View Source Decimal (Decimal v2.1.1)
Decimal arithmetic on arbitrary precision floating-point numbers.
A number is represented by a signed coefficient and exponent such that: sign * coefficient * 10 ^ exponent
. All numbers are represented and calculated
exactly, but the result of an operation may be rounded depending on the
context the operation is performed with, see: Decimal.Context
. Trailing
zeros in the coefficient are never truncated to preserve the number of
significant digits unless explicitly done so.
There are also special values such as NaN (not a number) and ±Infinity. -0 and +0 are two distinct values. Some operation results are not defined and will return NaN. This kind of NaN is quiet, any operation returning a number will return NaN when given a quiet NaN (the NaN value will flow through all operations).
Exceptional conditions are grouped into signals, each signal has a flag and a
trap enabler in the context. Whenever a signal is triggered it's flag is set
in the context and will be set until explicitly cleared. If the signal is trap
enabled Decimal.Error
will be raised.
specifications
Specifications
This library follows the above specifications for reference of arithmetic operation implementations, but the public APIs may differ to provide a more idiomatic Elixir interface.
The specification models the sign of the number as 1, for a negative number,
and 0 for a positive number. Internally this implementation models the sign as
1 or -1 such that the complete number will be sign * coefficient * 10 ^ exponent
and will refer to the sign in documentation as either positive
or negative.
There is currently no maximum or minimum values for the exponent. Because of that all numbers are "normal". This means that when an operation should, according to the specification, return a number that "underflows" 0 is returned instead of Etiny. This may happen when dividing a number with infinity. Additionally, overflow, underflow and clamped may never be signalled.
Link to this section Summary
Types
The coefficient of the power of 10
. Non-negative because the sign is stored separately in sign
.
The exponent to which 10
is raised.
Rounding algorithm.
1
for positive-1
for negative
This implementation models the sign
as 1
or -1
such that the complete number will be: sign * coef * 10 ^ exp
.
Functions
The absolute value of given number. Sets the number's sign to positive.
Adds two numbers together.
Applies the context to the given number rounding it to specified precision.
Creates a new decimal number from an integer, string, float, or existing decimal number.
Compares two numbers numerically. If the first number is greater than the second
:gt
is returned, if less than :lt
is returned, if both numbers are equal
:eq
is returned.
Divides two numbers.
Divides two numbers and returns the integer part.
Compares two numbers numerically and returns true
if they are equal,
otherwise false
. If one of the operands is a quiet NaN this operation
will always return false
.
Compares two numbers numerically and returns true
if they are equal,
otherwise false
. If one of the operands is a quiet NaN this operation
will always return false
.
Creates a new decimal number from a floating point number.
Compares two numbers numerically and returns true
if the the first argument
is greater than the second, otherwise false
. If one the operands is a
quiet NaN this operation will always return false
.
Returns true
if number is ±Infinity, otherwise false
.
Returns true
when the given decimal
has no significant digits after the decimal point.
Returns true
if argument is a decimal number, otherwise false
.
Compares two numbers numerically and returns true
if the the first number is
less than the second number, otherwise false
. If one of the operands is a
quiet NaN this operation will always return false
.
Compares two values numerically and returns the maximum. Unlike most other
functions in Decimal
if a number is NaN the result will be the other number.
Only if both numbers are NaN will NaN be returned.
Compares two values numerically and returns the minimum. Unlike most other
functions in Decimal
if a number is NaN the result will be the other number.
Only if both numbers are NaN will NaN be returned.
Multiplies two numbers.
Returns true
if number is NaN, otherwise false
.
Negates the given number.
Returns true
if given number is negative, otherwise false
.
Creates a new decimal number from an integer or a string representation.
Creates a new decimal number from the sign, coefficient and exponent such that
the number will be: sign * coefficient * 10 ^ exponent
.
Normalizes the given decimal: removes trailing zeros from coefficient while keeping the number numerically equivalent by increasing the exponent.
