save">
 <.input field={@form[:name]} label="Name" />
 <.input field={@form[:email]} label="Email" />
 <.input field={@form[:age]} type="number" label="Age" />

 <div>
 <.button>Save</.button>
 </div>
 </.form>
 """
end
That's it! Phoenix's <.input> component automatically displays validation errors.
3. Handle Validation
Parse params on every change to show live validation:
def handle_event("validate", %{"user" => params}, socket) do
 ctx = Zoi.Form.parse(@user_schema, params)

 {:noreply, assign(socket, form: to_form(ctx, as: :user))}
end
4. Handle Submit
Check ctx.valid? and use ctx.parsed for validated data:
def handle_event("save", %{"user" => params}, socket) do
 ctx = Zoi.Form.parse(@user_schema, params)

 if ctx.valid? do
 # ctx.parsed is validated and type-coerced
 # Example: %{name: "John", email: "john@example.com", age: 30}
 case Accounts.create_user(ctx.parsed) do
 {:ok, user} ->
 {:noreply, push_navigate(socket, to: ~p"/users/#{user}")}

 {:error, _reason} ->
 # Handle submission errors - see "Adding External Errors" section below
 {:noreply, put_flash(socket, :error, "Failed to save")}
 end
 else
 # Show all errors immediately on submit
 form = to_form(ctx, as: :user, action: :validate)
 {:noreply, assign(socket, form: form)}
 end
end
5. Working with Nested data structures
Add nested addresses to your schema:
@user_schema Zoi.map(%{
 name: Zoi.string() |> Zoi.min(3),
 email: Zoi.email(),
 addresses: Zoi.array(
 Zoi.map(%{
 street: Zoi.string() |> Zoi.min(5),
 city: Zoi.string(),
 zip: Zoi.string() |> Zoi.length(5)
 })
)
}) |> Zoi.Form.prepare()
Render with <.inputs_for>:
<.form for={@form} phx-change="validate" phx-submit="save">
 <.input field={@form[:name]} label="Name" />
 <.input field={@form[:email]} label="Email" />

 <.inputs_for :let={address} field={@form[:addresses]}>
 <.input field={address[:street]} label="Street" />
 <.input field={address[:city]} label="City" />
 <.input field={address[:zip]} label="ZIP" />

 <.button type="button" phx-click="remove_address" phx-value-index={address.index}>
 Remove
 </.button>
 </.inputs_for>

 <.button type="button" phx-click="add_address">Add Address</.button>

 <div>
 <.button>Save</.button>
 </div>
</.form>
6. Dynamic Add/Remove
To add or remove array items, work with form.params directly (arrays are always lists):
def handle_event("add_address", _params, socket) do
 # Get current addresses from form.params (always a list)
 addresses = socket.assigns.form.params["addresses"] || []

 # Add a new empty address
 updated_params = Map.put(socket.assigns.form.params, "addresses", addresses ++ [%{}])

 # Re-parse and update form
 ctx = Zoi.Form.parse(@user_schema, updated_params)

 {:noreply, assign(socket, form: to_form(ctx, as: :user))}
end

def handle_event("remove_address", %{"index" => index}, socket) do
 addresses = socket.assigns.form.params["addresses"] || []
 idx = String.to_integer(index)

 # Remove the address at the index
 updated_params = Map.put(socket.assigns.form.params, "addresses", List.delete_at(addresses, idx))

 # Re-parse and update form
 ctx = Zoi.Form.parse(@user_schema, updated_params)

 {:noreply, assign(socket, form: to_form(ctx, as: :user))}
end
Note: Zoi.Form.parse/2 automatically converts LiveView's map-based array format to lists, so form.params always contains clean data you can manipulate with standard list operations.
7. Handle Create and Edit
Use handle_params to handle both :new and :edit actions:
def handle_params(params, _url, socket) do
 {:noreply, apply_action(socket, socket.assigns.live_action, params)}
end

defp apply_action(socket, :new, _params) do
 # Start with one empty address
 params = %{"addresses" => [%{}]}
 ctx = Zoi.Form.parse(@user_schema, params)

 socket
 |> assign(:page_title, "New User")
 |> assign(:user, nil)
 |> assign(:form, to_form(ctx, as: :user))
end

defp apply_action(socket, :edit, %{"id" => id}) do
 user = Accounts.get_user!(id)

 # Convert database record to form params (all strings)
 # You may also use Zoi to help with this conversion if needed
 # But in general, good to map manually for clarity
 params = %{
 "name" => user.name,
 "email" => user.email,
 "age" => user.age,
 "addresses" => Enum.map(user.addresses, fn addr ->
 %{
 "street" => addr.street,
 "city" => addr.city,
 "zip" => addr.zip
 }
 end)
 }

 ctx = Zoi.Form.parse(@user_schema, params)

 socket
 |> assign(:page_title, "Edit User")
 |> assign(:user, user)
 |> assign(:form, to_form(ctx, as: :user))
end
Update save to dispatch based on action:
def handle_event("save", %{"user" => params}, socket) do
 ctx = Zoi.Form.parse(@user_schema, params)

 if ctx.valid? do
 save_user(socket, socket.assigns.live_action, ctx.parsed)
 else
 {:noreply, assign(socket, form: to_form(ctx, as: :user, action: :validate))}
 end
end

defp save_user(socket, :new, attrs) do
 case Accounts.create_user(attrs) do
 {:ok, user} ->
 {:noreply,
 socket
 |> put_flash(:info, "User created")
 |> push_navigate(to: ~p"/users/#{user}")}

 {:error, _changeset} ->
 {:noreply, put_flash(socket, :error, "Failed to create")}
 end
end

defp save_user(socket, :edit, attrs) do
 case Accounts.update_user(socket.assigns.user, attrs) do
 {:ok, user} ->
 {:noreply,
 socket
 |> put_flash(:info, "User updated")
 |> push_navigate(to: ~p"/users/#{user}")}

 {:error, _changeset} ->
 {:noreply, put_flash(socket, :error, "Failed to update")}
 end
end
8. Adding External Errors to Forms
When your backend returns errors (e.g., from Ecto changesets or business logic), you can add them to the Zoi context so they display on the form.
Since you already have the context from Zoi.Form.parse/2, use Zoi.Context.add_error/2 to add errors before converting to a form:
def handle_event("save", %{"user" => params}, socket) do
 ctx = Zoi.Form.parse(@user_schema, params)

 if ctx.valid? do
 case Accounts.create_user(ctx.parsed) do
 {:ok, user} ->
 {:noreply, push_navigate(socket, to: ~p"/users/#{user}")}

 {:error, :email_taken} ->
 error = Zoi.Error.custom_error(issue: {"has already been taken", []}, path: [:email])
 ctx = Zoi.Context.add_error(ctx, error)
 {:noreply, assign(socket, form: to_form(ctx, as: :user, action: :validate))}

 {:error, _reason} ->
 {:noreply, put_flash(socket, :error, "Failed to save")}
 end
 else
 {:noreply, assign(socket, form: to_form(ctx, as: :user, action: :validate))}
 end
end
Adding Changeset Errors
Ecto changeset errors use the {msg, opts} tuple format. Convert them to Zoi errors preserving the format for translation support (see Localizing errors with Gettext):
defp save_user(socket, :new, attrs, ctx) do
 case Accounts.create_user(attrs) do
 {:ok, user} ->
 {:noreply,
 socket
 |> put_flash(:info, "User created")
 |> push_navigate(to: ~p"/users/#{user}")}

 {:error, changeset} ->
 ctx = add_changeset_errors(changeset, ctx)
 {:noreply, assign(socket, form: to_form(ctx, as: :user, action: :validate))}
 end
end

defp add_changeset_errors(changeset, ctx) do
 Enum.reduce(changeset.errors, ctx, fn {field, {msg, opts}}, acc ->
 error = Zoi.Error.custom_error(issue: {msg, opts}, path: [field])
 Zoi.Context.add_error(acc, error)
 end)
end
The Ecto schema might not always represent the form structure you created with Zoi, so depending on your use case, you need to map fields accordingly.

 Using Zoi to generate OpenAPI specs

The OpenAPI Specification define a standard interface for HTTP APIs. The 3.1 version officially supports 100% compatibility with the latest draft (2020-12) of JSON Schema specification to describe the structure of request and response payloads.
Zoi implements the conversion between Zoi schemas and JSON Schema, which can be used to generate OpenAPI specs for your Phoenix application.
You can define a Zoi schema for a user resource:
schema = Zoi.map(%{
 id: Zoi.integer() |> Zoi.min(1),
 name: Zoi.string() |> Zoi.min(1) |> Zoi.max(100),
 age: Zoi.optional(Zoi.integer() |> Zoi.min(0))
})
Then, you can convert it to JSON Schema:
json_schema = Zoi.to_json_schema(schema)
This will generate the following structure:
%{
 "$schema" => "https://json-schema.org/draft/2020-12/schema",
 type: :object,
 properties: %{
 id: %{type: :integer, minimum: 1},
 name: %{type: :string, minLength: 1, maxLength: 100},
 age: %{type: :integer, minimum: 0}
 },
 required: [:id, :name],
 additionalProperties: false
}
You can then use this JSON Schema to define the request and response bodies in your OpenAPI specification. For further details on how Zoi maps to JSON Schemma, check the Zoi.JSONSchema module documentation.
Integrating with Phoenix
To integrate Zoi with Phoenix and generate OpenAPI specs, you can create a module that defines your API endpoints and their corresponding Zoi schemas. Then, you can use a library like Oaskit to generate the OpenAPI specification. Follow the Oaskit guide to do the initial setup, then you can use Zoi schemas in your endpoint definitions.
defmodule MyAppWeb.UserController do
 use MyAppWeb, :controller
 use Oaskit.Controller

 @user_schema Zoi.map(%{
 id: Zoi.integer() |> Zoi.min(1),
 name: Zoi.string() |> Zoi.min(1) |> Zoi.max(100),
 age: Zoi.optional(Zoi.integer() |> Zoi.min(0))
 })

 @user_spec Zoi.to_json_schema(@user_schema)

 operation :create,
 summary: "Create User",
 request_body: {@user_spec, [required: true]},
 responses: [ok: {@user_spec, []}]

 def create(conn, params) do
 ## Validate params using Zoi or Oaskit
 end
end
With this setup, you get both request validation and OpenAPI documentation generation out of the box.
For more details on how to validate parameters in a Phoenix controller using Zoi, see the Validating controller parameters guide.
You can also validate the request params using Oaskit directly, see the Oaskit documentation for more details.

 Validating controller parameters

One common use case for Zoi is validating request parameters in a Phoenix controller, before they reach your business logic or database layer.
Here's a typical controller setup using Ecto to validate the incoming params:
defmodule MyAppWeb.UserController do
 use MyAppWeb, :controller

 alias MyApp.Users

 def create(conn, params) do
 case Users.create_user(params) do
 {:ok, user} ->
 conn
 |> put_status(:created)
 |> render("show.json", user: user)

 {:error, changeset} ->
 conn
 |> put_status(:unprocessable_entity)
 |> render(MyAppWeb.ChangesetView, "error.json", changeset: changeset)
 end
 end
end
This works well when your API payload matches the database schema, but:
	You may want stricter or custom validation rules.
	Different field names than your schema.
	Your API shape may differ from your DB schema.
	You want to fail early, before calling your domain logic.
	Custom behaviour (optional fields, specific formats)

defmodule MyAppWeb.UserController do
 use MyAppWeb, :controller

 alias MyApp.Users

 @user_params Zoi.map(%{
 name: Zoi.string(),
 email: Zoi.email() |> Zoi.min(4) |> Zoi.max(100),
 age: Zoi.integer(coerce: true) |> Zoi.min(18) |> Zoi.max(100)
 }, coerce: true)

 def create(conn, params) do
 case Zoi.parse(@user_params, params) do
 {:ok, valid_params} ->
 case Users.create_user(valid_params) do
 {:ok, user} ->
 conn
 |> put_status(:created)
 |> render("show.json", user: user)

 {:error, changeset} ->
 conn
 |> put_status(:unprocessable_entity)
 |> render(MyAppWeb.ChangesetView, "error.json", changeset: changeset)
 end

 {:error, errors} ->
 conn
 |> put_status(:unprocessable_entity)
 |> render(MyAppWeb.ErrorView, "error.json", errors: Zoi.treefy_errors(errors))
 end
 end
end
	Zoi.parse/2 returns {:ok, data} or {:error, [Zoi.Error.t()]}.
	Zoi.treefy_errors/1 transforms flat error lists into a structured tree, useful for forms or APIs.

Validating query parameters
One powerful use case for Zoi is validating and normalizing query parameters passed to your Phoenix controller.
Imagine a paginated endpoint like this:
GET /api/posts?page=2&limit=50&sort=-published_at
possible validations:
	Ensure page and limit are integers
	Apply default values if not provided
	Validate sort against allowed fields

@query_schema Zoi.map(%{
 page: Zoi.default(Zoi.integer(coerce: true) |> Zoi.min(1), 1),
 limit: Zoi.default(Zoi.integer(coerce: true) |> Zoi.min(1) |> Zoi.max(100), 10),
 sort: Zoi.optional(Zoi.string() |> Zoi.enum(["published_at", "-published_at"]))
})
Use it on your controller:
def index(conn, params) do
 case Zoi.parse(@query_schema, params) do
 {:ok, query} ->
 posts = Blog.list_posts(query)
 render(conn, "index.json", posts: posts)

 {:error, errors} ->
 conn
 |> put_status(:unprocessable_entity)
 |> json(%{errors: Zoi.treefy_errors(errors)})
 end
end
And sending invalid params: GET /api/posts?page=0&limit=200&sort=name
will return a structured error response like this:
{
 "errors": {
 "page": ["too small: must be at least 1"],
 "limit": ["too big: must be at most 100"],
 "sort": ["Invalid option: must be one of published_at, -published_at"]
 }
}

 Converting Keys From Object

In Zoi you can also apply complex transformations to keys in maps. This is useful when you want to convert keys from one format to another, such as from camelCase to snake_case.
For example, consider the following JSON data:
{
 "firstName": "John",
 "lastName": "Doe",
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York"
 }
}
If you want to transform the keys to snake_case, you can use Zoi.transform/2 as follows:
defmodule MyApp.User do
 @moduledoc false

 def schema() do
 Zoi.map(%{
 "firstName" => Zoi.string(),
 "lastName" => Zoi.string(),
 "address" =>
 Zoi.map(%{
 "streetAddress" => Zoi.string(),
 "city" => Zoi.string()
 })
 |> to_snake_case()
 })
 |> to_snake_case()
 end

 defp to_snake_case(schema) do
 schema
 |> Zoi.transform(fn map ->
 for {k, v} <- map, into: %{}, do: {Macro.underscore(k), v}
 end)
 end
end
Now, when you validate data against this schema, the keys will be transformed to snake_case:
schema = MyApp.User.schema()
Zoi.parse(schema, %{"firstName" => "John", "lastName" => "Doe", "address" => %{"streetAddress" => "21 2nd Street", "city" => "New York"}})
#=> {:ok, %{"first_name" => "John", "last_name" => "Doe", "address" => %{"street_address" => "21 2nd Street", "city" => "New York"}}}
You can also apply key transformation, for example if the data to be validated doesn't really have consistent keys, or if you want to normalize keys before validation.
defmodule MyApp.User do
 @moduledoc false

 def schema() do
 Zoi.map(%{
 "@name" => Zoi.string(),
 "__last_name__" => Zoi.string()
 })
 |> map_to_atom_keys()
 end

 defp map_to_atom_keys(schema) do
 schema
 |> Zoi.transform(fn map ->
 Enum.map(map, fn {k, v} ->
 case k do
 "@name" -> {:name, v}
 "__last_name__" -> {:last_name, v}
 other -> {other, v}
 end
 end)
 |> Enum.into(%{})
 end)
 end
end
Now when you validate data against this schema, the keys will be transformed to the desired format:
schema = MyApp.User.schema()
Zoi.parse(schema, %{"@name" => "John", "__last_name__" => "Doe"})
#=> {:ok, %{name: "John", last_name: "Doe"}}
And the error messages will reflect the parameter keys before transformation:
Zoi.parse(schema, %{"@name" => "John"})
#=> {:error,
#=> [
#=> %Zoi.Error{
#=> code: :required,
#=> issue: {"is required", [key: "__last_name__"]},
#=> message: "is required",
#=> path: ["__last_name__"]
#=> }
#=>]}

