

 zoneinfo

 v0.1.8

 Table of contents

 	Zoneinfo

 	Changelog

 	Modules

 	Zoneinfo

 	Zoneinfo.Meta

 	Zoneinfo.TimeZoneDatabase

Zoneinfo

[image: Hex version]
[image: CircleCI]
Elixir time zone support for your OS-supplied zoneinfo files
Why Zoneinfo?
	Reuse your OS-maintained time zone database (usually in /usr/share/zoneinfo)
	Reduce your OTP release size by not bundling time zone data
	Load other TZif files

Why not Zoneinfo?
	tzdata and
tz work fine for you
	You can't rely on your OS to update time zone files and don't want to
implement this yourself
	You're running on Windows (the zoneinfo database can still be installed, but
this is not a typical configuration)
	You need to extrapolate time zone conversions far in the future or past.
Zoneinfo currently is limited to the ranges in TZif files which typically go
to 2038.
	Speed is of utmost importance. Zoneinfo loads time zones on demand and caches
them, but it does not focus on performance like tz.

Zoneinfo is tested for consistency against the tz library. It's possible to
test against tzdata by modifying @truth in the unit tests. All libraries
source their information from the IANA Time Zone
Database

 Installation

First, add :zoneinfo to your list of dependencies in mix.exs:
def deps do
 [
 {:zoneinfo, "~> 0.1.0"}
]
end
Next, decide whether you want to configure Elixir to use Zoneinfo as the default
time zone lookup. If you do, add the following line to your config.exs:
config :elixir, time_zone_database: Zoneinfo.TimeZoneDatabase
or call Calendar.put_time_zone_database/1:
Calendar.put_time_zone_database(Zoneinfo.TimeZoneDatabase)
It's also possible to pass Zoneinfo.TimeZoneDatabase to DateTime functions to
avoid the global configuration.
The final step is to specify the location of the time zone files. Zoneinfo looks
at the following locations:
	The :tzpath key in the application environment
	The TZDIR environment variable
	/usr/share/zoneinfo

Since /usr/share/zoneinfo is the default on Linux and OSX, you may not need to
do anything.
To set :tzpath in the application environment, add this line to your
config.exs:
config :zoneinfo, tzpath: "/custom/location"

 Notes and caveats

 Caching

While Zoneinfo does not contain a database and therefore has no logic to pull
updates, it does cache data in memory for better performance. It flushes the
cache daily so that it's possible to pick up changes to the system timezone
data.

 Date ranges

Zoneinfo uses the date ranges stored in the TZif data for determining time zone
information. While TZif files support extrapolation of dates beyond what's
stored, Zoneinfo currently does not use it. This means that dates far enough in
the future won't be calculated correctly.
The default end date from the time zone compiler,
zic(8), is 2038. This could,
of course, could change and one would hope that it would be pushed farther out
rather than reduced since the files are already pretty small.
If you're looking at creating the smallest possible time zone database for and
embedded system, using zic's -r flag helps significantly, but make sure that
you have enough buffer to avoid extrapolation.

 Unit tests

The tests currently take a long time to run since they're checking a LOT of
dates and times. If you're working on a patch, you may want to limit the date
range in time_zone_database_test.exs to 10 years or less.

 Acknowledgments

Both tz and
tzdata were both extremely helpful in
answering time zone questions. Code in this library will almost certainly look
like it was influenced from the two libraries. Additionally, being able to
compare the output of Zoneinfo to the output of those libraries caught a few
subtle time zone handling bugs that could easily have gone unnoticed. The IANA
time zone rules database comments and
timeanddate.com were also extremely
helpful to resolve discrepancies.

 License

Copyright (C) 2021 SmartRent.com, LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

 v0.1.8

	Changes	Support $TZDIR and use it in preference to $TZPATH for overriding the
zoneinfo directory. This is the standard environment variable. $TZPATH is
kept for backwards compatibility. Thank to @danderson for reporting.

 v0.1.7

	Improvements	Reduce chances of raising when something goes wrong getting the time zone
information. For example, recover if a time zone hasn't been loaded yet and
the cache GenServer isn't available. This fixes crashes in code that may not be
easy to debug when there are calendar troubles.
	Don't load a time zone more than once if multiple processes ask for the same
one at the same time.

 v0.1.6

	Improvements	Fix warnings when building on Elixir 1.15
	Improve testing

 v0.1.5

	Improvements	Fix Calendar return values when time zone queries are wrong. Thanks to
@LostKobrakai for this fix.

