View Source Relationships

Relationships describe the connections between resources and are a core component of Ash. Defining relationships enables you to do things like

  • Loading related data
  • Filtering on related data
  • Managing related records through changes on a single resource
  • Authorizing based on the state of related data

Relationships Basics

A relationship exists between a source resource and a destination resource. These are defined in the relationships block of the source resource. For example, if MyApp.Tweet is the source resource, and MyApp.User is the destination resource, we could define a relationship called :owner like this:

defmodule MyApp.Tweet do
  use Ash.Resource,
    data_layer: my_data_layer

  attributes do
    uuid_primary_key :id
    attribute :body, :string
  end

  relationships do
    belongs_to :owner, MyApp.User
  end
end

See Managing Relationships for more information.

Your data layer may enforce foreign key constraints, see the following guides for more information:

Kinds of relationships

There are four kinds of relationships:

Each of these relationships has a source resource and a destination resource with a corresponding attribute on the source resource (source_attribute), and destination resource (destination_attribute). Relationships will validate that their configured attributes exist at compile time.

You don't need to have a corresponding "reverse" relationship for every relationship, i.e if you have a MyApp.Tweet resource with belongs_to :user, MyApp.User you aren't required to have a has_many :tweets, MyApp.Tweet on MyApp.User. All that is required is that the attributes used by the relationship exist.

Belongs To

# on MyApp.Tweet
belongs_to :owner, MyApp.User

A belongs_to relationship means that there is an attribute (source_attribute) on the source resource that uniquely identifies a record with a matching attribute (destination_attribute) in the destination. In the example above, the source attribute on MyApp.Tweet is :owner_id and the destination attribute on MyApp.User is :id.

Attribute Defaults

By default, the source_attribute is defined as :<relationship_name>_id of the type :uuid on the source resource and the destination_attribute is assumed to be :id. You can override the attribute names by specifying the source_attribute and destination_attribute options like so:

belongs_to :owner, MyApp.User do
  # defaults to :<relationship_name>_id (i.e. :owner_id)
  source_attribute :custom_attribute_name

  # defaults to :id
  destination_attribute :custom_attribute_name
end

You can further customize the source_attribute using options such as:

For example:

belongs_to :owner, MyApp.User do
  attribute_type :integer
  attribute_writable? false
end

Or if you wanted to define the attribute yourself,

attributes do
  attribute :owner_foo, MyApp.CustomType
end

...
relationships do
  belongs_to :owner, MyApp.User do
    define_attribute? false
    source_attribute :owner_foo
  end
end

Customizing default belongs_to attribute type

Destination attributes that are added by default are assumed to be :uuid. To change this, set the following configuration in config.exs:

config :ash, :default_belongs_to_type, :integer

See the docs for more: Ash.Resource.Dsl.relationships.belongs_to

Has One

# on MyApp.User
has_one :profile, MyApp.Profile

A has_one relationship means that there is a unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Profile is :user_id.

A has_one is similar to a belongs_to except the reference attribute is on the destination resource, instead of the source.

Attribute Defaults

By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.

See the docs for more: Ash.Resource.Dsl.relationships.has_one

Has Many

# on MyApp.User
has_many :tweets, MyApp.Tweet

A has_many relationship means that there is a non-unique attribute (destination_attribute) on the destination resource that identifies a record with a matching unique attribute (source_resource) in the source. In the example above, the source attribute on MyApp.User is :id and the destination attribute on MyApp.Tweet is :user_id.

A has_many relationship is similar to a has_one because the reference attribute exists on the destination resource. The only difference between this and has_one is that the destination attribute is not unique, and therefore will produce a list of related items. In the example above, :tweets corresponds to a list of MyApp.Tweet records.

Attribute Defaults

By default, the source_attribute is assumed to be :id, and destination_attribute defaults to <snake_cased_last_part_of_module_name>_id.

See the docs for more: Ash.Resource.Dsl.relationships.has_many

Many To Many

A many_to_many relationship can be used to relate many source resources to many destination resources. To achieve this, the source_attribute and destination_attribute are defined on a join resource. A many_to_many relationship can be thought of as a combination of a has_many relationship on the source/destination resources and a belongs_to relationship on the join resource.