 Generating Schemas from JSON example

Zoi offers a very flexible way to create schemas and validate data against them. Usually, creating schemas is done programmatically but it can be a tedious task.
In this example, we will demonstrate how to infer schemas from JSON data using Zoi.
Let's say that you need to integrate with an external API and they provide you with a sample JSON response:
{
 "data": {
 "id": "60e59b99c8ca1d58514a2322",
 "project_name": "My Project",
 "description": "Project Description",
 "status": "NEW",
 "meta": {
 "id": 10744,
 "name": "Project 1",
 "slug": "/project-1",
 "symbol": "PRD1"
 },
 "start_date": "2021-06-01T22:11:00.000Z",
 "end_date": "2021-07-01T22:11:00.000Z",
 "total_prize": 20000000000,
 "winner_count": 1000,
 "link": "https://example.com"
 },
 "status": {
 "timestamp": "2025-08-29T06:46:37.240Z",
 "error_code": 0,
 "error_message": "message"
 }
}
We can use Zoi to infer a schema from this JSON data. Here's how you can do it:
defmodule ZoiJsonCodegen do
 @moduledoc """
 Generate Elixir source code (as a string) for a Zoi schema from a JSON example.
 """

 def write_module_from_json(json, module_name) do
 body = code_from_json(json)
 mod_file = Path.join("lib", Macro.underscore("#{module_name}") <> ".ex")

 source = """
 defmodule #{module_name} do
 @moduledoc false

 def #{:schema}() do
 #{body}
 end
 end
 """

 formatted = Code.format_string!(source) |> IO.iodata_to_binary()
 File.write!(mod_file, formatted)
 mod_file
 end

 def code_from_json(json) when is_binary(json) do
 json
 |> Jason.decode!()
 |> build_schema_ast()
 |> ast_to_string()
 end

 # Convert quoted AST to pretty Elixir source string
 defp ast_to_string(ast) do
 ast
 |> Macro.to_string()
 |> Code.format_string!()
 |> IO.iodata_to_binary()
 end

 # Build AST for a Zoi schema call from decoded JSON
 defp build_schema_ast(v) when is_map(v) do
 map_ast =
 {:%{}, [],
 Enum.map(v, fn {k, vv} ->
 {k, build_schema_ast(vv)}
 end)}

 quote(do: Zoi.map(unquote(map_ast)))
 end

 defp build_schema_ast(v) when is_list(v) do
 inner =
 case v do
 [h | _] -> build_schema_ast(h)
 [] -> quote(do: Zoi.any())
 end

 quote(do: Zoi.array(unquote(inner)))
 end

 defp build_schema_ast(v) when is_binary(v), do: quote(do: Zoi.string())
 defp build_schema_ast(v) when is_integer(v), do: quote(do: Zoi.integer())
 defp build_schema_ast(v) when is_float(v), do: quote(do: Zoi.number())
 defp build_schema_ast(v) when is_boolean(v), do: quote(do: Zoi.boolean())
 defp build_schema_ast(_), do: quote(do: Zoi.optional(Zoi.any()))
end
This code might be difficult to understand at first glance, but the key function is build_schema_ast/1, which recursively traverses the structure and builds an Elixir AST representing the corresponding Zoi schema.
Now we can use this module to generate a schema from the provided JSON example:
jason_string = "..." # Replace with the JSON string from the example
ZoiJsonCodegen.write_module_from_json(decoded_json, "MyApp.ExternalApiResponse")
This will result in a new file lib/my_app/external_api_response.ex containing the following schema:
defmodule MyApp.ExternalApiResponse do
 @moduledoc false

 def schema() do
 Zoi.map(%{
 "data" =>
 Zoi.map(%{
 "description" => Zoi.string(),
 "end_date" => Zoi.string(),
 "id" => Zoi.string(),
 "link" => Zoi.string(),
 "meta" =>
 Zoi.map(%{
 "id" => Zoi.integer(),
 "name" => Zoi.string(),
 "slug" => Zoi.string(),
 "symbol" => Zoi.string()
 }),
 "project_name" => Zoi.string(),
 "start_date" => Zoi.string(),
 "status" => Zoi.string(),
 "total_prize" => Zoi.integer(),
 "winner_count" => Zoi.integer()
 }),
 "status" =>
 Zoi.map(%{
 "error_code" => Zoi.integer(),
 "error_message" => Zoi.string(),
 "timestamp" => Zoi.string()
 })
 })
 end
end
This is a fully functional Zoi schema that you can use to validate data received from the external API. The generator is quite basic and may not cover all edge cases, but it provides a solid starting point for generating schemas from JSON examples.

 Localizing Zoi errors with Gettext

Zoi.Error already stores two versions of every message:
	message: rendered string (good for logging)
	issue: {template, keyword} tuple (perfect for translation)

This guide shows how to use that data with Gettext, including a .pot template you can drop into your project.
1. Extract error messages
Whenever you define custom errors, prefer the issue tuple to keep interpolation markers:
schema =
 Zoi.string()
 |> Zoi.refine(fn value ->
 if String.length(value) < 3 do
 {:error, {"too short, should be smaller than %{count}", [count: 3]}}
 else
 :ok
 end
 end)
Zoi will automatically build the message string by replacing %{count} with 3. This way, you can leverage dynamic values in your error messages.
This aligns with how Gettext handles error translations.
For example, the built-in Zoi.min/2 validator uses:
{"too small: must have at least %{count} character(s)", [count: min]}
Let's use these built-in messages as examples for localization.
2. Build a translation helper
Phoenix's <.input> component already translates errors automatically if you provide a translate_error/1 function in your CoreComponents module:
defmodule MyAppWeb.CoreComponents do
 # ... Components

 @doc """
 Translates an error message using gettext.
 """
 def translate_error({msg, opts}) do
 # Because error messages are generated dynamically, we need to
 # call Gettext with our backend as first argument. Translations
 # are available in the errors.po file (using the "errors" domain).
 if count = opts[:count] do
 Gettext.dngettext(MyAppWeb.Gettext, "errors", msg, msg, count, opts)
 else
 Gettext.dgettext(MyAppWeb.Gettext, "errors", msg, opts)
 end
 end

 @doc """
 Translates all errors for a field from a keyword list.
 """
 def translate_errors(errors, field) when is_list(errors) do
 for {^field, {msg, opts}} <- errors, do: translate_error({msg, opts})
 end
end
So no changes are required in your phoenix application. If you are not using Phoenix, create a similar helper function to translate errors using Gettext.
3. Add error messages to your .pot file
Add the following entries to priv/gettext/errors.pot (or create it) to cover built-in Zoi errors.
Important: The template strings must match exactly as Zoi generates them. Here are the most common ones:
Required field errors
msgid "is required"
msgstr ""

String validation errors
msgid "too small: must have at least %{count} character(s)"
msgid_plural "too small: must have at least %{count} character(s)"
msgstr[0] ""
msgstr[1] ""

msgid "too big: must have at most %{count} character(s)"
msgid_plural "too big: must have at most %{count} character(s)"
msgstr[0] ""
msgstr[1] ""

msgid "invalid length: must have %{count} character(s)"
msgid_plural "invalid length: must have %{count} character(s)"
msgstr[0] ""
msgstr[1] ""

msgid "invalid email format"
msgstr ""

Integer/Number validation errors
msgid "too small: must be at least %{count}"
msgid_plural "too small: must be at least %{count}"
msgstr[0] ""
msgstr[1] ""

msgid "too big: must be at most %{count}"
msgid_plural "too big: must be at most %{count}"
msgstr[0] ""
msgstr[1] ""

msgid "too small: must be greater than %{count}"
msgid_plural "too small: must be greater than %{count}"
msgstr[0] ""
msgstr[1] ""

msgid "too big: must be less than %{count}"
msgid_plural "too big: must be less than %{count}"
msgstr[0] ""
msgstr[1] ""

Type errors
msgid "invalid type: expected string"
msgstr ""

msgid "invalid type: expected integer"
msgstr ""

msgid "invalid type: expected boolean"
msgstr ""

msgid "invalid type: expected number"
msgstr ""

msgid "invalid type: expected array"
msgstr ""

Format/Pattern errors
msgid "invalid format: must be a valid URL"
msgstr ""

msgid "invalid UUID format"
msgstr ""

Other common type errors (add as needed)
msgid "invalid type: expected date"
msgid "invalid type: expected datetime"
msgid "unrecognized key: %{key}"
4. Extract and translate
Run the extraction command to propagate entries to your locale files:
mix gettext.extract --merge

This creates/updates files like priv/gettext/pt_BR/LC_MESSAGES/errors.po. Edit those files to add translations:
priv/gettext/pt_BR/LC_MESSAGES/errors.po
msgid "is required"
msgstr "campo obrigatório"

msgid "invalid email format"
msgstr "formato de email inválido"

msgid "too small: must have at least %{count} character(s)"
msgid_plural "too small: must have at least %{count} character(s)"
msgstr[0] "muito curto: deve ter pelo menos %{count} caractere"
msgstr[1] "muito curto: deve ter pelo menos %{count} caracteres"
Tip: Focus on translating the errors your application actually uses. You don't need to translate every possible Zoi error upfront.

Zoi

Zoi is a schema validation library for Elixir, designed to provide a simple and flexible way to define and validate data.
It allows you to create schemas for various data types, including strings, integers, booleans, and complex maps, with built-in support for validations like minimum and maximum values, regex patterns, and email formats.
user = Zoi.map(%{
 name: Zoi.string() |> Zoi.min(2) |> Zoi.max(100),
 age: Zoi.integer() |> Zoi.min(18) |> Zoi.max(120),
 email: Zoi.email()
})

Zoi.parse(user, %{
 name: "Alice",
 age: 30,
 email: "alice@email.com"
})
{:ok, %{name: "Alice", age: 30, email: "alice@email.com"}}
Coercion
By default, Zoi will not attempt to infer input data to match the expected type. For example, if you define a schema that expects a string, passing an integer will result in an error.
iex> Zoi.string() |> Zoi.parse(123)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected string",
 issue: {"invalid type: expected string", [type: :string]},
 path: []
 }
]}
If you need coercion, you can enable it by passing the :coerce option:
iex> Zoi.string(coerce: true) |> Zoi.parse(123)
{:ok, "123"}
Refinements
Refinements are custom validation functions that you can attach to any schema. They allow you to define complex validation logic that goes beyond the built-in validations provided by Zoi.
iex> schema = Zoi.integer() |> Zoi.refine(fn value ->
...> if value > 0 do
...> :ok
...> else
...> {:error, "must be a positive number"}
...> end
...> end)
iex> Zoi.parse(schema, 4)
{:ok, 4}
iex> Zoi.parse(schema, -1)
{:error,
 [
 %Zoi.Error{
 code: :custom,
 message: "must be a positive number",
 issue: {"must be a positive number", []},
 path: []
 }
]}
Zoi also have built-in refinements for common validations, check the Refinements section for more details. The example above can be rewritten using the built-in Zoi.positive/2 refinement:
iex> schema = Zoi.integer() |> Zoi.positive()
iex> Zoi.parse(schema, 4)
{:ok, 4}
iex> Zoi.parse(schema, -1)
{:error,
 [
 %Zoi.Error{
 code: :greater_than,
 message: "too small: must be greater than 0",
 issue: {"too small: must be greater than %{count}", [count: 0]},
 path: []
 }
]}
Transforms
Transforms are functions that modify the input data before it is returned as the final parsed value. They can be used to format, normalize, or otherwise change the data as needed.
iex> schema = Zoi.string() |> Zoi.transform(fn value ->
...> String.upcase(value)
...> end)
iex> Zoi.parse(schema, "hello")
{:ok, "HELLO"}
Zoi also provides built-in transformations. Check the Transforms section for more details. The example above can be rewritten using the built-in Zoi.to_upcase/1 transform:
iex> schema = Zoi.string() |> Zoi.to_upcase()
iex> Zoi.parse(schema, "hello")
{:ok, "HELLO"}
Custom errors
You can customize error messages for all types by passing the error option:
iex> schema = Zoi.integer(error: "must be a number")
iex> Zoi.parse(schema, "a")
{:error,
 [
 %Zoi.Error{
 code: :custom,
 message: "must be a number",
 issue: {"must be a number", [type: :integer]},
 path: []
 }
]}
This also works for refinements:
iex> schema = Zoi.number() |> Zoi.gte(10, error: "please provide a number bigger than %{count}")
iex> Zoi.parse(schema, 5)
{:error,
 [
 %Zoi.Error{
 code: :custom,
 message: "please provide a number bigger than 10",
 issue: {"please provide a number bigger than %{count}", [count: 10]},
 path: []
 }
]}
Zoi automatically interpolates values in the error messages using the issue tuple. In the above example, %{count} is replaced with 10.
For more information on what values are available for interpolation, check the documentation of each validation function.
Architecture Summary
Basically Zoi is built around a core parsing, running validations and transformations in order to achieve the final parsed output. The parsing sequence is summarized by the diagram below:
flowchart LR
ui(Unknown Input) --> parse(Parse Type) --> effects(Effects: transforms & refines in chain order) --> output(Parsed Output)
Effects (transforms and refines) execute in the order they are chained, allowing flexible composition:
Zoi.string()
|> Zoi.min(3) # refine
|> Zoi.transform(&String.trim/1) # transform
|> Zoi.refine(fn s -> ... end) # refine
|> Zoi.transform(&String.upcase/1) # transform

 Summary

 Types

 input()

 The input data to be validated against a schema.

 options()

 Options for parsing and schema definitions.

 refinement()

 Refinement function or module specification.

 result()

 The result of parsing, either {:ok, value} or {:error, errors}.

 schema()

 The schema definition.

 transform()

 Transformation function or module specification.

 Basic Types

 any(opts \\ [])

 Defines a schema that accepts any type of input.

 atom(opts \\ [])

 Defines an atom type schema.

 boolean(opts \\ [])

 Defines a boolean type schema.

 float(opts \\ [])

 Defines a float type schema.

 function(opts \\ [])

 Defines a function type schema.

 integer(opts \\ [])

 Defines an integer type schema.

 literal(value, opts \\ [])

 Defines a literal type schema.
This schema only accepts a specific literal value as valid input.

 macro(opts \\ [])

 Defines a macro type schema for validating quoted expressions (Macro.t()).

 module(opts \\ [])

 Defines a module type schema.

 null(opts \\ [])

 Defines a nil type schema.

 number(opts \\ [])

 Defines a numeric type schema.

 pid(opts \\ [])

 Defines a pid type schema.

 port(opts \\ [])

 Defines a port type schema.

 reference(opts \\ [])

 Defines a reference type schema.

 string(opts \\ [])

 Defines a string type schema.

 string_boolean(opts \\ [])

 Defines a string boolean type schema.

 Complex Types

 array(elements \\ Zoi.any(), opts \\ [])

 Defines a array type schema.

 enum(values, opts \\ [])

 Defines an enum type schema.

 extend(schema1, schema2, opts \\ [])

 Extends two map type schemas into one.
This function merges the fields of two map schemas. If there are overlapping fields, the fields from the second schema will override those from the first.
Options are inherited from schema1.

 json(opts \\ [])

 Defines a JSON type schema.

 keyword(fields, opts \\ [])

 Defines a keyword list type schema.

 list(elements \\ Zoi.any(), opts \\ [])

 alias for Zoi.array/2

 map(fields, opts)

 Defines a map type schema with structured fields

 map(key, value, opts)

 Defines a map type schema with a defined key and value type.

 object(fields, opts \\ [])

 Alias for field-based Zoi.map/2.

 struct(module, fields_or_opts \\ nil, opts \\ [])

 Defines a struct type schema.
This type is similar to Zoi.map/2, but it is specifically designed to work with Elixir structs.

 tuple(fields, opts \\ [])

 Defines a tuple type schema.

 Encapsulated Types

 default(inner, value, opts \\ [])

 Creates a default value for the schema.

 discriminated_union(discriminator, schemas, opts \\ [])

 Defines a discriminated union type schema.

 intersection(fields, opts \\ [])

 Defines an intersection type schema.

 lazy(fun, opts \\ [])

 Defines a lazy type that defers schema evaluation until parse time.

 nullable(inner, opts \\ [])

 Defines a schema that allows nil values.

 nullish(inner, opts \\ [])

 Makes the schema optional and nullable for the Zoi.map/2 and Zoi.keyword/2 types.

 optional(inner)

 Makes the schema optional for the Zoi.map/2 and Zoi.keyword/2 types.

 required(inner)

 Makes the schema required for the Zoi.map/2 and Zoi.keyword/2 types.

 union(fields, opts \\ [])

 Defines a union type schema.

 Extensions

 codec(from, to, opts)

 Creates a codec for bidirectional parsing (encode/decode).

 refine(schema, fun)

 Adds a custom validation function to the schema.

 transform(schema, fun)

 Adds a transformation function to the schema.

 Formats

 email(opts \\ [])

 Validates that the string is a valid email format.

 hex(opts \\ [])

 Validates that the string is a valid hexadecimal format.

 ipv4(opts \\ [])

 Validates that the string is a valid IPv4 address.

 ipv6(opts \\ [])

 Validates that the string is a valid IPv6 address.

 url(opts \\ [])

 Defines a URL format validation.

 uuid(opts \\ [])

 Validates that the string is a valid UUID format.

 Parsing

 coerce(schema)

 Enables coercion on a schema.

 describe(schema)

 See Zoi.Describe

 description(schema)

 Retrieves the description associated with the schema.
It's often useful to store additional information about the schema, describing its purpose or usage.
Currently the :description is used generating a description for json schema.
Check the Zoi.JSONSchema module for more details.

 encode(codec, input, opts \\ [])

 Encodes a value using a codec's encode function.

 encode!(codec, input, opts \\ [])

 Encodes a value using a codec's encode function, raising on error.

 example(schema)

 Retrieves an example value from the schema. If no example is defined, it returns nil.

 metadata(schema)

 Retrieves the metadata associated with the schema.
It's often useful to store additional information about the schema, such as descriptions, titles, or custom identifiers.

 parse(schema, input, opts \\ [])

 Parse input data against a schema.
Accepts optional coerce: true option to enable coercion.

 parse!(schema, input, opts \\ [])

 Similar to Zoi.parse/3, but raises an error if parsing fails.

 prettify_errors(errors)

 Converts a list of errors into a human-readable string format.
Each error is displayed on a new line, with its message and path.

 to_json_schema(schema)

 See Zoi.JSONSchema

 treefy_errors(errors)

 Converts a list of errors into a tree structure, where each error is placed at its corresponding path.

 type_spec(schema, opts \\ [])

 Generates the Elixir type specification for a given schema.