Parses a binary into a decimal.
Returns true
if given number is positive, otherwise false
.
Remainder of integer division of two numbers. The result will have the sign of the first number.
Rounds the given number to specified decimal places with the given strategy (default is to round to nearest one). If places is negative, at least that many digits to the left of the decimal point will be zero.
Returns the scale of the decimal.
Finds the square root.
Subtracts second number from the first. Equivalent to Decimal.add/2
when the
second number's sign is negated.
Returns the decimal converted to a float.
Returns the decimal represented as an integer.
Converts given number to its string representation.
Link to this section Types
@type coefficient() :: non_neg_integer() | :NaN | :inf
The coefficient of the power of 10
. Non-negative because the sign is stored separately in sign
.
non_neg_integer
- when thet
represents a number, instead of one of the special values below.:NaN
- Not a Number.:inf
- Infinity.
@type exponent() :: integer()
The exponent to which 10
is raised.
@type rounding() ::
:down | :half_up | :half_even | :ceiling | :floor | :half_down | :up
Rounding algorithm.
See Decimal.Context
for more information.
@type sign() :: 1 | -1
1
for positive-1
for negative
@type signal() :: :invalid_operation | :division_by_zero | :rounded | :inexact
@type t() :: %Decimal{coef: coefficient(), exp: exponent(), sign: sign()}
This implementation models the sign
as 1
or -1
such that the complete number will be: sign * coef * 10 ^ exp
.
coef
- the coefficient of the power of10
.exp
- the exponent of the power of10
.sign
-1
for positive,-1
for negative.
Link to this section Functions
The absolute value of given number. Sets the number's sign to positive.
examples
Examples
iex> Decimal.abs(Decimal.new("1"))
Decimal.new("1")
iex> Decimal.abs(Decimal.new("-1"))
Decimal.new("1")
iex> Decimal.abs(Decimal.new("NaN"))
Decimal.new("NaN")
Adds two numbers together.
exceptional-conditions
Exceptional conditions
- If one number is -Infinity and the other +Infinity,
:invalid_operation
will be signalled.
examples
Examples
iex> Decimal.add(1, "1.1")
Decimal.new("2.1")
iex> Decimal.add(1, "Inf")
Decimal.new("Infinity")
Applies the context to the given number rounding it to specified precision.
Creates a new decimal number from an integer, string, float, or existing decimal number.
Because conversion from a floating point number is not exact, it's recommended
to instead use new/1
or from_float/1
when the argument's type is certain.
See from_float/1
.
examples
Examples
iex> {:ok, decimal} = Decimal.cast(3)
iex> decimal
Decimal.new("3")
iex> Decimal.cast("bad")
:error
Compares two numbers numerically. If the first number is greater than the second
:gt
is returned, if less than :lt
is returned, if both numbers are equal
:eq
is returned.
Neither number can be a NaN.
examples
Examples
iex> Decimal.compare("1.0", 1)
:eq
iex> Decimal.compare("Inf", -1)
:gt
Divides two numbers.
exceptional-conditions
Exceptional conditions
- If both numbers are ±Infinity
:invalid_operation
is signalled. - If both numbers are ±0
:invalid_operation
is signalled. - If second number (denominator) is ±0
:division_by_zero
is signalled.
examples
Examples
iex> Decimal.div(3, 4)
Decimal.new("0.75")
iex> Decimal.div("Inf", -1)
Decimal.new("-Infinity")
Divides two numbers and returns the integer part.
exceptional-conditions
Exceptional conditions
- If both numbers are ±Infinity
:invalid_operation
is signalled. - If both numbers are ±0
:invalid_operation
is signalled. - If second number (denominator) is ±0
:division_by_zero
is signalled.