For example, consider two resources MyApp.Tweet and MyApp.Hashtag representing tweets and hashtags. We want to be able to associate a tweet with many hashtags, and a hashtag with many tweets. To do this, we could define the following many_to_many relationship:

# on MyApp.Tweet
many_to_many :hashtags, MyApp.Hashtag do
  through MyApp.TweetHashtag
  source_attribute_on_join_resource :tweet_id
  destination_attribute_on_join_resource :hashtag_id
end

The through option specifies the "join" resource that will be used to store the relationship. We need to define this resource as well:

defmodule MyApp.TweetHashtag do
  use Ash.Resource,
    data_layer: your_data_layer

  postgres do
    table "tweet_hashtags"
    repo MyApp.Repo
  end

  relationships do
    belongs_to :tweet, MyApp.Tweet, primary_key?: true, allow_nil?: false
    belongs_to :hashtag, MyApp.Hashtag, primary_key?: true, allow_nil?: false
  end

  actions do
    defaults [:read, :destroy, create: :*, update: :*]
  end
end

It is convention to name this resource <source_resource_name><destination_resource_name> however this is not required. The attributes on the join resource must match the source_attribute_on_join_resource and destination_attribute_on_join_resource options on the many_to_many relationship. The relationships on the join resource are standard belongs_to relationships, and can be configured as such. In this case, we have specified that the :tweet_id and :hashtag_id attributes form the primary key for the join resource, and that they cannot be nil.

Now that we have a resource with the proper attributes, Ash will use this automatically under the hood when performing relationship operations like filtering and loading.

See the docs for more: Ash.Resource.Dsl.relationships.many_to_many

There are two ways to load relationships:

On records

Given a single record or a set of records, it is possible to load their relationships by calling the load function on the record's parent domain. For example:

# user = %User{...}
Ash.load(user, :tweets)

# users = [%User{...}, %User{...}, ....]
Ash.load(users, :tweets)

This will fetch the tweets for each user, and set them in the corresponding tweets key.

%User{
  ...
  tweets: [
    %Tweet{...},
    %Tweet{...},
    ...
  ]
}

See Ash.load/3 for more information.

In the query

The following will return a list of users with their tweets loaded identically to the previous example:

User
|> Ash.Query.load(:tweets)
|> Ash.read()

At present, loading relationships in the query is fundamentally the same as loading on records. Eventually, data layers will be able to optimize these loads (potentially including them as joins in the main query).

See Ash.Query.load/2 for more information.

More complex data loading

Multiple relationships can be loaded at once, i.e

Ash.load(users, [:tweets, :followers])

Nested relationships can be loaded:

Ash.load(users, followers: [:tweets, :followers])

The queries used for loading can be customized by providing a query as the value.

followers = Ash.Query.sort(User, follower_count: :asc)

Ash.load(users, followers: followers)

Nested loads will be included in the parent load.

followers =
  User
  |> Ash.Query.sort(follower_count: :asc)
  |> Ash.Query.load(:followers)

# Will load followers and followers of those followers
Ash.load(users, followers: followers)

no_attributes? true

This is really useful when creating customized relationships that aren't joined with simple attribute matches. For example:

has_many :higher_priority_tickets, __MODULE__ do
  no_attributes? true
  # parent/1 in this case puts the expression on this current resource
  # so this is "tickets with priority higher than this ticket"
  filter expr(priority > parent(priority))
end

This can also be very useful when combined with multitenancy. Specifically, if you have a tenant resource like Organization, you can use no_attributes? to do things like has_many :employees, Employee, no_attributes?: true, which lets you avoid having an unnecessary organization_id field on Employee. The same works in reverse: has_one :organization, Organization, no_attributes?: true allows relating the employee to their organization.

Caveats for using no_attributes?

  1. You can still manage relationships from one to the other, but "relate" and "unrelate" will have no effect, because there are no fields to change.
  2. Loading the relationship on a list of resources will not behave as expected in all circumstances involving multitenancy. For example, if you get a list of Organization and then try to load employees, you would need to set a single tenant on the load query, meaning you'll get all organizations back with the set of employees from one tenant. This could eventually be solved, but for now it is considered an edge case.

Manual Relationships

Manual relationships allow you to express complex or non-typical relationships between resources in a standard way. Individual data layers may interact with manual relationships in their own way, so see their corresponding guides. In general, you should try to use manual relationships sparingly, as you can do a lot with filters on relationships, and the no_attributes? flag.

Example

In our Helpdesk example, we'd like to have a way to find tickets

In the Representative resource, define a has_many relationship as manual and point to the module where it will be implemented.

relationships do
  has_many :tickets_above_threshold, Helpdesk.Support.Ticket do
    manual Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold
  end
end

Using Ash to get the destination records is ideal, so you can authorize access like normal but if you need to use a raw ecto query here, you can. As long as you return the right structure.