 Refinements

 downcase(schema, opts \\ [])

 Validates that a string is in downcase.

 ends_with(schema, suffix, opts \\ [])

 Validates that a string ends with a specific suffix.

 gt(schema, gt, opts \\ [])

 Validates that the input is greater than a specific value.

 gte(schema, gte, opts \\ [])

 Validates that the input is greater than or equal to a value.

 length(schema, length, opts \\ [])

 Validates that the string has a specific length.

 lt(schema, lt, opts \\ [])

 Validates that the input is less than a specific value.

 lte(schema, lte, opts \\ [])

 Validates that the input is less than or equal to a value.

 max(schema, max, opts \\ [])

 alias for Zoi.lte/2

 min(schema, min, opts \\ [])

 alias for Zoi.gte/2

 multiple_of(schema, value, opts \\ [])

 Validates that the input is a multiple of a given value.
This can be used for integers, floats, numbers and decimals.

 negative(schema, opts \\ [])

 Validates that the input is a negative number (less than 0).
This can be used for integers, floats and numbers.

 non_negative(schema, opts \\ [])

 Validates that the input is a non-negative number (greater than or equal to 0).
This can be used for integers, floats and numbers.

 one_of(schema, values, opts \\ [])

 Validates that the input value is within a list of valid literals.

 positive(schema, opts \\ [])

 Validates that the input is a positive number (greater than 0).
This can be used for integers, floats and numbers.

 regex(schema, regex, opts \\ [])

 Validates that the input matches a given regex pattern.

 starts_with(schema, prefix, opts \\ [])

 Validates that a string starts with a specific prefix.

 upcase(schema, opts \\ [])

 Validates that a string is in upcase.

 Structured Types

 date(opts \\ [])

 Defines a date type schema.

 datetime(opts \\ [])

 Defines a DateTime type schema.

 decimal(opts \\ [])

 Defines a decimal type schema.

 naive_datetime(opts \\ [])

 Defines a NaiveDateTime type schema.

 time(opts \\ [])

 Defines a time type schema.

 Transforms

 to_downcase(schema)

 Converts a string to lowercase.

 to_struct(schema, module)

 Converts a schema to a struct of the given module.
This is useful for transforming parsed data into a specific struct type.

 to_upcase(schema)

 Converts a string to uppercase.

 trim(schema)

 Trims whitespace from the beginning and end of a string.

 Types

 input()

 @type input() :: any()

The input data to be validated against a schema.

 options()

 @type options() :: keyword()

Options for parsing and schema definitions.

 refinement()

 @type refinement() ::
 {module(), atom(), [any()]}
 | (input() -> :ok | {:error, binary()})
 | (input(), Zoi.Context.t() -> :ok | {:error, binary()})

Refinement function or module specification.

 result()

 @type result() :: {:ok, any()} | {:error, [Zoi.Error.t()]}

The result of parsing, either {:ok, value} or {:error, errors}.

 schema()

 @type schema() :: Zoi.Type.t()

The schema definition.

 transform()

 @type transform() ::
 {module(), atom(), [any()]}
 | (input() -> {:ok, input()} | {:error, binary()} | input())
 | (input(), Zoi.Context.t() -> {:ok, input()} | {:error, binary()} | input())

Transformation function or module specification.

 Basic Types

 any(opts \\ [])

 @spec any(opts :: options()) :: schema()

Defines a schema that accepts any type of input.
This is useful when you want to allow any data type without validation.
Example
iex> schema = Zoi.any()
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, 42)
{:ok, 42}
iex> Zoi.parse(schema, %{key: "value"})
{:ok, %{key: "value"}}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 atom(opts \\ [])

 @spec atom(opts :: options()) :: schema()

Defines an atom type schema.
Examples
iex> schema = Zoi.atom()
iex> Zoi.parse(schema, :atom)
{:ok, :atom}
iex> Zoi.parse(schema, "not_an_atom")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected atom",
 issue: {"invalid type: expected atom", [type: :atom]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 boolean(opts \\ [])

 @spec boolean(opts :: options()) :: schema()

Defines a boolean type schema.
Example
iex> schema = Zoi.boolean()
iex> Zoi.parse(schema, true)
{:ok, true}
For coercion, you can pass the :coerce option:
iex> Zoi.boolean(coerce: true) |> Zoi.parse("true")
{:ok, true}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

 float(opts \\ [])

 @spec float(opts :: options()) :: schema()

Defines a float type schema.
Example
iex> schema = Zoi.float()
iex> Zoi.parse(schema, 3.14)
{:ok, 3.14}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.float(gte: 0.0, lte: 1.0)
iex> Zoi.parse(schema, 0.5)
{:ok, 0.5}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, 1.5)
iex> code
:less_than_or_equal_to
For coercion, you can pass the :coerce option:
iex> Zoi.float(coerce: true) |> Zoi.parse("3.14")
{:ok, 3.14}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (number/0 | {number/0, keyword/0}) - float greater than or equal to

	:lte (number/0 | {number/0, keyword/0}) - float less than or equal to

	:gt (number/0 | {number/0, keyword/0}) - float greater than

	:lt (number/0 | {number/0, keyword/0}) - float less than

	:multiple_of (number/0 | {number/0, keyword/0}) - float must be multiple of

 function(opts \\ [])

 @spec function(opts :: options()) :: schema()

Defines a function type schema.
This schema only accepts function values as valid input. Use the arity option
to require a specific function arity.
Examples
iex> schema = Zoi.function()
iex> {:ok, func} = Zoi.parse(schema, fn -> :ok end)
iex> is_function(func)
true

iex> schema = Zoi.function(arity: 2)
iex> {:ok, func} = Zoi.parse(schema, fn _, _ -> :ok end)
iex> is_function(func, 2)
true
iex> Zoi.parse(schema, "not_a_function")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected function of arity 2",
 issue: {"invalid type: expected function of arity 2", [type: :function]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:arity (integer/0) - Function arity

 integer(opts \\ [])

 @spec integer(opts :: options()) :: schema()

Defines an integer type schema.
Example
iex> shema = Zoi.integer()
iex> Zoi.parse(shema, 42)
{:ok, 42}
iex> Zoi.parse(shema, "42")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected integer",
 issue: {"invalid type: expected integer", [type: :integer]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.integer(gte: 0, lte: 100)
iex> Zoi.parse(schema, 50)
{:ok, 50}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, -5)
iex> code
:greater_than_or_equal_to
For coercion, you can pass the :coerce option:
iex> Zoi.integer(coerce: true) |> Zoi.parse("42")
{:ok, 42}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (integer/0 | {integer/0, keyword/0}) - integer greater than or equal to

	:lte (integer/0 | {integer/0, keyword/0}) - integer less than or equal to

	:gt (integer/0 | {integer/0, keyword/0}) - integer greater than

	:lt (integer/0 | {integer/0, keyword/0}) - integer less than

	:multiple_of (integer/0 | {integer/0, keyword/0}) - integer must be multiple of

 literal(value, opts \\ [])

 @spec literal(value :: input(), opts :: options()) :: schema()

Defines a literal type schema.
This schema only accepts a specific literal value as valid input.
Example
iex> schema = Zoi.literal(true)
iex> Zoi.parse(schema, true)
{:ok, true}
iex> Zoi.parse(schema, :other_value)
{:error,
 [
 %Zoi.Error{
 code: :invalid_literal,
 message: "invalid literal: expected true",
 issue: {"invalid literal: expected %{expected}", [expected: true]},
 path: []
 }
]}
iex> schema = Zoi.literal(42)
iex> Zoi.parse(schema, 42)
{:ok, 42}
iex> Zoi.parse(schema, 43)
{:error,
 [
 %Zoi.Error{
 code: :invalid_literal,
 message: "invalid literal: expected 42",
 issue: {"invalid literal: expected %{expected}", [expected: 42]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 macro(opts \\ [])

 @spec macro(opts :: options()) :: schema()

Defines a macro type schema for validating quoted expressions (Macro.t()).
Example
iex> schema = Zoi.macro()
iex> {:ok, ast} = Zoi.parse(schema, quote(do: String.t()))
iex> Macro.to_string(ast)
"String.t()"
iex> Zoi.parse(schema, %{invalid: :ast})
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected macro",
 issue: {"invalid type: expected macro", [type: :macro]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 module(opts \\ [])

 @spec module(opts :: options()) :: schema()

Defines a module type schema.
Example
iex> schema = Zoi.module()
iex> Zoi.parse(schema, SomeModule)
{:ok, SomeModule}
iex> Zoi.parse(schema, :not_a_module)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected module",
 issue: {"invalid type: expected module", [type: :module]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 null(opts \\ [])

 @spec null(opts :: options()) :: schema()

Defines a nil type schema.
This schema only accepts nil as valid input.
Example
iex> schema = Zoi.null()
iex> Zoi.parse(schema, nil)
{:ok, nil}
iex> Zoi.parse(schema, "not_nil")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected nil",
 issue: {"invalid type: expected nil", [type: nil]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 number(opts \\ [])

 @spec number(opts :: options()) :: schema()

Defines a numeric type schema.
This type accepts both integers and floats.
Example
iex> schema = Zoi.number()
iex> Zoi.parse(schema, 42)
{:ok, 42}
iex> Zoi.parse(schema, 3.14)
{:ok, 3.14}
iex> Zoi.parse(schema, "42")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected number",
 issue: {"invalid type: expected number", [type: :number]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.number(gte: 0, lte: 100)
iex> Zoi.parse(schema, 50.5)
{:ok, 50.5}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, -1)
iex> code
:greater_than_or_equal_to
For coercion, you can pass the :coerce option:
iex> Zoi.number(coerce: true) |> Zoi.parse("42.5")
{:ok, 42.5}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (number/0 | {number/0, keyword/0}) - number greater than or equal to

	:lte (number/0 | {number/0, keyword/0}) - number less than or equal to

	:gt (number/0 | {number/0, keyword/0}) - number greater than

	:lt (number/0 | {number/0, keyword/0}) - number less than

	:multiple_of (number/0 | {number/0, keyword/0}) - number must be multiple of

 pid(opts \\ [])

 @spec pid(opts :: options()) :: schema()

Defines a pid type schema.
Example
iex> schema = Zoi.pid()
iex> {:ok, pid} = Zoi.parse(schema, self())
iex> is_pid(pid)
true
iex> Zoi.parse(schema, :not_pid)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected pid",
 issue: {"invalid type: expected pid", [type: :pid]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 port(opts \\ [])

 @spec port(opts :: options()) :: schema()

Defines a port type schema.
Example
iex> schema = Zoi.port()
iex> Zoi.parse(schema, :not_a_port)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected port",
 issue: {"invalid type: expected port", [type: :port]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 reference(opts \\ [])

 @spec reference(opts :: options()) :: schema()

Defines a reference type schema.
Example
iex> schema = Zoi.reference()
iex> {:ok, ref} = Zoi.parse(schema, make_ref())
iex> is_reference(ref)
true
iex> Zoi.parse(schema, :not_a_ref)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected reference",
 issue: {"invalid type: expected reference", [type: :reference]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 string(opts \\ [])

 @spec string(opts :: options()) :: schema()

Defines a string type schema.
Example
iex> schema = Zoi.string()
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, :world)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected string",
 issue: {"invalid type: expected string", [type: :string]},
 path: []
 }
]}
Zoi provides built-in validations for strings, such as:
Zoi.min(2)
Zoi.max(100)
Zoi.length(5)
Zoi.starts_with("hello")
Zoi.ends_with("world")
Zoi.regex(~r/^[a-zA-Z]+$/)
You can also pass constraint options directly in the constructor:
iex> schema = Zoi.string(min_length: 2, max_length: 100)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, "h")
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 issue: {"too small: must have at least %{count} character(s)", [count: 2]},
 message: "too small: must have at least 2 character(s)",
 path: []
 }
]}
Additionally it can perform data transformation:
Zoi.string()
|> Zoi.trim()
|> Zoi.to_downcase()
|> Zoi.to_uppercase()
for coercion, you can pass the :coerce option:
iex> Zoi.string(coerce: true) |> Zoi.parse(123)
{:ok, "123"}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:min_length (integer/0 | {integer/0, keyword/0}) - string minimum length

	:max_length (integer/0 | {integer/0, keyword/0}) - string maximum length

	:length (integer/0 | {integer/0, keyword/0}) - string exact length

 string_boolean(opts \\ [])

 @spec string_boolean(opts :: options()) :: schema()

Defines a string boolean type schema.
This type parses "boolish" string values:
thruthy values: true, "true", "1", "yes", "on", "y", "enabled"
falsy values: false, "false", "0", "no", "off", "n", "disabled"
Example
iex> schema = Zoi.string_boolean()
iex> Zoi.parse(schema, "true")
{:ok, true}
iex> Zoi.parse(schema, "false")
{:ok, false}
iex> Zoi.parse(schema, "yes")
{:ok, true}
iex> Zoi.parse(schema, "no")
{:ok, false}
You can also specify custom truthy and falsy values using the :truthy and :falsy options:
iex> schema = Zoi.string_boolean(truthy: ["yes", "y"], falsy: ["no", "n"])
iex> Zoi.parse(schema, "yes")
{:ok, true}
iex> Zoi.parse(schema, "no")
{:ok, false}
By default the string boolean type is case insensitive and the input is converted to lowercase during the comparison. You can change this behavior using the :case option:
iex> schema = Zoi.string_boolean(case: "sensitive")
iex> Zoi.parse(schema, "True")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected string boolean",
 issue: {"invalid type: expected string boolean", [type: :string_boolean]},
 path: []
 }
]}
iex> Zoi.parse(schema, "true")
{:ok, true}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:case ("sensitive" | "insensitive") - Whether string comparison is case sensitive or insensitive. The default value is "insensitive".

	:truthy (list of String.t/0) - List of strings to interpret as true. The default value is ["true", "1", "yes", "on", "y", "enabled"].

	:falsy (list of String.t/0) - List of strings to interpret as false. The default value is ["false", "0", "no", "off", "n", "disabled"].

 Complex Types

 array(elements \\ Zoi.any(), opts \\ [])

 @spec array(elements :: schema(), opts :: options()) :: schema()

Defines a array type schema.
Use Zoi.array(elements) to define an array of a specific type:
iex> schema = Zoi.array(Zoi.string())
iex> Zoi.parse(schema, ["hello", "world"])
{:ok, ["hello", "world"]}
iex> Zoi.parse(schema, ["hello", 123])
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected string",
 issue: {"invalid type: expected string", [type: :string]},
 path: [1]
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.array(Zoi.string(), min_length: 1, max_length: 5)
iex> Zoi.parse(schema, ["hello", "world"])
{:ok, ["hello", "world"]}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, [])
iex> code
:greater_than_or_equal_to
Built-in chainable validations for arrays include:
Zoi.min(2) # alias for `Zoi.gte/2`
Zoi.max(5) # alias for `Zoi.lte/2`
Zoi.length(5)
For coercion, you can pass the :coerce option and Zoi will coerce maps and tuples into the array type:
iex> schema = Zoi.array(Zoi.integer(), coerce: true)
iex> Zoi.parse(schema, %{0 => 1, 1 => 2, 2 => 3})
{:ok, [1, 2, 3]}
iex> Zoi.parse(schema, {1, 2, 3})
{:ok, [1, 2, 3]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:min_length (integer/0 | {integer/0, keyword/0}) - array minimum length

	:max_length (integer/0 | {integer/0, keyword/0}) - array maximum length

	:length (integer/0 | {integer/0, keyword/0}) - array exact length

 enum(values, opts \\ [])

 @spec enum(values :: [input()] | keyword(), opts :: options()) :: schema()