 v0.1.4

	Improvements	Updated documentation thanks to Wojtek Mach.

 v0.1.3

	Improvements
	UTC and standard time offsets are now tested for consistency with Tz.
Normally you just want the overall offset from UTC and that was already
tested (this is what's used in the DateTime calculations). The TZif data
doesn't split out the offsets, but it turned out that a heuristic works
really well.
	Unit tests run quickly. Thorough tests are available via mix test --include slow

	Bug fixes
	Fixed UTC and standard time offsets discrepancies with Tz (and hence the IANA
rules database). The only known exceptions now are Paris and Monoco in the
mid-1940s and Morocco. See the unit tests for discussion on the differences.

 v0.1.2

	New features	Add Zoneinfo.get_metadata/1 to expose diagnostic information useful for
sanity checking date ranges available on a system

 v0.1.1

	New features	Add Zoneinfo.valid_time_zone?/1 to quickly check if a time zone is in the
database

 v0.1.0

Initial release to hex.

Zoneinfo

Elixir time zone support for your OS-supplied time zone database
Tell Elixir to use this as the default time zone database by running:
Calendar.put_time_zone_database(Zoneinfo.TimeZoneDatabase)
Time zone data is loaded from the path returned by tzpath/0. The default
is to use /usr/share/zoneinfo, but that may be changed by setting the
$TZDIR environment or adding the following to your project's config.exs:
config :zoneinfo, tzpath: "/custom/location"
Call time_zones/0 to get the list of supported time zones.

 Summary

 Functions

 get_metadata(time_zone)

 Return Zoneinfo metadata on a time zone

 time_zones()

 Return all known time zones

 tzpath()

 Return the path to the time zone files

 valid_time_zone?(time_zone)

 Return whether a time zone is valid

 Functions

 Link to this function

 get_metadata(time_zone)

 View Source

 @spec get_metadata(String.t()) :: {:ok, Zoneinfo.Meta.t()} | {:error, atom()}

Return Zoneinfo metadata on a time zone
The returned metadata is limited to what's available in the source TZif data
file for the time zone. It's mostly useful for verifying that time zone
information is available for dates used in your application. Note that proper
time zone calculations depend on many things and it's possible that they'll
work outside of the returned ranged. However, it's also possible that a time
zone database was built and then a law changed which invalidates a record.

 Link to this function

 time_zones()

 View Source

 @spec time_zones() :: [String.t()]

Return all known time zones
This function scans the path returned by tzpath/0 for all time zones and
performs a basic check on each file. It may not be fast. It will not return
the aliases that zoneinfo uses for backwards compatibility even though they
may still work.

 Link to this function

 tzpath()

 View Source

 @spec tzpath() :: binary()

Return the path to the time zone files

 Link to this function

 valid_time_zone?(time_zone)

 View Source

 @spec valid_time_zone?(String.t()) :: boolean()

Return whether a time zone is valid

Zoneinfo.Meta

Metadata derived from TZif information
The metadata here is mostly useful for checking the quality of the TZif files that
were loaded.

 Summary

 Types

 t()

 Zoneinfo.Meta contains information about one time zone

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Zoneinfo.Meta{
 earliest_record_utc: NaiveDateTime.t(),
 latest_record_utc: NaiveDateTime.t(),
 record_count: non_neg_integer(),
 time_zone: String.t(),
 tz_string: String.t() | nil
}

Zoneinfo.Meta contains information about one time zone
	:time_zone - the name of the time zone
	:tz_string - if a POSIX TZ string is available, this is it
	:earliest_record_utc - the UTC time of the earliest time zone record
	:latest_record_utc - the UTC time of the latest time zone record
	:record_count -- the number of records

Zoneinfo.TimeZoneDatabase

Calendar.TimeZoneDatabase implementation for Zoneinfo
Pass this module to the DateTime functions:
iex> DateTime.now!("Europe/Copenhagen", Zoneinfo.TimeZoneDatabase)
#DateTime<2021-07-24 12:56:38.324705+02:00 CEST Europe/Copenhagen>
or set it as the default by calling Calendar.put_time_zone_database/1:
iex> Calendar.put_time_zone_database(Zoneinfo.TimeZoneDatabase)
iex> DateTime.now!("Europe/Copenhagen")
#DateTime<2021-07-24 12:56:38.324705+02:00 CEST Europe/Copenhagen>

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

