View Source Axon.Updates (Axon v0.3.1)
Parameter update methods.
Update methods transform the input tensor in some way, usually by scaling or shifting the input with respect to some input state. Update methods are composed to create more advanced optimization methods such as AdaGrad or Adam. Each update returns a tuple:
{init_fn, update_fn}
Which represent a state initialization and state update
function respectively. While each method in the Updates
API is a regular Elixir function, the two methods they
return are implemented as defn
, so they can be accelerated
using any Nx backend or compiler.
Update methods are just combinators that can be arbitrarily composed to create complex optimizers. For example, the Adam optimizer in Axon.Optimizers is implemented as:
def adam(learning_rate, opts \\ []) do
Updates.scale_by_adam(opts)
|> Updates.scale(-learning_rate)
end
Updates are maps of updates, often associated with parameters of
the same names. Using Axon.Updates.apply_updates/3
will merge updates
and parameters by adding associated parameters and updates, and
ensuring any given model state is preserved.
custom-combinators
Custom combinators
You can create your own combinators using the stateless/2
and
stateful/3
primitives. Every update method in this module is
implemented in terms of one of these two primitives.
stateless/2
represents a stateless update:
def scale(combinator \\ Axon.Updates.identity(), step_size) do
stateless(combinator, &apply_scale(&1, &2, step_size))
end
defnp apply_scale(x, _params, step) do
transform(
{x, step},
fn {updates, step} ->
deep_new(updates, fn x -> Nx.multiply(x, step) end)
end
)
end
Notice how the function given to stateless/2
is defined within defn
.
This is what allows the anonymous functions returned by Axon.Updates
to be used inside defn
.
stateful/3
represents a stateful update and follows the same pattern:
def my_stateful_update(updates) do
Axon.Updates.stateful(updates, &init_my_update/1, &apply_my_update/2)
end
defnp init_my_update(params) do
state = zeros_like(params)
%{state: state}
end
defnp apply_my_update(updates, state) do
new_state = deep_new(state, fn v -> Nx.add(v, 0.01) end)
updates = transform({updates, new_state}, fn {updates, state} ->
deep_merge(updates, state, fn g, z -> Nx.multiply(g, z) end)
end)
{updates, %{state: new_state}}
end
State associated with individual parameters should have keys that match the
keys of the parameter. For example, if you have parameters %{kernel: kernel}
with associated states mu
and nu
representing the first and second moments,
your state should look something like:
%{
mu: %{kernel: kernel_mu}
nu: %{kernel: kernel_nu}
}
Link to this section Summary
Functions
Adds decayed weights to updates.
Adds random Gaussian noise to the input.
Applies updates to params and updates state parameters with given state map.
Centralizes input by shifting updates by their mean.
Clips input between -delta and delta.
Clips input using input global norm.
Composes two updates. This is useful for extending optimizers without having to reimplement them. For example, you can implement gradient centralization
Returns the identity update.
Scales input by a fixed step size.
Scales input according to Adam algorithm.
Scales input according to the AdaBelief algorithm.
Scale input according to the Rectified Adam algorithm.
Scales input by the root of the EMA of squared inputs.
Scales input by the root of all prior squared inputs.
Scales input using the given schedule function.
Scales input by a tunable learning rate which can be manipulated by external APIs such as Axon's Loop API.
Scales input by the root of the centered EMA of squared inputs.
Scale by trust ratio.
Scale input according to the Yogi algorithm.
Represents a stateful update.
Represents a stateless update.
Trace inputs with past inputs.
Link to this section Functions
Adds decayed weights to updates.
Commonly used as a regularization strategy.
options
Options
* `:decay` - Rate of decay. Defaults to `0.0`.
Adds random Gaussian noise to the input.
options
Options
* `:eta` - Controls amount of noise to add.
Defaults to `0.01`.
* `:gamma` - Controls amount of noise to add.
Defaults to `0.55`.