Defines an enum type schema.
Use Zoi.enum(values) to define a schema that accepts only specific values:
iex> schema = Zoi.enum([:red, :green, :blue])
iex> Zoi.parse(schema, :red)
{:ok, :red}
iex> Zoi.parse(schema, :yellow)
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of red, green, blue",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "red, green, blue"]},
 path: []
 }
]}
You can also specify enum as strings:
iex> schema = Zoi.enum(["red", "green", "blue"])
iex> Zoi.parse(schema, "red")
{:ok, "red"}
iex> Zoi.parse(schema, "yellow")
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of red, green, blue",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "red, green, blue"]},
 path: []
 }
]}
or with key-value pairs:
iex> schema = Zoi.enum([red: "Red", green: "Green", blue: "Blue"])
iex> Zoi.parse(schema, "Red")
{:ok, :red}
iex> Zoi.parse(schema, "Yellow")
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of Red, Green, Blue",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "Red, Green, Blue"]},
 path: []
 }
]}
Integer values can also be used:
iex> schema = Zoi.enum([1, 2, 3])
iex> Zoi.parse(schema, 1)
{:ok, 1}
iex> Zoi.parse(schema, 4)
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of 1, 2, 3",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "1, 2, 3"]},
 path: []
 }
]}
And Integers with key-value pairs also is allowed:
iex> schema = Zoi.enum([one: 1, two: 2, three: 3])
iex> Zoi.parse(schema, 1)
{:ok, :one}
iex> Zoi.parse(schema, 4)
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of 1, 2, 3",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "1, 2, 3"]},
 path: []
 }
]}
You can also specify the :coerce option to allow coercion for both key and value of the enum:
iex> schema = Zoi.enum([one: 1, two: 2, three: 3], coerce: true)
iex> Zoi.parse(schema, 1)
{:ok, :one}
iex> Zoi.parse(schema, :one)
{:ok, :one}
iex> Zoi.parse(schema, "1")
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of 1, 2, 3",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "1, 2, 3"]},
 path: []
 }
]}
iex> Zoi.parse(schema, "one")
{:error,
 [
 %Zoi.Error{
 code: :invalid_enum_value,
 message: "invalid enum value: expected one of 1, 2, 3",
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "1, 2, 3"]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

 extend(schema1, schema2, opts \\ [])

 @spec extend(schema1 :: schema(), schema2 :: schema(), opts :: options()) :: schema()

Extends two map type schemas into one.
This function merges the fields of two map schemas. If there are overlapping fields, the fields from the second schema will override those from the first.
Options are inherited from schema1.
Example
iex> user = Zoi.map(%{name: Zoi.string()})
iex> role = Zoi.map(%{role: Zoi.enum([:admin,:user])})
iex> user_with_role = Zoi.extend(user, role)
iex> Zoi.parse(user_with_role, %{name: "Alice", role: :admin})
{:ok, %{name: "Alice", role: :admin}}

 json(opts \\ [])

 @spec json(opts :: options()) :: schema()

Defines a JSON type schema.
Type that is a union of all valid JSON types:
Zoi.union([
 Zoi.null(),
 Zoi.boolean(),
 Zoi.number(),
 Zoi.string(),
 Zoi.array(Zoi.lazy(fn -> Zoi.json() end)),
 Zoi.map(Zoi.string(), Zoi.lazy(fn -> Zoi.json() end))
])

 keyword(fields, opts \\ [])

 @spec keyword(fields :: keyword(), opts :: options()) :: schema()

Defines a keyword list type schema.
iex> schema = Zoi.keyword(name: Zoi.string(), age: Zoi.integer())
iex> Zoi.parse(schema, [name: "Alice", age: 30])
{:ok, [name: "Alice", age: 30]}
iex> Zoi.parse(schema, %{name: "Alice", age: 30})
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected keyword list",
 issue: {"invalid type: expected keyword list", [type: :keyword]},
 path: []
 }
]}
By default, unrecognized keys will be removed from the parsed data. If you want to reject unrecognized keys, use unrecognized_keys: :error:
iex> schema = Zoi.keyword([name: Zoi.string()], unrecognized_keys: :error)
iex> Zoi.parse(schema, [name: "Alice", age: 30])
{:error,
 [
 %Zoi.Error{
 code: :unrecognized_key,
 message: "unrecognized key: age",
 issue: {"unrecognized key: %{key}", [key: :age]},
 path: []
 }
]}
All fields are optional by default in keyword lists, but you can make them required by using Zoi.required/1:
iex> schema = Zoi.keyword([name: Zoi.string() |> Zoi.required()])
iex> Zoi.parse(schema, [])
{:error,
 [
 %Zoi.Error{
 code: :required,
 message: "is required",
 issue: {"is required", [key: :name]},
 path: [:name]
 }
]}
Flexible keys and values
You can also define a keyword schema that accepts non structured keys, by just declaring the value type:
iex> schema = Zoi.keyword(Zoi.string())
iex> Zoi.parse(schema, [a: "hello", b: "world"])
{:ok, [a: "hello", b: "world"]}
Options
	:unrecognized_keys (:strip | :error | :preserve | {:preserve, {term/0, term/0}}) - How to handle unrecognized keys:
	:strip (default) - removes unrecognized keys
	:error - returns error on unrecognized keys
	:preserve - keeps unrecognized keys as-is
	{:preserve, {key_schema, value_schema}} - preserves and validates both keys and values

	:strict (boolean/0) - This option is deprecated. Use :unrecognized_keys option instead. If true, unrecognized keys will cause validation to fail.

	:empty_values (list of term/0) - List of values to treat as empty and skip during parsing.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 list(elements \\ Zoi.any(), opts \\ [])

 @spec list(elements :: schema(), opts :: options()) :: schema()

alias for Zoi.array/2

 map(fields, opts)

 @spec map(fields :: map(), opts :: options()) :: schema()

Defines a map type schema with structured fields
Similar to Elixir's type system where %{key: type} defines a map with specific fields.
Fields are required by default, following Elixir's semantics.
iex> schema = Zoi.map(%{name: Zoi.string(), age: Zoi.integer()})
iex> Zoi.parse(schema, %{name: "John", age: 30})
{:ok, %{name: "John", age: 30}}
Use Zoi.optional/1 for optional fields:
iex> schema = Zoi.map(%{name: Zoi.string(), age: Zoi.optional(Zoi.integer())})
iex> Zoi.parse(schema, %{name: "John"})
{:ok, %{name: "John"}}
Missing required fields return an error:
iex> schema = Zoi.map(%{name: Zoi.string()})
iex> Zoi.parse(schema, %{})
{:error,
 [
 %Zoi.Error{
 code: :required,
 message: "is required",
 issue: {"is required", [key: :name]},
 path: [:name]
 }
]}
By default, unrecognized keys will be removed from the parsed data. Use unrecognized_keys: :error to reject them:
iex> schema = Zoi.map(%{name: Zoi.string()}, unrecognized_keys: :error)
iex> Zoi.parse(schema, %{name: "Alice", age: 30})
{:error,
 [
 %Zoi.Error{
 code: :unrecognized_key,
 message: "unrecognized key: age",
 issue: {"unrecognized key: %{key}", [key: :age]},
 path: []
 }
]}
String keys and Atom keys
Maps can use string keys, expecting string keys in input:
iex> schema = Zoi.map(%{"name" => Zoi.string()})
iex> Zoi.parse(schema, %{"name" => "Alice"})
{:ok, %{"name" => "Alice"}}
Use :coerce to convert string keys to atoms:
iex> schema = Zoi.map(%{name: Zoi.string()}, coerce: true)
iex> Zoi.parse(schema, %{"name" => "Alice"})
{:ok, %{name: "Alice"}}
Optional vs Default fields
The order of encapsulation matters for optional fields with defaults:
Option 1 - Zoi.default(Zoi.optional(...)): Apply default when missing OR nil:
iex> schema = Zoi.map(%{name: Zoi.default(Zoi.optional(Zoi.string()), "default")})
iex> Zoi.parse(schema, %{})
{:ok, %{name: "default"}}
Option 2 - Zoi.optional(Zoi.default(...)): Skip when missing, apply default on nil:
iex> schema = Zoi.map(%{name: Zoi.optional(Zoi.default(Zoi.string(), "default"))})
iex> Zoi.parse(schema, %{})
{:ok, %{}}
iex> Zoi.parse(schema, %{name: nil})
{:ok, %{name: "default"}}
Empty values
Customize which values are treated as "missing" with :empty_values:
iex> schema = Zoi.map(%{name: Zoi.string()}, empty_values: [nil, ""])
iex> Zoi.parse(schema, %{name: ""})
{:error,
 [
 %Zoi.Error{
 code: :required,
 message: "is required",
 issue: {"is required", [key: :name]},
 path: [:name]
 }
]}
Options
	:unrecognized_keys (:strip | :error | :preserve | {:preserve, {term/0, term/0}}) - How to handle unrecognized keys:
	:strip (default) - removes unrecognized keys
	:error - returns error on unrecognized keys
	:preserve - keeps unrecognized keys as-is
	{:preserve, {key_schema, value_schema}} - preserves and validates both keys and values

	:strict (boolean/0) - This option is deprecated. Use :unrecognized_keys option instead. If true, unrecognized keys will cause validation to fail.

	:empty_values (list of term/0) - List of values to treat as empty and skip during parsing.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 map(key, value, opts)

 @spec map(key :: schema(), type :: schema(), opts :: options()) :: schema()

Defines a map type schema with a defined key and value type.
Example
iex> schema = Zoi.map(Zoi.string(), Zoi.integer())
iex> Zoi.parse(schema, %{"a" => 1, "b" => 2})
{:ok, %{"a" => 1, "b" => 2}}
iex> Zoi.parse(schema, %{"a" => "1", "b" => 2})
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected integer",
 issue: {"invalid type: expected integer", [type: :integer]},
 path: ["a"]
 }
]}
Options
	:unrecognized_keys (:strip | :error | :preserve | {:preserve, {term/0, term/0}}) - How to handle unrecognized keys:
	:strip (default) - removes unrecognized keys
	:error - returns error on unrecognized keys
	:preserve - keeps unrecognized keys as-is
	{:preserve, {key_schema, value_schema}} - preserves and validates both keys and values

	:strict (boolean/0) - This option is deprecated. Use :unrecognized_keys option instead. If true, unrecognized keys will cause validation to fail.

	:empty_values (list of term/0) - List of values to treat as empty and skip during parsing.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 object(fields, opts \\ [])

 @spec object(fields :: map(), opts :: options()) :: schema()

Alias for field-based Zoi.map/2.
This function exists for familiarity with Zod's API. It creates the same
field-based map schema as Zoi.map(%{...}).
See Zoi.map/2 for full documentation.
Example
iex> schema = Zoi.object(%{name: Zoi.string(), age: Zoi.integer()})
iex> Zoi.parse(schema, %{name: "Alice", age: 30})
{:ok, %{name: "Alice", age: 30}}

 struct(module, fields_or_opts \\ nil, opts \\ [])

 @spec struct(module :: module(), fields :: map() | nil, opts :: options()) :: schema()

Defines a struct type schema.
This type is similar to Zoi.map/2, but it is specifically designed to work with Elixir structs.
When called with only a module, it validates that the input is a struct of that type without
validating the struct's fields. When called with a module and fields, it validates both the
struct type and its fields.
Examples
Validate struct type only (no field validation)
schema = Zoi.struct(URI)
Zoi.parse(schema, URI.parse("https://example.com"))
#=> {:ok, %URI{...}}
Zoi.parse(schema, %{})
#=> {:error, [%Zoi.Error{code: :invalid_type, message: "invalid type: expected struct", ...}]}

Validate struct with field schema
defmodule MyApp.User do
 defstruct [:name, :age, :email]
end

schema = Zoi.struct(MyApp.User, %{
 name: Zoi.string() |> Zoi.min(2) |> Zoi.max(100),
 age: Zoi.integer() |> Zoi.min(18) |> Zoi.max(120),
 email: Zoi.email()
})
Zoi.parse(schema, %MyApp.User{name: "Alice", age: 30, email: "alice@email.com"})
#=> {:ok, %MyApp.User{name: "Alice", age: 30, email: "alice@email.com"}}
Zoi.parse(schema, %{})
#=> {:error, [%Zoi.Error{code: :invalid_type, message: "invalid type: expected struct", ...}]}
By default, all fields are required, but you can make them optional by using Zoi.optional/1:
schema = Zoi.struct(MyApp.User, %{
 name: Zoi.string() |> Zoi.optional(),
 age: Zoi.integer() |> Zoi.optional(),
 email: Zoi.email() |> Zoi.optional()
})
Zoi.parse(schema, %MyApp.User{name: "Alice"})
#=> {:ok, %MyApp.User{name: "Alice"}}
You can also parse maps into structs by enabling the :coerce option:
schema = Zoi.struct(MyApp.User, %{
 name: Zoi.string(),
 age: Zoi.integer(),
 email: Zoi.email()
}, coerce: true)
Zoi.parse(schema, %{name: "Alice", age: 30, email: "alice@email.com"})
#=> {:ok, %MyApp.User{name: "Alice", age: 30, email: "alice@email.com"}}
Also with string keys
Zoi.parse(schema, %{"name" => "Alice", "age" => 30, "email" => "alice@email.com"})
#=> {:ok, %MyApp.User{name: "Alice", age: 30, email: "alice@email.com"}}
Options
	:unrecognized_keys (:strip | :error | :preserve | {:preserve, {term/0, term/0}}) - How to handle unrecognized keys:
	:strip (default) - removes unrecognized keys
	:error - returns error on unrecognized keys
	:preserve - keeps unrecognized keys as-is
	{:preserve, {key_schema, value_schema}} - preserves and validates both keys and values

	:strict (boolean/0) - This option is deprecated. Use :unrecognized_keys option instead. If true, unrecognized keys will cause validation to fail.

	:empty_values (list of term/0) - List of values to treat as empty and skip during parsing.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 tuple(fields, opts \\ [])

 @spec tuple(fields :: tuple(), opts :: options()) :: schema()

Defines a tuple type schema.
Use Zoi.tuple(fields) to define a tuple with specific types for each element:
iex> schema = Zoi.tuple({Zoi.string(), Zoi.integer()})
iex> Zoi.parse(schema, {"hello", 42})
{:ok, {"hello", 42}}
iex> Zoi.parse(schema, {"hello", "world"})
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected integer",
 issue: {"invalid type: expected integer", [type: :integer]},
 path: [1]
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 Encapsulated Types

 default(inner, value, opts \\ [])

 @spec default(inner :: schema(), value :: input(), opts :: options()) :: schema()

Creates a default value for the schema.
This allows you to specify a default value that will be used if the input is nil or not provided.
Example
iex> schema = Zoi.string() |> Zoi.default("default value")
iex> Zoi.parse(schema, nil)
{:ok, "default value"}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 discriminated_union(discriminator, schemas, opts \\ [])

 @spec discriminated_union(
 discriminator :: atom() | binary(),
 schemas :: [schema()],
 opts :: options()
) :: schema()

Defines a discriminated union type schema.
A discriminated union uses a discriminator field to determine which schema to validate against.
This is more efficient than a regular union because it looks at a specific field value
first, then validates against only the matching schema improving error clarity and performance.
Example
iex> cat_schema = Zoi.map(%{
...> type: Zoi.literal("cat"),
...> meow: Zoi.string()
...> })
iex> dog_schema = Zoi.map(%{
...> type: Zoi.literal("dog"),
...> bark: Zoi.string()
...> })
iex> schema = Zoi.discriminated_union(:type, [cat_schema, dog_schema])
iex> Zoi.parse(schema, %{type: "cat", meow: "meow"})
{:ok, %{type: "cat", meow: "meow"}}
iex> Zoi.parse(schema, %{type: "dog", bark: "woof"})
{:ok, %{type: "dog", bark: "woof"}}
iex> Zoi.parse(schema, %{type: "bird", chirp: "tweet"})
{:error,
 [
 %Zoi.Error{
 code: :custom,
 message: "unknown discriminator 'bird' for field 'type'",
 issue: {"unknown discriminator '%{value}' for field '%{field}'",
 [field: :type, value: "bird"]},
 path: []
 }
]}
All schemas must be map types and must have the discriminator field defined:
iex> success = Zoi.map(%{
...> status: Zoi.literal("success"),
...> data: Zoi.string()
...> })
iex> error = Zoi.map(%{
...> status: Zoi.literal("error"),
...> message: Zoi.string()
...> })
iex> schema = Zoi.discriminated_union(:status, [success, error])
iex> Zoi.parse(schema, %{status: "success", data: "result"})
{:ok, %{status: "success", data: "result"}}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

 intersection(fields, opts \\ [])

 @spec intersection(fields :: [schema()], opts :: options()) :: schema()

Defines an intersection type schema.
An intersection type allows you to combine multiple schemas into one, requiring that the input data satisfies all of them.
Example
iex> schema = Zoi.intersection([
...> Zoi.string() |> Zoi.min(2),
...> Zoi.string() |> Zoi.max(5)
...>])
iex> Zoi.parse(schema, "helloworld")
{:error,
 [
 %Zoi.Error{
 code: :less_than_or_equal_to,
 message: "too big: must have at most 5 character(s)",
 issue: {"too big: must have at most %{count} character(s)", [count: 5]},
 path: []
 }
]}
iex> Zoi.parse(schema, "hi")
{:ok, "hi"}
If you define the validation on the intersection itself, it will apply to all types in the intersection:
iex> schema = Zoi.intersection([
...> Zoi.string(),
...> Zoi.integer(coerce: true)
...>]) |> Zoi.min(3)
iex> Zoi.parse(schema, "115")
{:ok, 115}
iex> Zoi.parse(schema, "2")
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 message: "too small: must have at least 3 character(s)",
 issue: {"too small: must have at least %{count} character(s)", [count: 3]},
 path: []
 }
]}

 lazy(fun, opts \\ [])

 @spec lazy(fun :: (-> schema()) | {module(), atom(), list()}, opts :: options()) ::
 schema()