The TicketsAboveThreshold module is implemented as follows.

defmodule Helpdesk.Support.Ticket.Relationships.TicketsAboveThreshold do
  use Ash.Resource.ManualRelationship
  require Ash.Query

  def load(records, _opts, %{query: query, actor: actor, authorize?: authorize?}) do
    # Use existing records to limit resultds
    rep_ids = Enum.map(records, & &1.id)

    {:ok,
     query
     |> Ash.Query.filter(representative_id in ^rep_ids)
     |> Ash.Query.filter(priority > representative.priority_threshold)
     |> Helpdesk.Support.read!(actor: actor, authorize?: authorize?)
     # Return the items grouped by the primary key of the source, i.e representative.id => [...tickets above threshold]
     |> Enum.group_by(& &1.representative_id)}
  end
end

Reusing the Query

Since you likely want to support things like filtering your relationship when being loaded, you will want to make sure that you use the query being provided. However, depending on how you're loading the relationship, you may need to do things like fetch extra records. To do this, you might do things like

def load(records, _opts, %{query: query, ..}) do
  # unset some fields
  fetch_query = Ash.Query.unset(query, [:limit, :offset])

  # or, to be more safe/explicit, you might make a new query, explicitly setting only a few fields
  fetch_query = query.resource |> Ash.Query.filter(^query.filter) |> Ash.Query.sort(query.sort)

  ...
end

Fetching the records and then applying a query

Lets say the records come from some totally unrelated source, or you can't just modify the query to fetch the records you need. You can fetch the records you need and then apply the query to them in memory.

def load(records, _opts, %{query: query, ..}) do
  # fetch the data from the other source, which is capabale of sorting
  data = get_other_data(data, query.sort)

  query
  # unset the sort since we already applied that
  |> Ash.Query.unset([:sort])
  # apply the query in memory (filtering, distinct, limit, offset)
  |> Ash.Query.apply_to(data)
end

Managing Relationships

In Ash, managing related data is done via Ash.Changeset.manage_relationship/4. There are various ways to leverage the functionality expressed there. If you are working with changesets directly, you can call that function. However, if you want that logic to be portable (e.g available in ash_graphql mutations and ash_json_api actions), then you want to use the following argument + change pattern:

actions do
  update :update do
    argument :add_comment, :map do
      allow_nil? false
    end

    argument :tags, {:array, :uuid} do
      allow_nil? false
    end

    # First argument is the name of the action argument to use
    # Second argument is the relationship to be managed
    # Third argument is options. For more, see `Ash.Changeset.manage_relationship/4`. This accepts the same options.
    change manage_relationship(:add_comment, :comments, type: :create)

    # Second argument can be omitted, as the argument name is the same as the relationship
    change manage_relationship(:tags, type: :append_and_remove)
  end
end

With this, those arguments can be used in action input:

post
|> Ash.Changeset.for_update(:update, %{tags: [tag1.id, tag2.id], add_comment: %{text: "comment text"}})
|> Ash.update!()

Argument Types

Notice how we provided a map as input to add_comment, and a list of UUIDs as an input to manage_relationship. When providing maps or lists of maps, you are generally just providing input that will eventually be passed into actions on the destination resource. However, you can also provide individual values or lists of values. By default, we assume that value maps to the primary key of the destination resource, but you can use the value_is_key option to modify that behavior. For example, if you wanted adding a comment to take a list of strings, you could say:

argument :add_comment, :string

...
change manage_relationship(:add_comment, :comments, type: :create, value_is_key: :text)

And then you could use it like so:

post
|> Ash.Changeset.for_update(:update, %{tags: [tag1.id, tag2.id], add_comment: "comment text"})
|> Ash.update!()

Derived behavior

Determining what will happen when managing related data can be complicated, as the nature of the problem itself is quite complicated. In some simple cases, like type: :create, there may be only one action that will be called. But in order to support all of the various ways that related resources may need to be managed, Ash provides a rich set of options to determine what happens with the provided input. Tools like AshPhoenix.Form can look at your arguments that have a corresponding manage_relationship change, and derive the structure of those nested forms. Tools like AshGraphql can derive complex input objects to allow manipulating those relationships over a graphql Api. This all works because the options are, ultimately, quite explicit. It can be determined exactly what actions might be called, and therefore what input could be needed.

To see all of the options available, see Ash.Changeset.manage_relationship/4