Applies updates to params and updates state parameters with given state map.
Centralizes input by shifting updates by their mean.
Clips input between -delta and delta.
options
Options
:delta
- maximum absolute value of the input. Defaults to2.0
Clips input using input global norm.
options
Options
:max_norm
- maximum norm value of input. Defaults to1.0
Composes two updates. This is useful for extending optimizers without having to reimplement them. For example, you can implement gradient centralization:
import Axon.Updates
Axon.Updates.compose(Axon.Updates.centralize(), Axon.Optimizers.rmsprop())
This is equivalent to:
Axon.Updates.centralize()
|> Axon.Updates.scale_by_rms()
Returns the identity update.
This is often as the initial update in many functions in this module.
Scales input by a fixed step size.
$$f(x_i) = \alpha x_i$$
Scales input according to Adam algorithm.
options
Options
* `:b1` - first moment decay. Defaults to `0.9`
* `:b2` - second moment decay. Defaults to `0.999`
* `:eps` - numerical stability term. Defaults to `1.0e-8`
* `:eps_root` - numerical stability term. Defaults to `1.0e-15`
references
References
Scales input according to the AdaBelief algorithm.
options
Options
* `:b1` - first moment decay. Defaults to `0.9`.
* `:b2` - second moment decay. Defaults to `0.999`.
* `:eps` - numerical stability term. Defaults to `0.0`.
* `:eps_root` - numerical stability term. Defaults to `1.0e-16`.
references
References
Scale input according to the Rectified Adam algorithm.
options
Options
* `:b1` - first moment decay. Defaults to `0.9`
* `:b2` - second moment decay. Defaults to `0.999`
* `:eps` - numerical stability term. Defaults to `1.0e-8`
* `:eps_root` - numerical stability term. Defaults to `0.0`
* `:threshold` - threshold for variance. Defaults to `5.0`
references
References
Scales input by the root of the EMA of squared inputs.
options
Options
* `:decay` - EMA decay rate. Defaults to `0.9`.
* `:eps` - numerical stability term. Defaults to `1.0e-8`.
references
References
Scales input by the root of all prior squared inputs.
options
Options
* `:eps` - numerical stability term. Defaults to `1.0e-7`
Scales input using the given schedule function.
This can be useful for implementing learning rate schedules. The number of update iterations is tracked by an internal counter. You might need to update the schedule to operate on per-batch schedule rather than per-epoch.
Scales input by a tunable learning rate which can be manipulated by external APIs such as Axon's Loop API.
$$f(x_i) = \alpha x_i$$
Scales input by the root of the centered EMA of squared inputs.
options
Options
* `:decay` - EMA decay rate. Defaults to `0.9`.
* `:eps` - numerical stability term. Defaults to `1.0e-8`.
references
References
Scale by trust ratio.
options
Options
* `:min_norm` - Min norm to clip. Defaults to
`0.0`.
* `:trust_coefficient` - Trust coefficient. Defaults
to `1.0`.
* `:eps` - Numerical stability term. Defaults to `0.0`.
Scale input according to the Yogi algorithm.
options
Options
* `:initial_accumulator_value` - Initial state accumulator value.
* `:b1` - first moment decay. Defaults to `0.9`
* `:b2` - second moment decay. Defaults to `0.999`
* `:eps` - numerical stability term. Defaults to `1.0e-8`
* `:eps_root` - numerical stability term. Defaults to `0.0`
references
References
* [Adaptive Methods for Nonconvex Optimization](https://proceedings.neurips.cc/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf)
Represents a stateful update.
Stateful updates require some update state, such as momentum or RMS of previous updates. Therefore you must implement some initialization function as well as an update function.
Represents a stateless update.
Stateless updates do not depend on an update state and thus only require an implementation of an update function.
Trace inputs with past inputs.
options
Options
:decay
- decay rate for tracing past updates. Defaults to0.9
:nesterov
- whether to use Nesterov momentum. Defaults tofalse