Defines a lazy type that defers schema evaluation until parse time.
This is useful for defining recursive types where a schema needs to reference itself.
Example
Define a user schema where users can have friends (other users)
defmodule MySchemas do
 def user do
 Zoi.map(%{
 name: Zoi.string(),
 email: Zoi.email(),
 friends: Zoi.array(Zoi.lazy(fn -> user() end)) |> Zoi.optional()
 })
 end
end

MySchemas.user()
|> Zoi.parse(%{
 name: "Alice",
 email: "alice@example.com",
 friends: [
 %{name: "Bob", email: "bob@example.com"},
 %{name: "Carol", email: "carol@example.com", friends: [
 %{name: "Dave", email: "dave@example.com"}
]}
]
})
{:ok, %{name: "Alice", email: "alice@example.com", friends: [...]}}
You can also define a MFA in case you need to use the lazy type during compile time:
Zoi.lazy({mod, func, args})

 nullable(inner, opts \\ [])

 @spec nullable(inner :: schema(), opts :: options()) :: schema()

Defines a schema that allows nil values.
Examples
iex> schema = Zoi.string() |> Zoi.nullable()
iex> Zoi.parse(schema, nil)
{:ok, nil}
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}

 nullish(inner, opts \\ [])

 (since 0.7.5)

 @spec nullish(inner :: schema(), opts :: options()) :: schema()

Makes the schema optional and nullable for the Zoi.map/2 and Zoi.keyword/2 types.
Example
iex> schema = Zoi.map(%{name: Zoi.string() |> Zoi.nullish()})
iex> Zoi.parse(schema, %{})
{:ok, %{}}
iex> Zoi.parse(schema, %{name: nil})
{:ok, %{name: nil}}

 optional(inner)

 @spec optional(inner :: schema()) :: schema()

Makes the schema optional for the Zoi.map/2 and Zoi.keyword/2 types.
Example
iex> schema = Zoi.map(%{name: Zoi.string() |> Zoi.optional()})
iex> Zoi.parse(schema, %{})
{:ok, %{}}

 required(inner)

 @spec required(inner :: schema()) :: schema()

Makes the schema required for the Zoi.map/2 and Zoi.keyword/2 types.
Example
iex> schema = Zoi.keyword([name: Zoi.string() |> Zoi.required()])
iex> Zoi.parse(schema, [])
{:error,
 [
 %Zoi.Error{
 code: :required,
 message: "is required",
 issue: {"is required", [key: :name]},
 path: [:name]
 }
]}

 union(fields, opts \\ [])

 @spec union(fields :: [schema()], opts :: options()) :: schema()

Defines a union type schema.
Example
iex> schema = Zoi.union([Zoi.string(), Zoi.integer()])
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, 42)
{:ok, 42}
iex> Zoi.parse(schema, true)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected integer",
 issue: {"invalid type: expected integer", [type: :integer]},
 path: []
 }
]}
This type also allows to define validations for each type in the union:
iex> schema = Zoi.union([
...> Zoi.string() |> Zoi.min(2),
...> Zoi.integer() |> Zoi.min(0)
...>])
iex> Zoi.parse(schema, "h") # fails on string and try to parse as integer
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected integer",
 issue: {"invalid type: expected integer", [type: :integer]},
 path: []
 }
]}
iex> Zoi.parse(schema, -1)
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 message: "too small: must be at least 0",
 issue: {"too small: must be at least %{count}", [count: 0]},
 path: []
 }
]}
If you define the validation on the union itself, it will apply to all types in the union:
iex> schema = Zoi.union([
...> Zoi.string(),
...> Zoi.integer()
...>]) |> Zoi.min(3)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, 2)
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 message: "too small: must be at least 3",
 issue: {"too small: must be at least %{count}", [count: 3]},
 path: []
 }
]}

 Extensions

 codec(from, to, opts)

 @spec codec(from :: schema(), to :: schema(), opts :: keyword()) :: schema()

Creates a codec for bidirectional parsing (encode/decode).
Codecs enable data transformation in both directions - decoding transforms input
from the from schema type to the to schema type, while encoding does the reverse.
This is useful for building custom encoders/decoders, such as converting ISO date
strings to Date structs and back.
Note
Zoi is focused on parsing (decoding). Codecs provide the foundation for
anyone who wants to build their own encoders on top of Zoi.
Example
iex> date_codec = Zoi.codec(
...> Zoi.ISO.date(),
...> Zoi.date(),
...> decode: fn value -> Date.from_iso8601(value) end,
...> encode: fn value -> Date.to_iso8601(value) end
...>)
iex> Zoi.parse(date_codec, "2025-01-15")
{:ok, ~D[2025-01-15]}
iex> Zoi.encode(date_codec, ~D[2025-01-15])
{:ok, "2025-01-15"}
Decode Flow (via Zoi.parse/3)
	Validate input against the from schema
	Apply the decode function
	Validate the result against the to schema

Encode Flow (via Zoi.encode/3)
	Validate input against the to schema
	Apply the encode function
	Validate the result against the from schema

Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:decode (term/0) - A 1-arity function that transforms from the from schema to the to schema.

	:encode (term/0) - A 1-arity function that transforms from the to schema to the from schema.

The decode and encode functions can return:
	value - the transformed value (success)
	{:ok, value} - explicit success
	{:error, reason} - error with a custom message

 refine(schema, fun)

 @spec refine(schema :: schema(), fun :: refinement()) :: schema()

Adds a custom validation function to the schema.
Refinements execute in chain order along with transformations, allowing flexible composition.
The refinement function validates the data at its position in the chain and should return :ok for valid data or {:error, reason} for invalid data.
iex> schema = Zoi.string() |> Zoi.refine(fn value ->
...> if String.length(value) > 5, do: :ok, else: {:error, "must be longer than 5 characters"}
...> end)
iex> Zoi.parse(schema, "hello")
{:error,
 [
 %Zoi.Error{
 code: :custom,
 issue: {"must be longer than 5 characters", []},
 message: "must be longer than 5 characters",
 path: []
 }
]}
iex> Zoi.parse(schema, "hello world")
{:ok, "hello world"}
Returning multiple errors
You can use the context when defining the Zoi.refine/2 function to return multiple errors.
iex> schema = Zoi.string() |> Zoi.refine(fn value, ctx ->
...> if String.length(value) < 5 do
...> Zoi.Context.add_error(ctx, "must be longer than 5 characters")
...> |> Zoi.Context.add_error("must be shorter than 10 characters")
...> end
...> end)
iex> Zoi.parse(schema, "hi")
{:error,
 [
 %Zoi.Error{
 code: :custom,
 issue: {"must be longer than 5 characters", []},
 message: "must be longer than 5 characters",
 path: []
 },
 %Zoi.Error{
 code: :custom,
 issue: {"must be shorter than 10 characters", []},
 message: "must be shorter than 10 characters",
 path: []
 }
]}
mfa
You can also pass a mfa (module, function, args) to the Zoi.refine/2 function. This is recommended if
you are declaring schemas during compile time:
defmodule MySchema do
 use Zoi

 @schema Zoi.string() |> Zoi.refine({__MODULE__, :validate, []})

 def validate(value, opts \\ []) do
 if String.length(value) > 5 do
 :ok
 else
 {:error, "must be longer than 5 characters"}
 end
 end
end
Since during the module compilation, anonymous functions are not available, you can use the mfa option to pass a module, function and arguments.
The opts argument is mandatory, this is where the ctx is passed to the function and you can leverage the Zoi.Context to add extra errors.
In general, most cases the :ok or {:error, reason} returns will be enough. Use the context only if you need extra errors or modify the context in some way.

 transform(schema, fun)

 @spec transform(schema :: schema(), fun :: transform()) :: schema()

Adds a transformation function to the schema.
Transformations execute in chain order along with refinements, allowing flexible composition.
A transform modifies the data and passes the result to the next effect in the chain.
Example
iex> schema = Zoi.string() |> Zoi.transform(fn value ->
...> {:ok, String.trim(value)}
...> end)
iex> Zoi.parse(schema, " hello world ")
{:ok, "hello world"}
You can also use mfa (module, function, args) to pass a transformation function:
iex> defmodule MyTransforms do
...> def trim(value, _opts) do
...> {:ok, String.trim(value)}
...> end
...> end
iex> schema = Zoi.string() |> Zoi.transform({MyTransforms, :trim, []})
iex> Zoi.parse(schema, " hello world ")
{:ok, "hello world"}
This is useful if you are defining schemas at compile time, where anonymous functions are not available.
The opts argument is mandatory, this is where the ctx is passed to the function and you can leverage the Zoi.Context to add extra errors.
In general, most cases the {:ok, value} or {:error, reason} returns will be enough. Use the context only if you need extra errors or modify the context in
some way.
Using context for validation
You can use the context when defining the Zoi.transform/2 function to return multiple errors.
iex> schema = Zoi.string() |> Zoi.transform(fn value, ctx ->
...> if String.length(value) < 5 do
...> Zoi.Context.add_error(ctx, "must be longer than 5 characters")
...> |> Zoi.Context.add_error("must be shorter than 10 characters")
...> else
...> {:ok, String.trim(value)}
...> end
...> end)
iex> Zoi.parse(schema, "hi")
{:error,
 [
 %Zoi.Error{
 code: :custom,
 issue: {"must be longer than 5 characters", []},
 message: "must be longer than 5 characters",
 path: []
 },
 %Zoi.Error{
 code: :custom,
 issue: {"must be shorter than 10 characters", []},
 message: "must be shorter than 10 characters",
 path: []
 }
]}
The ctx is a Zoi.Context struct that contains information about the current parsing context, including the path, options, and any errors that have been added so far.

 Formats

 email(opts \\ [])

 @spec email(opts :: options()) :: schema()

Validates that the string is a valid email format.
Example
iex> schema = Zoi.email()
iex> Zoi.parse(schema, "test@test.com")
{:ok, "test@test.com"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "invalid-email")
iex> error.message
"invalid email format"
It uses a regex pattern to validate the email format, which checks for a standard email structure including local part, domain, and top-level domain:
~r/^(?!.)(?!.*..)([a-z0-9_'+-.]*)[a-z0-9_+-]@([a-z0-9][a-z0-9-]*.)+[a-z]{2,}$/i
You can customize the email pattern by Zoi built-in options:
Regex based on on https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/email
Zoi.email(pattern: Zoi.Regexes.html5_email())

Regex pattern based on RFC 5322 official standard
Zoi.email(pattern: Zoi.Regexes.rfc5322_email())

Regex pattern based on how Phoenix framework validates emails
Zoi.email(pattern: Zoi.Regexes.simple_email())

The default, inspired by the [reasonable email regex}(https://colinhacks.com/essays/reasonable-email-regex)
Zoi.email(pattern: Zoi.Regexes.email())
or adding your own custom regex:
Zoi.email(pattern: ~r/^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+.[a-zA-Z]{2,}$/)

 hex(opts \\ [])

 @spec hex(opts :: options()) :: schema()

Validates that the string is a valid hexadecimal format.
Example
iex> schema = Zoi.hex()
iex> Zoi.parse(schema, "a3c113")
{:ok, "a3c113"}

 ipv4(opts \\ [])

 @spec ipv4(opts :: options()) :: schema()

Validates that the string is a valid IPv4 address.
Example
iex> schema = Zoi.ipv4()
iex> Zoi.parse(schema, "127.0.0.1")
{:ok, "127.0.0.1"}

 ipv6(opts \\ [])

 @spec ipv6(opts :: options()) :: schema()

Validates that the string is a valid IPv6 address.
Example
iex> schema = Zoi.ipv6()
iex> Zoi.parse(schema, "2001:0db8:85a3:0000:0000:8a2e:0370:7334")
{:ok, "2001:0db8:85a3:0000:0000:8a2e:0370:7334"}

 url(opts \\ [])

 @spec url(opts :: options()) :: schema()

Defines a URL format validation.
Example
iex> schema = Zoi.url()
iex> Zoi.parse(schema, "https://example.com")
{:ok, "https://example.com"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "invalid-url")
iex> error.message
"invalid format: must be a valid URL"

 uuid(opts \\ [])

 @spec uuid(opts :: options()) :: schema()

Validates that the string is a valid UUID format.
You can specify the UUID version using the :version option, which can be one of "v1", "v2", "v3", "v4", "v5", "v6", "v7", or "v8". If no version is specified, it defaults to any valid UUID format.
Example
iex> schema = Zoi.uuid()
iex> Zoi.parse(schema, "550e8400-e29b-41d4-a716-446655440000")
{:ok, "550e8400-e29b-41d4-a716-446655440000"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "invalid-uuid")
iex> error.message
"invalid UUID format"

iex> schema = Zoi.uuid(version: "v8")
iex> Zoi.parse(schema, "6d084cef-a067-8e9e-be6d-7c5aefdfd9b4")
{:ok, "6d084cef-a067-8e9e-be6d-7c5aefdfd9b4"}

 Parsing

 coerce(schema)

 (since 0.11.0)

 @spec coerce(schema :: schema()) :: schema()

Enables coercion on a schema.
This is a helper function that enables type coercion on schemas that support it.
Types that don't have a :coerce field are returned unchanged.
Coercion allows automatic type conversion of input data. For example, the string "42"
can be coerced to the integer 42, or the string "true" to the boolean true.
Example
iex> schema = Zoi.integer() |> Zoi.coerce()
iex> Zoi.parse(schema, "42")
{:ok, 42}
For nested schemas, use Zoi.Schema.traverse/2 to enable coercion on child fields.
Note that traverse only applies to nested fields, not the root schema:
iex> schema = Zoi.map(%{age: Zoi.integer()}) |> Zoi.Schema.traverse(&Zoi.coerce/1) |> Zoi.coerce()
iex> Zoi.parse(schema, %{"age" => "25"})
{:ok, %{age: 25}}

 describe(schema)

 @spec describe(schema :: schema()) :: binary()

See Zoi.Describe

 description(schema)

 @spec description(schema :: schema()) :: binary() | nil

Retrieves the description associated with the schema.
It's often useful to store additional information about the schema, describing its purpose or usage.
Currently the :description is used generating a description for json schema.
Check the Zoi.JSONSchema module for more details.
Example
iex> schema = Zoi.string(description: "Defines the name of the user")
iex> Zoi.description(schema)
"Defines the name of the user"

 encode(codec, input, opts \\ [])

 @spec encode(codec :: schema(), input :: input(), opts :: options()) :: result()

Encodes a value using a codec's encode function.
The encode flow:
	Validates the input against the codec's to schema
	Applies the encode function
	Validates the result against the codec's from schema

Returns {:ok, encoded} or {:error, errors}.
Example
iex> date_codec = Zoi.codec(
...> Zoi.ISO.date(),
...> Zoi.date(),
...> decode: fn value -> Date.from_iso8601(value) end,
...> encode: fn value -> Date.to_iso8601(value) end
...>)
iex> Zoi.encode(date_codec, ~D[2025-01-15])
{:ok, "2025-01-15"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.encode(date_codec, "not-a-date")
iex> error.code
:invalid_type
iex> error.message
"invalid type: expected date"

 encode!(codec, input, opts \\ [])

 @spec encode!(codec :: schema(), input :: input(), opts :: options()) :: any()

Encodes a value using a codec's encode function, raising on error.
Same as encode/3 but raises Zoi.Error on failure.
Example
iex> date_codec = Zoi.codec(
...> Zoi.ISO.date(),
...> Zoi.date(),
...> decode: fn value -> Date.from_iso8601(value) end,
...> encode: fn value -> Date.to_iso8601(value) end
...>)
iex> Zoi.encode!(date_codec, ~D[2025-01-15])
"2025-01-15"

 example(schema)

 @spec example(schema :: schema()) :: input()

Retrieves an example value from the schema. If no example is defined, it returns nil.
Example
iex> schema = Zoi.string(example: "example string")
iex> Zoi.example(schema)
"example string"
This directive is specally useful for documentation and testing purposes.
As an example, you can define a schema as it follows:
defmodule MyApp.UserSchema do
 @schema Zoi.map(
 %{
 name: Zoi.string() |> Zoi.min(2) |> Zoi.max(100),
 age: Zoi.integer() |> Zoi.optional()
 },
 example: %{name: "Alice", age: 30}
)

 def schema, do: @schema
end
Then you can test if the example matches the schema:
defmodule MyApp.UserSchemaTest do
 use ExUnit.Case
 alias MyApp.UserSchema

 test "example matches schema" do
 example = Zoi.example(UserSchema.schema())
 assert {:ok, example} == Zoi.parse(UserSchema.schema(), example)
 end
end

 metadata(schema)

 @spec metadata(schema :: schema()) :: keyword()

Retrieves the metadata associated with the schema.
It's often useful to store additional information about the schema, such as descriptions, titles, or custom identifiers.
Example
iex> schema = Zoi.string(metadata: [identifier: "string/1", for: "username"])
iex> Zoi.metadata(schema)
[identifier: "string/1", for: "username"]
You can also add an example helper that can be used on own elixir docs:
defmodule MyApp.UserSchema do
 @schema Zoi.map(
 %{
 name: Zoi.string() |> Zoi.min(2) |> Zoi.max(100),
 age: Zoi.integer() |> Zoi.optional()
 },
 metadata: [
 doc: "A user schema with name and optional age",
 moduledoc: "Schema representing a user with name and optional age"
]
)
 @moduledoc """
 #{Zoi.metadata(@schema)[:moduledoc]}
 """

 @doc """
 #{Zoi.metadata(@schema)[:doc]}
 """
 def schema, do: @schema
end
The metadata is flexible, allowing you to store any key-value pairs that suit your needs.

 parse(schema, input, opts \\ [])

 @spec parse(schema :: schema(), input :: input(), opts :: options()) :: result()

Parse input data against a schema.
Accepts optional coerce: true option to enable coercion.
Examples
iex> schema = Zoi.string() |> Zoi.min(2) |> Zoi.max(100)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, "h")
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 message: "too small: must have at least 2 character(s)",
 issue: {"too small: must have at least %{count} character(s)", [count: 2]},
 path: []
 }
]}
iex> Zoi.parse(schema, 123, coerce: true)
{:ok, "123"}

 parse!(schema, input, opts \\ [])

 @spec parse!(schema :: schema(), input :: input(), opts :: options()) :: any()

Similar to Zoi.parse/3, but raises an error if parsing fails.
Examples
schema = Zoi.string() |> Zoi.min(2) |> Zoi.max(100)
Zoi.parse!(schema, "hello")
#=> "hello"
Zoi.parse!(schema, "h")
** (Zoi.ParseError) Parsing error:
#
too small: must have at least 2 characters

 prettify_errors(errors)

 @spec prettify_errors([Zoi.Error.t() | binary()]) :: binary()

Converts a list of errors into a human-readable string format.
Each error is displayed on a new line, with its message and path.
Example
iex> errors = [
...> %Zoi.Error{path: ["name"], message: "is required"},
...> %Zoi.Error{path: ["age"], message: "invalid type: must be an integer"},
...> %Zoi.Error{path: ["address", "city"], message: "is required"}
...>]
iex> Zoi.prettify_errors(errors)
"is required, at name\ninvalid type: must be an integer, at age\nis required, at address.city"

iex> errors = [%Zoi.Error{message: "invalid type: must be a string"}]
iex> Zoi.prettify_errors(errors)
"invalid type: must be a string"

 to_json_schema(schema)

 @spec to_json_schema(schema :: schema()) :: map()

See Zoi.JSONSchema

 treefy_errors(errors)

 @spec treefy_errors([Zoi.Error.t()]) :: map()

Converts a list of errors into a tree structure, where each error is placed at its corresponding path.
This is useful for displaying validation errors in a structured way, such as in a form.
Example
iex> errors = [
...> %Zoi.Error{path: ["name"], message: "is required"},
...> %Zoi.Error{path: ["age"], message: "invalid type: must be an integer"},
...> %Zoi.Error{path: ["address", "city"], message: "is required"}
...>]
iex> Zoi.treefy_errors(errors)
%{
 "name" => ["is required"],
 "age" => ["invalid type: must be an integer"],
 "address" => %{
 "city" => ["is required"]
 }
}
If you use this function on types without path (like Zoi.string()), it will create a top-level :__errors__ key:
iex> errors = [%Zoi.Error{message: "invalid type: must be a string"}]
iex> Zoi.treefy_errors(errors)
%{__errors__: ["invalid type: must be a string"]}
Errors without a path are considered top-level errors and are grouped under :__errors__.
This is how Zoi also handles errors when Zoi.map/2 is used with unrecognized_keys: :error option, where unrecognized keys are added to the :__errors__ key.

 type_spec(schema, opts \\ [])

 @spec type_spec(schema :: schema(), opts :: options()) :: Macro.t()

Generates the Elixir type specification for a given schema.
Example
defmodule MyApp.Schema do
 @schema Zoi.string() |> Zoi.min(2) |> Zoi.max(100)
 @type t :: unquote(Zoi.type_spec(@schema))
end
This will generate the following type specification:
@type t :: binary()
This also applies to complex types, such as Zoi.map/2:
defmodule MyApp.User do
 @schema Zoi.map(%{
 name: Zoi.string() |> Zoi.min(2) |> Zoi.max(100),
 age: Zoi.integer() |> Zoi.optional(),
 email: Zoi.email()
 })
 @type t :: unquote(Zoi.type_spec(@schema))
end
Which will generate:
@type t :: %{
 required(:name) => binary(),
 optional(:age) => integer(),
 required(:email) => binary()
}
Union types are also supported:
 Zoi.union([Zoi.string(), Zoi.integer()])
 #=> binary() | integer()
All the types provided by Zoi supports the type spec generation.

 Refinements

 downcase(schema, opts \\ [])

 @spec downcase(schema :: schema(), opts :: options()) :: schema()

Validates that a string is in downcase.
Example
iex> schema = Zoi.string() |> Zoi.downcase()
iex> Zoi.parse(schema, "hello world")
{:ok, "hello world"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "Hello World")
iex> error.message
"invalid format: must be lowercase"

 ends_with(schema, suffix, opts \\ [])

 @spec ends_with(schema :: schema(), suffix :: binary(), opts :: options()) :: schema()

Validates that a string ends with a specific suffix.
Example
iex> schema = Zoi.string() |> Zoi.ends_with("world")
iex> Zoi.parse(schema, "hello world")
{:ok, "hello world"}
iex> Zoi.parse(schema, "hello")
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "hello")
iex> error.message
"invalid format: must end with 'world'"

 gt(schema, gt, opts \\ [])

 @spec gt(schema :: schema(), gt :: number(), opts :: options()) :: schema()

Validates that the input is greater than a specific value.
This can be used for strings, integers, floats and numbers.
Example
iex> schema = Zoi.integer() |> Zoi.gt(2)
iex> Zoi.parse(schema, 3)
{:ok, 3}
iex> Zoi.parse(schema, 2)
{:error,
 [
 %Zoi.Error{
 code: :greater_than,
 message: "too small: must be greater than 2",
 issue: {"too small: must be greater than %{count}", [count: 2]},
 path: []
 }
]}

 gte(schema, gte, opts \\ [])

 @spec gte(schema :: schema(), gte :: number(), opts :: options()) :: schema()

Validates that the input is greater than or equal to a value.
This can be used for strings, integers, floats and numbers.
Example
iex> schema = Zoi.string() |> Zoi.gte(3)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, "hi")
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 message: "too small: must have at least 3 character(s)",
 issue: {"too small: must have at least %{count} character(s)", [count: 3]},
 path: []
 }
]}

 length(schema, length, opts \\ [])

 @spec length(schema :: schema(), length :: non_neg_integer(), opts :: options()) ::
 schema()

Validates that the string has a specific length.
Example
iex> schema = Zoi.string() |> Zoi.length(5)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, "hi")
{:error,
 [
 %Zoi.Error{
 code: :invalid_length,
 message: "invalid length: must have 5 character(s)",
 issue: {"invalid length: must have %{count} character(s)", [count: 5]},
 path: []
 }
]}

 lt(schema, lt, opts \\ [])

 @spec lt(schema :: schema(), lt :: number(), opts :: options()) :: schema()

Validates that the input is less than a specific value.
This can be used for strings, integers, floats and numbers.
Example
iex> schema = Zoi.integer() |> Zoi.lt(10)
iex> Zoi.parse(schema, 5)
{:ok, 5}
iex> Zoi.parse(schema, 10)
{:error,
 [
 %Zoi.Error{
 code: :less_than,
 message: "too big: must be less than 10",
 issue: {"too big: must be less than %{count}", [count: 10]},
 path: []
 }
]}

 lte(schema, lte, opts \\ [])

 @spec lte(schema :: schema(), lte :: number(), opts :: options()) :: schema()

Validates that the input is less than or equal to a value.
This can be used for strings, integers, floats and numbers.
Example
iex> schema = Zoi.string() |> Zoi.lte(5)
iex> Zoi.parse(schema, "hello")
{:ok, "hello"}
iex> Zoi.parse(schema, "hello world")
{:error,
 [
 %Zoi.Error{
 code: :less_than_or_equal_to,
 message: "too big: must have at most 5 character(s)",
 issue: {"too big: must have at most %{count} character(s)", [count: 5]},
 path: []
 }
]}

 max(schema, max, opts \\ [])

 @spec max(schema :: schema(), max :: number(), opts :: options()) :: schema()

alias for Zoi.lte/2

 min(schema, min, opts \\ [])

 @spec min(schema :: schema(), min :: number(), opts :: options()) :: schema()

alias for Zoi.gte/2

 multiple_of(schema, value, opts \\ [])

 @spec multiple_of(schema :: schema(), value :: number(), opts :: options()) ::
 schema()

Validates that the input is a multiple of a given value.
This can be used for integers, floats, numbers and decimals.
Example
iex> schema = Zoi.integer() |> Zoi.multiple_of(5)
iex> Zoi.parse(schema, 10)
{:ok, 10}
iex> Zoi.parse(schema, 7)
{:error,
 [
 %Zoi.Error{
 code: :multiple_of,
 message: "must be a multiple of 5",
 issue: {"must be a multiple of %{value}", [value: 5]},
 path: []
 }
]}

 negative(schema, opts \\ [])

 @spec negative(schema :: schema(), opts :: options()) :: schema()

Validates that the input is a negative number (less than 0).
This can be used for integers, floats and numbers.
Example
iex> schema = Zoi.integer() |> Zoi.negative()
iex> Zoi.parse(schema, -5)
{:ok, -5}
iex> Zoi.parse(schema, 0)
{:error,
 [
 %Zoi.Error{
 code: :less_than,
 message: "too big: must be less than 0",
 issue: {"too big: must be less than %{count}", [count: 0]},
 path: []
 }
]}

 non_negative(schema, opts \\ [])

 @spec non_negative(schema :: schema(), opts :: options()) :: schema()

Validates that the input is a non-negative number (greater than or equal to 0).
This can be used for integers, floats and numbers.
Example
iex> schema = Zoi.integer() |> Zoi.non_negative()
iex> Zoi.parse(schema, 0)
{:ok, 0}
iex> Zoi.parse(schema, -5)
{:error,
 [
 %Zoi.Error{
 code: :greater_than_or_equal_to,
 message: "too small: must be at least 0",
 issue: {"too small: must be at least %{count}", [count: 0]},
 path: []
 }
]}

 one_of(schema, values, opts \\ [])

 @spec one_of(schema :: schema(), values :: list(), opts :: options()) :: schema()

Validates that the input value is within a list of valid literals.
This refinement can be used with any type and checks if the parsed value
is a member of the provided list.
Example
iex> schema = Zoi.string() |> Zoi.one_of(["red", "green", "blue"])
iex> Zoi.parse(schema, "red")
{:ok, "red"}
iex> Zoi.parse(schema, "yellow")
{:error,
 [
 %Zoi.Error{
 code: :not_in_values,
 message: "invalid value: expected one of red, green, blue",
 issue: {"invalid value: expected one of %{values}", [values: ["red", "green", "blue"]]},
 path: []
 }
]}

iex> schema = Zoi.integer() |> Zoi.one_of([1, 2, 3, 5, 8])
iex> Zoi.parse(schema, 5)
{:ok, 5}
iex> {:error, [%Zoi.Error{code: code}]} = Zoi.parse(schema, 4)
iex> code
:not_in_values

 positive(schema, opts \\ [])

 @spec positive(schema :: schema(), opts :: options()) :: schema()

Validates that the input is a positive number (greater than 0).
This can be used for integers, floats and numbers.
Example
iex> schema = Zoi.integer() |> Zoi.positive()
iex> Zoi.parse(schema, 5)
{:ok, 5}
iex> Zoi.parse(schema, 0)
{:error,
 [
 %Zoi.Error{
 code: :greater_than,
 message: "too small: must be greater than 0",
 issue: {"too small: must be greater than %{count}", [count: 0]},
 path: []
 }
]}

 regex(schema, regex, opts \\ [])

 @spec regex(schema :: schema(), regex :: Regex.t(), opts :: options()) :: schema()

Validates that the input matches a given regex pattern.
Example
iex> schema = Zoi.string() |> Zoi.regex(~r/^\d+$/)
iex> Zoi.parse(schema, "12345")
{:ok, "12345"}

 starts_with(schema, prefix, opts \\ [])

 @spec starts_with(schema :: schema(), prefix :: binary(), opts :: options()) ::
 schema()

Validates that a string starts with a specific prefix.
Example
iex> schema = Zoi.string() |> Zoi.starts_with("hello")
iex> Zoi.parse(schema, "hello world")
{:ok, "hello world"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "world hello")
iex> error.message
"invalid format: must start with 'hello'"

 upcase(schema, opts \\ [])

 @spec upcase(schema :: schema(), opts :: options()) :: schema()

Validates that a string is in upcase.
Example
iex> schema = Zoi.string() |> Zoi.upcase()
iex> Zoi.parse(schema, "HELLO")
{:ok, "HELLO"}
iex> {:error, [%Zoi.Error{} = error]} = Zoi.parse(schema, "Hello")
iex> error.message
"invalid format: must be uppercase"

 Structured Types

 date(opts \\ [])

 @spec date(opts :: options()) :: schema()

Defines a date type schema.
This type is used to validate and parse date values. It will convert the input to a Date structure.
Example
iex> schema = Zoi.date()
iex> Zoi.parse(schema, ~D[2000-01-01])
{:ok, ~D[2000-01-01]}
iex> Zoi.parse(schema, "2000-01-01")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected date",
 issue: {"invalid type: expected date", [type: :date]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.date(gte: ~D[2020-01-01], lte: ~D[2025-12-31])
iex> Zoi.parse(schema, ~D[2023-06-15])
{:ok, ~D[2023-06-15]}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, ~D[2019-01-01])
iex> code
:greater_than_or_equal_to
You can also specify the :coerce option to allow coercion from strings or integers:
iex> schema = Zoi.date(coerce: true)
iex> Zoi.parse(schema, "2000-01-01")
{:ok, ~D[2000-01-01]}
iex> Zoi.parse(schema, 730_485) # 730_485 is the number of days since epoch
{:ok, ~D[2000-01-01]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (Date.t/0 | {Date.t/0, keyword/0}) - date minimum value

	:lte (Date.t/0 | {Date.t/0, keyword/0}) - date maximum value

	:gt (Date.t/0 | {Date.t/0, keyword/0}) - date greater than value

	:lt (Date.t/0 | {Date.t/0, keyword/0}) - date less than value

 datetime(opts \\ [])

 @spec datetime(opts :: options()) :: schema()

Defines a DateTime type schema.
This type is used to validate and parse DateTime values. It will convert the input to a DateTime structure.
Example
iex> schema = Zoi.datetime()
iex> Zoi.parse(schema, ~U[2000-01-01 12:34:56Z])
{:ok, ~U[2000-01-01 12:34:56Z]}
iex> Zoi.parse(schema, "2000-01-01T12:34:56Z")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected datetime",
 issue: {"invalid type: expected datetime", [type: :datetime]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.datetime(gte: ~U[2020-01-01 00:00:00Z])
iex> Zoi.parse(schema, ~U[2023-06-15 12:00:00Z])
{:ok, ~U[2023-06-15 12:00:00Z]}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, ~U[2019-01-01 00:00:00Z])
iex> code
:greater_than_or_equal_to
You can also specify the :coerce option to allow coercion from strings or integers:
iex> schema = Zoi.datetime(coerce: true)
iex> Zoi.parse(schema, "2000-01-01T12:34:56Z")
{:ok, ~U[2000-01-01 12:34:56Z]}
iex> Zoi.parse(schema, 1_464_096_368) # 1_464_096_368 is the Unix timestamp
{:ok, ~U[2016-05-24 13:26:08Z]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (DateTime.t/0 | {DateTime.t/0, keyword/0}) - datetime minimum value

	:lte (DateTime.t/0 | {DateTime.t/0, keyword/0}) - datetime maximum value

	:gt (DateTime.t/0 | {DateTime.t/0, keyword/0}) - datetime greater than value

	:lt (DateTime.t/0 | {DateTime.t/0, keyword/0}) - datetime less than value

 decimal(opts \\ [])

 @spec decimal(opts :: options()) :: schema()

Defines a decimal type schema.
This type is used to validate and parse decimal numbers, which can be useful for financial calculations or precise numeric values.
It uses the Decimal library for handling decimal numbers. It will convert the input to a Decimal structure.
Example
iex> schema = Zoi.decimal()
iex> Zoi.parse(schema, Decimal.new("123.45"))
{:ok, Decimal.new("123.45")}
iex> Zoi.parse(schema, "invalid-decimal")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected decimal",
 issue: {"invalid type: expected decimal", [type: :decimal]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.decimal(gte: Decimal.new("0"), lte: Decimal.new("100"))
iex> Zoi.parse(schema, Decimal.new("50"))
{:ok, Decimal.new("50")}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, Decimal.new("-1"))
iex> code
:greater_than_or_equal_to
You can also specify the :coerce option to allow coercion from strings or integers:
iex> schema = Zoi.decimal(coerce: true)
iex> Zoi.parse(schema, "123.45")
{:ok, Decimal.new("123.45")}
iex> Zoi.parse(schema, 123)
{:ok, Decimal.new("123")}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (Decimal.t/0 | {Decimal.t/0, keyword/0}) - decimal greater than or equal to

	:lte (Decimal.t/0 | {Decimal.t/0, keyword/0}) - decimal less than or equal to

	:gt (Decimal.t/0 | {Decimal.t/0, keyword/0}) - decimal greater than

	:lt (Decimal.t/0 | {Decimal.t/0, keyword/0}) - decimal less than

	:multiple_of (Decimal.t/0 | {Decimal.t/0, keyword/0}) - decimal must be multiple of

 naive_datetime(opts \\ [])

 @spec naive_datetime(opts :: options()) :: schema()

Defines a NaiveDateTime type schema.
This type is used to validate and parse NaiveDateTime values. It will convert the input to a NaiveDateTime structure.
Example
iex> schema = Zoi.naive_datetime()
iex> Zoi.parse(schema, ~N[2000-01-01 23:00:07])
{:ok, ~N[2000-01-01 23:00:07]}
iex> Zoi.parse(schema, "2000-01-01T12:34:56")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected naive datetime",
 issue: {"invalid type: expected naive datetime", [type: :naive_datetime]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.naive_datetime(gte: ~N[2020-01-01 00:00:00])
iex> Zoi.parse(schema, ~N[2023-06-15 12:00:00])
{:ok, ~N[2023-06-15 12:00:00]}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, ~N[2019-01-01 00:00:00])
iex> code
:greater_than_or_equal_to
You can also specify the :coerce option to allow coercion from strings or integers:
iex> schema = Zoi.naive_datetime(coerce: true)
iex> Zoi.parse(schema, "2000-01-01T12:34:56")
{:ok, ~N[2000-01-01 12:34:56]}
iex> Zoi.parse(schema, 1) # 1 is the number of days since epoch
{:ok, ~N[0000-01-01 00:00:01]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (NaiveDateTime.t/0 | {NaiveDateTime.t/0, keyword/0}) - naive datetime minimum value

	:lte (NaiveDateTime.t/0 | {NaiveDateTime.t/0, keyword/0}) - naive datetime maximum value

	:gt (NaiveDateTime.t/0 | {NaiveDateTime.t/0, keyword/0}) - naive datetime greater than value

	:lt (NaiveDateTime.t/0 | {NaiveDateTime.t/0, keyword/0}) - naive datetime less than value

 time(opts \\ [])

 @spec time(opts :: options()) :: schema()

Defines a time type schema.
This type is used to validate and parse time values. It will convert the input to a Time structure.
Example
iex> schema = Zoi.time()
iex> Zoi.parse(schema, ~T[12:34:56])
{:ok, ~T[12:34:56]}
iex> Zoi.parse(schema, "12:34:56")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected time",
 issue: {"invalid type: expected time", [type: :time]},
 path: []
 }
]}
You can pass constraint options directly in the constructor:
iex> schema = Zoi.time(gte: ~T[09:00:00], lte: ~T[17:00:00])
iex> Zoi.parse(schema, ~T[12:00:00])
{:ok, ~T[12:00:00]}
iex> {:error, [%{code: code}]} = Zoi.parse(schema, ~T[08:00:00])
iex> code
:greater_than_or_equal_to
You can also specify the :coerce option to allow coercion from strings:
iex> schema = Zoi.time(coerce: true)
iex> Zoi.parse(schema, "12:34:56")
{:ok, ~T[12:34:56]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

	:coerce (boolean/0) - Enable or disable coercion. The default value is false.

	:gte (Time.t/0 | {Time.t/0, keyword/0}) - time minimum value

	:lte (Time.t/0 | {Time.t/0, keyword/0}) - time maximum value

	:gt (Time.t/0 | {Time.t/0, keyword/0}) - time greater than value

	:lt (Time.t/0 | {Time.t/0, keyword/0}) - time less than value

 Transforms

 to_downcase(schema)

Converts a string to lowercase.
Example
iex> schema = Zoi.string() |> Zoi.to_downcase()
iex> Zoi.parse(schema, "Hello World")
{:ok, "hello world"}

 to_struct(schema, module)

 @spec to_struct(schema :: schema(), struct :: module()) :: schema()

Converts a schema to a struct of the given module.
This is useful for transforming parsed data into a specific struct type.
Example
defmodule User do
 defstruct [:name, :age]
end

schema = Zoi.map(%{
 name: Zoi.string(),
 age: Zoi.integer()
})
|> Zoi.to_struct(User)

Zoi.parse(schema, %{name: "Alice", age: 30})
#=> {:ok, %User{name: "Alice", age: 30}}

 to_upcase(schema)

 @spec to_upcase(schema :: schema()) :: schema()

Converts a string to uppercase.
Example
iex> schema = Zoi.string() |> Zoi.to_upcase()
iex> Zoi.parse(schema, "Hello World")
{:ok, "HELLO WORLD"}

 trim(schema)

 @spec trim(schema :: schema()) :: schema()

Trims whitespace from the beginning and end of a string.
Example
iex> schema = Zoi.string() |> Zoi.trim()
iex> Zoi.parse(schema, " hello world ")
{:ok, "hello world"}

Zoi.ISO

This module defines schemas for ISO time, date, and datetime formats,
along with transformations to convert them into Elixir's native types.
It includes built-in transformations to convert ISO time, date, and datetime
strings into %Time{}, %Date{}, and %DateTime{} structs.
Zoi main API have Zoi.datetime/1, Zoi.date/1, Zoi.naive_datetime/1 and Zoi.time/1 functions. These functions validates if the input
strings comply with the Elixir date formats. Use the Zoi.ISO module when you just want to validate ISO strings without the need to convert them to native types.

 Summary

 Functions

 do_transform(arg1, input, arg3)

 Basic Types

 date(opts \\ [])

 Defines a date type schema.

 datetime(opts \\ [])

 Defines a datetime type schema.

 naive_datetime(opts \\ [])

 Defines a naive datetime type schema.

 time(opts \\ [])

 Defines a time type schema.

 Transforms

 to_date_struct(schema)

 Converts Zoi.ISO.date() to %Date{} struct.

 to_datetime_struct(schema)

 Converts Zoi.ISO.datetime() to %DateTime{} struct.

 to_naive_datetime_struct(schema)

 Converts Zoi.ISO.naive_datetime() to %NaiveDateTime{} struct.

 to_time_struct(schema)

 Converts Zoi.ISO.time() to %Time{} struct.

 Functions

 do_transform(arg1, input, arg3)

 Basic Types

 date(opts \\ [])

Defines a date type schema.
Example
iex> schema = Zoi.ISO.date()
iex> Zoi.parse(schema, "2025-08-07")
{:ok, "2025-08-07"}
iex> Zoi.parse(schema, "2025-02-30")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected ISO date",
 issue: {"invalid type: expected ISO date", [type: :iso_date]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 datetime(opts \\ [])

Defines a datetime type schema.
Example
iex> schema = Zoi.ISO.datetime()
iex> Zoi.parse(schema, "2025-08-07T10:04:22+03:00")
{:ok, "2025-08-07T10:04:22+03:00"}

iex> schema = Zoi.ISO.datetime()
iex> Zoi.parse(schema, 1754646043)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected ISO datetime",
 issue: {"invalid type: expected ISO datetime", [type: :iso_datetime]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 naive_datetime(opts \\ [])

Defines a naive datetime type schema.
Example
iex> schema = Zoi.ISO.naive_datetime()
iex> Zoi.parse(schema, "2025-08-07T10:04:22")
{:ok, "2025-08-07T10:04:22"}

iex> schema = Zoi.ISO.naive_datetime()
iex> Zoi.parse(schema, 1754646043)
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected ISO naive datetime",
 issue: {"invalid type: expected ISO naive datetime", [type: :iso_naive_datetime]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 time(opts \\ [])

Defines a time type schema.
Example
iex> schema = Zoi.ISO.time()
iex> Zoi.parse(schema, "12:34:56")
{:ok, "12:34:56"}
iex> Zoi.parse(schema, "25:00:00")
{:error,
 [
 %Zoi.Error{
 code: :invalid_type,
 message: "invalid type: expected ISO time",
 issue: {"invalid type: expected ISO time", [type: :iso_time]},
 path: []
 }
]}
Options
	:description (String.t/0) - Description of the schema.

	:example (term/0) - Example value for the schema.

	:metadata (keyword/0) - Additional metadata for the schema.

	:error (String.t/0) - Custom error message for validation.

	:typespec (Macro.t/0) - Custom typespec to override generated type.

	:deprecated (String.t/0) - Deprecation message to warn when this option is used.

 Transforms

 to_date_struct(schema)

Converts Zoi.ISO.date() to %Date{} struct.
Example
iex> schema = Zoi.ISO.date() |> Zoi.ISO.to_date_struct()
iex> Zoi.parse(schema, "2025-08-07")
{:ok, ~D[2025-08-07]}

 to_datetime_struct(schema)

Converts Zoi.ISO.datetime() to %DateTime{} struct.
Example
iex> schema = Zoi.ISO.datetime() |> Zoi.ISO.to_datetime_struct()
iex> Zoi.parse(schema, "2025-08-07T10:04:22+03:00")
{:ok, ~U[2025-08-07 07:04:22Z]}

 to_naive_datetime_struct(schema)

Converts Zoi.ISO.naive_datetime() to %NaiveDateTime{} struct.
Example
iex> schema = Zoi.ISO.naive_datetime() |> Zoi.ISO.to_naive_datetime_struct()
iex> Zoi.parse(schema, "2025-08-07T10:04:22")
{:ok, ~N[2025-08-07 10:04:22]}

 to_time_struct(schema)

Converts Zoi.ISO.time() to %Time{} struct.
Example
iex> schema = Zoi.ISO.time() |> Zoi.ISO.to_time_struct()
iex> Zoi.parse(schema, "12:34:56")
{:ok, ~T[12:34:56]}

Zoi.Describe

Zoi.describe/1 introspect schemas, finding it's :description metadata and type specifications to generate documentation strings.
This documentation that can be used in HexDocs or other places where you want to describe the options your schema accepts.
This module was inspired by NimbleOptions, which can also generate documentation for options.
Usage
To generate descriptions, you just need to call Zoi.describe/1 for the Zoi.keyword/2 or Zoi.map/2 schema.
defmodule MyApp.Config do
 @schema Zoi.keyword([
 host: Zoi.string(description: "The host of the server.") |> Zoi.required(),
 port: Zoi.integer(description: "The port of the server.") |> Zoi.default(8080),
 debug: Zoi.boolean(description: "Enable debug mode.")
])

 @moduledoc """
 Configuration for MyApp.

 #{Zoi.describe(@schema)}
 """
end
The generated documentation will look like this:
	:host (String.t/0) - Required. The host of the server.

	:port (integer/0) - Required. The port of the server. The default value is 8080.

	:debug (boolean/0) - Enable debug mode.

All Zoi types are supported, and you can leverage the type specifications and documentation metadata to produce comprehensive docs for your schemas.
A common use case is documenting opts parameters for functions that accept keyword lists, where you can define the expected options using Zoi.keyword/2 and generate the corresponding documentation automatically, for example:
@list_user_opts Zoi.keyword([
 active: Zoi.boolean(description: "Whether the feature is active.") |> Zoi.default(true),
 group: Zoi.string(description: "The group name.")
])
@type list_user_opts :: unquote(Zoi.type_spec(@list_user_opts))

@doc """
List users.

Options:
#{Zoi.describe(@list_user_opts)}
"""
@spec list_users(opts :: list_user_opts()) :: [User.t()]
def list_users(opts \\ []) do
 opts = Zoi.parse!(@list_user_opts, opts)

 User
 |> where(active: opts[:active])
 |> where(group: opts[:group])
 |> Repo.all()
end
Which would be translated to:
@type list_user_opts :: [active: boolean(), group: binaryt()]

@doc """
List users.

Options:
* `:active` (`t:boolean/0`) - The feature is active. The default value is `true`.
* `:group` (`t:String.t/0`) - The group name.
"""
@spec list_users(opts :: list_user_opts()) :: [User.t()]
def list_users(opts \\ []) do
 # ...
end
The same pattern will work for Zoi.map/2 and Zoi.struct/3 schemas as well, since you may also use them to define a structured map input.
schema = Zoi.map(%{
 name: Zoi.email(description: "The email address."),
 role: Zoi.enum([admin: "Admin", user: "User"], description: "The role of the user.")
})
Zoi.describe(schema)
Which would produce:
	:name (String.t/0) - Required. The email address.
	:role (one of "Admin", "User") - Required. The role of the user.

Zoi.Schema

Utilities for traversing and transforming Zoi schemas.
This module provides functions to recursively walk through schema structures
and apply transformations. This is useful for applying defaults, enabling
features like coercion, or wrapping types across an entire schema tree.
The traversal is post-order, meaning child nodes are transformed before their
parents, allowing transformations to work with already-processed nested schemas.
Examples
Enable coercion on all types
schema = Zoi.map(%{
 name: Zoi.string(),
 age: Zoi.integer()
})
|> Zoi.Schema.traverse(&Zoi.coerce/1)

Apply nullish to all fields
schema
|> Zoi.Schema.traverse(&Zoi.nullish/1)

Conditional transformation based on field path
schema = Zoi.map(%{
 password: Zoi.string(),
 email: Zoi.string()
})
|> Zoi.Schema.traverse(fn node, path ->
 if :password in path do
 node
 else
 Zoi.coerce(node)
 end
end)

Chain multiple transformations
schema
|> Zoi.Schema.traverse(&Zoi.nullish/1)
|> Zoi.Schema.traverse(&Zoi.coerce/1)

 Summary

 Functions

 traverse(schema, fun)

 Traverses a schema tree and applies a transformation function to each node.

 Functions

 traverse(schema, fun)

 @spec traverse(Zoi.schema(), function()) :: Zoi.schema()

Traverses a schema tree and applies a transformation function to each node.
The traversal walks through nested schemas (objects, arrays, unions, maps, tuples, etc.)
and applies the transformation function to each child node. The root node is not transformed.
The transformation function receives the current node and optionally the path (list of field
keys showing the location in the schema tree, e.g., [:user, :address, :street]).
Examples
Enable coercion on all nested fields
schema
|> Zoi.Schema.traverse(&Zoi.coerce/1)

Apply transformation conditionally using path
schema
|> Zoi.Schema.traverse(fn node, path ->
 if :password in path do
 node
 else
 Zoi.coerce(node)
 end
end)

Zoi.Struct

A helper module to define and validate structs using Zoi schemas.
This module provides functions to extract @enforce_keys and struct fields from a Zoi struct schema.
It is particularly useful when you want to create Elixir structs that align with Zoi schemas.
Examples
defmodule MyApp.SomeModule do
 @schema Zoi.struct(__MODULE__, %{
 name: Zoi.string() |> Zoi.nullable(),
 age: Zoi.integer() |> Zoi.default(0) |> Zoi.optional(),
 email: Zoi.string()
 })

 @type t :: unquote(Zoi.type_spec(@schema))
 @enforce_keys Zoi.Struct.enforce_keys(@schema) # [:name, :email]
 defstruct Zoi.Struct.struct_fields(@schema) # [:name, :email, {:age, 0}]
end
As shown in the example above, you can define a Zoi schema which will be used to generate a struct definition and especification.
By default, Zoi.struct/3 makes all fields required unless they are marked as optional, and you can leverage the schema definition to
automatically generate the struct fields, type and enforce keys.
The example above is the same as the following definition:
defmodule MyApp.SomeModule do
 @type t :: %MyApp.SomeModule{
 name: binary() | nil,
 age: integer(),
 email: binary()
 }
 @enforce_keys [:name, :email]
 defstruct [:name, :email, age: 0]
end
The advantage of using Zoi.struct/3 is that you can leverage Zoi's schema capabilities to define complex types, default values, validations, etc, and have those reflected in your Elixir struct definitions automatically.

 Summary

 Functions

 enforce_keys(struct)

 Returns a list of keys that are required for the struct based on the schema.

 struct_fields(struct)

 Returns a list of fields for the struct, where fields with default values are represented as tuples
of the form {key, default_value}.

 Functions

 enforce_keys(struct)

Returns a list of keys that are required for the struct based on the schema.
This is useful for defining @enforce_keys in Elixir structs.

 struct_fields(struct)

Returns a list of fields for the struct, where fields with default values are represented as tuples
of the form {key, default_value}.
This is useful for defining the fields of an Elixir struct.

Zoi.TypeSpec protocol

Protocol for generating Elixir type specifications from Zoi schemas.
Each type can implement this protocol to define how it should be represented
as an Elixir typespec. This is used by Zoi.type_spec/1 to generate type
specifications that can be used with @type attributes.
Example
defmodule MyCustomType do
 use Zoi.Type.Def

 defimpl Zoi.TypeSpec do
 def spec(_schema, _opts) do
 quote(do: my_custom_type())
 end
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 spec(schema, opts)

 Returns a quoted Elixir type specification for the given schema.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 spec(schema, opts)

 @spec spec(Zoi.schema(), Zoi.options()) :: Macro.t()

Returns a quoted Elixir type specification for the given schema.

Zoi.Form

Helpers for integrating Zoi objects with Phoenix (or any Phoenix.HTML.FormData)
forms.
This module focuses on turning your object schemas into form-friendly schemas and
returning a %Zoi.Context{} that implements the Phoenix.HTML.FormData
protocol.

 Summary

 Functions

 parse(obj, input, opts \\ [])

 Parses an object schema and returns the underlying Zoi.Context.

 prepare(obj)

 Tweaks an object schema to work nicely with HTML forms.

 Functions

 parse(obj, input, opts \\ [])

 @spec parse(schema :: Zoi.schema(), input :: Zoi.input(), opts :: Zoi.options()) ::
 Zoi.Context.t()

Parses an object schema and returns the underlying Zoi.Context.
The returned context keeps the params in context.input, even when validations fail,
so it can be passed directly to Phoenix.Component.to_form/2 or any Phoenix.HTML
form helper.
This function automatically normalizes LiveView's map-based array format (with numeric
string keys) into regular lists, so context.input always contains clean, manipulable
data structures.

 prepare(obj)

 @spec prepare(Zoi.schema()) :: Zoi.schema()

Tweaks an object schema to work nicely with HTML forms.
This function enables coercion on all nested fields so string params are coerced
into their target type and sets the empty values to nil and "", matching how
Phoenix sends form inputs.

Zoi.JSONSchema

JSON Schema is a declarative language for annotating and validating JSON document's structure, constraints, and data types. It helps you standardize and define expectations for JSON data.
Zoi provides functionality to convert its type definitions into JSON Schema format, enabling seamless integration with systems that utilize JSON Schema for data validation and documentation.
Example
iex> schema = Zoi.map(%{name: Zoi.string(), age: Zoi.integer()})
iex> Zoi.to_json_schema(schema)
%{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 type: :object,
 properties: %{
 name: %{type: :string},
 age: %{type: :integer}
 },
 required: [:name, :age],
 additionalProperties: false
}
Supported Types
The following Zoi types are supported for conversion to JSON Schema:
	Zoi.string/0
	Zoi.integer/0
	Zoi.float/0
	Zoi.number/0
	Zoi.decimal/0 - (converted to JSON Schema number)
	Zoi.boolean/0
	Zoi.literal/1
	Zoi.null/0
	Zoi.array/1
	Zoi.tuple/1
	Zoi.enum/1
	Zoi.map/2
	Zoi.intersection/1
	Zoi.union/1
	Zoi.nullable/1
	Zoi.date/0 and Zoi.ISO.date/0
	Zoi.datetime/0 and Zoi.ISO.datetime/0
	Zoi.naive_datetime/0 and Zoi.ISO.naive_datetime/0
	Zoi.time/0 and Zoi.ISO.time/0

Metadata
Zoi.to_json_schema/1 can also incorporate description, example, and deprecated metadata
into the resulting JSON Schema:
iex> schema = Zoi.string(description: "A simple string", example: "Hello, World!")
iex> Zoi.to_json_schema(schema)
%{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 type: :string,
 description: "A simple string",
 example: "Hello, World!"
}
When a schema is marked as deprecated, the generated JSON Schema will include
deprecated: true (the deprecation message itself is not part of JSON Schema):
iex> schema = Zoi.string(deprecated: "Use another field")
iex> Zoi.to_json_schema(schema)
%{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 type: :string,
 deprecated: true
}
Limitations
	Complex types or custom types not listed above will raise an error during conversion.
	Some advanced Zoi features may not have direct equivalents in JSON Schema.
	Refinements are partially supported, primarily for string patterns and length constraints.
	Additional properties in objects are disallowed by default (additionalProperties: false).

References
	JSON Schema Official Website

 Summary

 Functions

 encode(schema)

 Functions

 encode(schema)

 @spec encode(Zoi.schema()) :: map()

Zoi.Context

The Context provides the parsing information such as the input data, parsed data and errors.
The context is passed around during the parsing process to keep track of the current state of parsing.
It contains the schema being parsed, the input data, the parsed data, the path of the current error and any errors that have occurred during parsing.

 Summary

 Types

 error()

 t()

 Functions

 add_error(context, error)

 Add a error to the context.

 Types

 error()

 @type error() :: Zoi.Error.t() | binary() | [Zoi.Error.t()]

 t()

 @type t() :: %Zoi.Context{
 errors: [Zoi.Error.t()],
 input: Zoi.input(),
 parsed: Zoi.input(),
 path: Zoi.Error.path(),
 schema: Zoi.schema(),
 valid?: boolean() | nil
}

 Functions

 add_error(context, error)

 @spec add_error(t(), error()) :: t()

Add a error to the context.
Example
iex> schema = Zoi.string() |> Zoi.refine(fn input, ctx ->
...> if String.length(input) > 5 do
...> :ok
...> else
...> Zoi.Context.add_error(ctx, "Input too long")
...> end
...> end)
...> Zoi.parse(schema, "s")
{:error,
 [
 %Zoi.Error{
 code: :custom,
 issue: {"Input too long", []},
 message: "Input too long",
 path: []
 }
]}

Zoi.Type protocol

Protocol for defining types in Zoi.
Types are used to validate and parse data according to a defined schema.
You can implement this protocol for custom types to handle specific validation and parsing logic.
Example
To create a custom type, you can define a module and implement the Zoi.Type protocol:
defmodule StringBoolean do
 use Zoi.Type.Def

 # `apply_type/1` is a helper function that will create the struct with the given options.
 def string_bool(opts \\ []) do
 apply_type(opts)
 end

 defimpl Zoi.Type do
 # This function is called to parse the input according to the schema.
 def parse(_schema, input, _opts) when is_binary(input) do
 {:ok, input}
 end

 def parse(_schema, input, _opts) when is_boolean(input) do
 {:ok, input}
 end

 def parse(_schema, _input, _opts) do
 {:error, "invalid string or boolean type"}
 end
 end
end
You can then use this type in your schema definitions and it will handle parsing and validation as defined.
iex> schema = StringBoolean.string_bool()
iex> Zoi.parse(schema, "hello world")
{:ok, "hello world"}
iex> Zoi.parse(schema, true)
{:ok, true}
iex> Zoi.parse(schema, 123)
{:error,
 [
 %Zoi.Error{
 code: :custom,
 issue: {"invalid string or boolean type", []},
 message: "invalid string or boolean type",
 path: []
 }
]}
In general, you will not need to implement this protocol directly. Zoi provides a functional API with a good set of built-in types that cover most use cases.
For example, you can implement the string_bool/1 function above using Zoi.union/2 with Zoi.string/1 and Zoi.boolean/1 types.
iex> schema = Zoi.union([Zoi.string(), Zoi.boolean()])
iex> Zoi.parse(schema, "hello world")
{:ok, "hello world"}
iex> Zoi.parse(schema, true)
Or use the Zoi.string_boolean/1 function, which already covers this and more complex use cases.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 parse(schema, input, opts)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 parse(schema, input, opts)

Zoi.Error exception

Represents a validation error with detailed information.
Fields
	code: Error code
	issue: A tuple with the message and keyword with error variables.
	message: Description of the error, formed from the issue message and variables.
	path: A list representing the path to the location of the error.

Errors
All Zoi errors have a code that can be used to identify the type of error.
The following error codes are defined:
	:invalid_type
	:invalid_literal
	:invalid_tuple
	:unrecognized_key
	:invalid_enum_value
	:not_in_values
	:required
	:less_than
	:greater_than
	:less_than_or_equal_to
	:greater_than_or_equal_to
	:invalid_length
	:invalid_format
	:multiple_of
	:custom

Example
The error struct follows this format:
%Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected string", [type: :string]},
 message: "invalid type: expected string",
 path: [:user, :name]
}
The :message field is generated by replacing the placeholders in the :issue message.
This allows for dynamic error messages that provide context about the validation failure and possibility for
localization using Gettext or similar libraries. Usually the issue and message will share the same content,
but the issue retains the original template and variables for further processing if needed.
This module is mostly used internally, but can be useful if need to use the built-in error types or create custom errors.

 Summary

 Types

 error_opts()

 path()

 The path to the location of the error.

 t()

 Error struct containing detailed information about a validation error.

 Functions

 custom_error(opts \\ [])

 Creates a custom error with the given options.

 greater_than(type, min, opts \\ [])

 Creates a greater than error for the given type and minimum value.

 greater_than_or_equal_to(type, min, opts \\ [])

 Creates a greater than or equal to error for the given type and minimum value.

 invalid_ending_string(suffix, opts \\ [])

 Creates an invalid format error for the given ending string.

 invalid_enum_value(enum, opts \\ [])

 Creates an invalid enum value error for the given enum values.

 invalid_format(pattern, opts \\ [])

 Creates an invalid format error for the given regex pattern.

 invalid_length(type, length, opts \\ [])

 Creates an invalid length error for the given type and length.

 invalid_literal(value, opts \\ [])

 Creates an invalid literal error for the expected value.

 invalid_starting_string(prefix, opts \\ [])

 Creates an invalid format error for the given starting string.

 invalid_tuple(expected_length, actual_length, opts \\ [])

 Creates an invalid tuple error for the expected and actual lengths.

 invalid_type(type, opts \\ [])

 Creates an invalid type error for the expected type.

 invalid_url(url, opts \\ [])

 less_than(type, max, opts \\ [])

 Creates a less than error for the given type and maximum value.

 less_than_or_equal_to(type, max, opts \\ [])

 Creates a less than or equal to error for the given type and maximum value.

 multiple_of(value, opts \\ [])

 Creates a multiple_of error for the given value.

 new(opts \\ [])

 Creates a new Zoi.Error struct.

 not_in_values(values, opts \\ [])

 Creates a not in values error for the given list of valid values.

 prepend_path(error, path)

 Prepends a path to the error's existing path.

 required(key, opts \\ [])

 Creates a required error for the given key.

 unrecognized_key(key)

 Creates an unrecognized key error for the given key.

 Types

 error_opts()

 @type error_opts() :: [
 code: atom(),
 issue: {binary(), keyword()} | nil,
 message: binary(),
 path: path()
]

 path()

 @type path() :: [atom() | binary() | integer()]

The path to the location of the error.

 t()

 @type t() :: %Zoi.Error{
 __exception__: true,
 code: atom(),
 issue: {binary(), keyword()} | nil,
 message: binary(),
 path: path()
}

Error struct containing detailed information about a validation error.

 Functions

 custom_error(opts \\ [])

 @spec custom_error(opts :: error_opts()) :: t()

Creates a custom error with the given options.
Example
iex> Zoi.Error.custom_error(issue: {"error %{num}", [num: 404]})
%Zoi.Error{
 code: :custom,
 issue: {"error %{num}", [num: 404]},
 message: "error 404",
 path: []
}

 greater_than(type, min, opts \\ [])

 @spec greater_than(:number | :date, any(), keyword()) :: t()

Creates a greater than error for the given type and minimum value.
Example
iex> Zoi.Error.greater_than(:number, 5)
%Zoi.Error{
 code: :greater_than,
 issue: {"too small: must be greater than %{count}", [count: 5]},
 message: "too small: must be greater than 5"
}

 greater_than_or_equal_to(type, min, opts \\ [])

 @spec greater_than_or_equal_to(:string | :array | :number | :date, any(), keyword()) ::
 t()

Creates a greater than or equal to error for the given type and minimum value.
Example
iex> Zoi.Error.greater_than_or_equal_to(:string, 3)
%Zoi.Error{
 code: :greater_than_or_equal_to,
 issue: {"too small: must have at least %{count} character(s)", [count: 3]},
 message: "too small: must have at least 3 character(s)"
}

 invalid_ending_string(suffix, opts \\ [])

 @spec invalid_ending_string(
 binary(),
 keyword()
) :: t()

Creates an invalid format error for the given ending string.
Example
iex> Zoi.Error.invalid_ending_string(".com")
%Zoi.Error{
 code: :invalid_format,
 issue: {"invalid format: must end with '%{value}'", [value: ".com"]},
 message: "invalid format: must end with '.com'"
}

 invalid_enum_value(enum, opts \\ [])

Creates an invalid enum value error for the given enum values.
Example
iex> Zoi.Error.invalid_enum_value([{:a, "apple"}, {:b, "banana"}, {:c, "cherry"}])
%Zoi.Error{
 code: :invalid_enum_value,
 issue: {"invalid enum value: expected one of %{values}", [type: :enum, values: "apple, banana, cherry"]},
 message: "invalid enum value: expected one of apple, banana, cherry"
}

 invalid_format(pattern, opts \\ [])

 @spec invalid_format(
 Regex.t(),
 keyword()
) :: t()

Creates an invalid format error for the given regex pattern.
Example
iex> %Zoi.Error{} = error = Zoi.Error.invalid_format(~r/^[^a-z]*$/, format: :upcase)
iex> error.code
:invalid_format
iex> {msg, opts} = error.issue
iex> msg
"invalid format: must match pattern %{pattern}"
iex> Regex.source(opts[:pattern])
"^[^a-z]*$"
iex> opts[:format]
:upcase
iex> error.message
"invalid format: must match pattern ^[^a-z]*$"

 invalid_length(type, length, opts \\ [])

 @spec invalid_length(:string | :array, non_neg_integer(), keyword()) :: t()

Creates an invalid length error for the given type and length.
Example
iex> Zoi.Error.invalid_length(:string, 5)
%Zoi.Error{
 code: :invalid_length,
 issue: {"invalid length: must have %{count} character(s)", [count: 5]},
 message: "invalid length: must have 5 character(s)"
}

 invalid_literal(value, opts \\ [])

Creates an invalid literal error for the expected value.
Example
iex> Zoi.Error.invalid_literal(42)
%Zoi.Error{
 code: :invalid_literal,
 issue: {"invalid literal: expected %{expected}", [expected: 42]},
 message: "invalid literal: expected 42"
}

 invalid_starting_string(prefix, opts \\ [])

 @spec invalid_starting_string(
 binary(),
 keyword()
) :: t()

Creates an invalid format error for the given starting string.
Example
iex> Zoi.Error.invalid_starting_string("http")
%Zoi.Error{
 code: :invalid_format,
 issue: {"invalid format: must start with '%{value}'", [value: "http"]},
 message: "invalid format: must start with 'http'"
}

 invalid_tuple(expected_length, actual_length, opts \\ [])

 @spec invalid_tuple(non_neg_integer(), non_neg_integer(), keyword()) :: t()

Creates an invalid tuple error for the expected and actual lengths.
Example
iex> Zoi.Error.invalid_tuple(3, 5)
%Zoi.Error{
 code: :invalid_tuple,
 issue: {"invalid tuple: expected length %{expected_length}, got %{actual_length}", [expected_length: 3, actual_length: 5]},
 message: "invalid tuple: expected length 3, got 5"
}

 invalid_type(type, opts \\ [])

Creates an invalid type error for the expected type.
Example
iex> Zoi.Error.invalid_type(:string)
%Zoi.Error{
 code: :invalid_type,
 issue: {"invalid type: expected string", [type: :string]},
 message: "invalid type: expected string"
}

 invalid_url(url, opts \\ [])

 less_than(type, max, opts \\ [])

 @spec less_than(:number | :date, any(), keyword()) :: t()

Creates a less than error for the given type and maximum value.
Example
iex> Zoi.Error.less_than(:number, 10)
%Zoi.Error{
 code: :less_than,
 issue: {"too big: must be less than %{count}", [count: 10]},
 message: "too big: must be less than 10"
}

 less_than_or_equal_to(type, max, opts \\ [])

 @spec less_than_or_equal_to(:string | :array | :number | :date, any(), keyword()) ::
 t()

Creates a less than or equal to error for the given type and maximum value.
Example
iex> Zoi.Error.less_than_or_equal_to(:string, 10)
%Zoi.Error{
 code: :less_than_or_equal_to,
 issue: {"too big: must have at most %{count} character(s)", [count: 10]},
 message: "too big: must have at most 10 character(s)"
}

 multiple_of(value, opts \\ [])

 @spec multiple_of(
 number(),
 keyword()
) :: t()

Creates a multiple_of error for the given value.
Example
iex> Zoi.Error.multiple_of(5)
%Zoi.Error{
 code: :multiple_of,
 issue: {"must be a multiple of %{value}", [value: 5]},
 message: "must be a multiple of 5"
}

 new(opts \\ [])

 @spec new(error_opts() | map()) :: t()

Creates a new Zoi.Error struct.

 not_in_values(values, opts \\ [])

Creates a not in values error for the given list of valid values.
Example
iex> Zoi.Error.not_in_values(["red", "green", "blue"])
%Zoi.Error{
 code: :not_in_values,
 issue: {"invalid value: expected one of %{values}", [values: ["red", "green", "blue"]]},
 message: "invalid value: expected one of red, green, blue",
 path: []
}

 prepend_path(error, path)

 @spec prepend_path(t(), any()) :: t()

Prepends a path to the error's existing path.
Example
iex> error = Zoi.Error.invalid_type(:string, path: [:name])
iex> error = Zoi.Error.prepend_path(error, [:user])
iex> error.path
[:user, :name]

 required(key, opts \\ [])

Creates a required error for the given key.
Example
iex> Zoi.Error.required(:name)
%Zoi.Error{
 code: :required,
 issue: {"is required", [key: :name]},
 message: "is required"
}

 unrecognized_key(key)

 @spec unrecognized_key(atom() | binary() | integer()) :: t()

Creates an unrecognized key error for the given key.
Example
iex> Zoi.Error.unrecognized_key(:foo)
%Zoi.Error{
 code: :unrecognized_key,
 issue: {"unrecognized key: %{key}", [key: :foo]},
 message: "unrecognized key: foo"
}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