examples
Examples
iex> Decimal.div_int(5, 2)
Decimal.new("2")
iex> Decimal.div_int("Inf", -1)
Decimal.new("-Infinity")
Integer division of two numbers and the remainder. Should be used when both
div_int/2
and rem/2
is needed. Equivalent to: {Decimal.div_int(x, y), Decimal.rem(x, y)}
.
exceptional-conditions
Exceptional conditions
- If both numbers are ±Infinity
:invalid_operation
is signalled. - If both numbers are ±0
:invalid_operation
is signalled. - If second number (denominator) is ±0
:division_by_zero
is signalled.
examples
Examples
iex> Decimal.div_rem(5, 2)
{Decimal.new(2), Decimal.new(1)}
Compares two numbers numerically and returns true
if they are equal,
otherwise false
. If one of the operands is a quiet NaN this operation
will always return false
.
examples
Examples
iex> Decimal.eq?("1.0", 1)
true
iex> Decimal.eq?(1, -1)
false
Compares two numbers numerically and returns true
if they are equal,
otherwise false
. If one of the operands is a quiet NaN this operation
will always return false
.
examples
Examples
iex> Decimal.equal?("1.0", 1)
true
iex> Decimal.equal?(1, -1)
false
Creates a new decimal number from a floating point number.
Floating point numbers use a fixed number of binary digits to represent a decimal number which has inherent inaccuracy as some decimal numbers cannot be represented exactly in limited precision binary.
Floating point numbers will be converted to decimal numbers with
:io_lib_format.fwrite_g/1
. Since this conversion is not exact and
because of inherent inaccuracy mentioned above, we may run into counter-intuitive results:
iex> Enum.reduce([0.1, 0.1, 0.1], &+/2)
0.30000000000000004
iex> Enum.reduce([Decimal.new("0.1"), Decimal.new("0.1"), Decimal.new("0.1")], &Decimal.add/2)
Decimal.new("0.3")
For this reason, it's recommended to build decimals with new/1
, which is always precise, instead.
examples
Examples
iex> Decimal.from_float(3.14)
Decimal.new("3.14")
Compares two numbers numerically and returns true
if the the first argument
is greater than the second, otherwise false
. If one the operands is a
quiet NaN this operation will always return false
.
examples
Examples
iex> Decimal.gt?("1.3", "1.2")
true
iex> Decimal.gt?("1.2", "1.3")
false
Returns true
if number is ±Infinity, otherwise false
.
examples
Examples
iex> Decimal.inf?(Decimal.new("+Infinity"))
true
iex> Decimal.inf?(Decimal.new("-Infinity"))
true
iex> Decimal.inf?(Decimal.new("1.5"))
false
Returns true
when the given decimal
has no significant digits after the decimal point.
examples
Examples
iex> Decimal.integer?("1.00")
true
iex> Decimal.integer?("1.10")
false
Returns true
if argument is a decimal number, otherwise false
.
examples
Examples
iex> Decimal.is_decimal(Decimal.new(42))
true
iex> Decimal.is_decimal(42)
false
Allowed in guard tests on OTP 21+.
Compares two numbers numerically and returns true
if the the first number is
less than the second number, otherwise false
. If one of the operands is a
quiet NaN this operation will always return false
.
examples
Examples
iex> Decimal.lt?("1.1", "1.2")
true
iex> Decimal.lt?("1.4", "1.2")
false
Compares two values numerically and returns the maximum. Unlike most other
functions in Decimal
if a number is NaN the result will be the other number.
Only if both numbers are NaN will NaN be returned.
examples
Examples
iex> Decimal.max(1, "2.0")
Decimal.new("2.0")
iex> Decimal.max(1, "NaN")
Decimal.new("1")
iex> Decimal.max("NaN", "NaN")
Decimal.new("NaN")
Compares two values numerically and returns the minimum. Unlike most other
functions in Decimal
if a number is NaN the result will be the other number.
Only if both numbers are NaN will NaN be returned.
examples
Examples
iex> Decimal.min(1, "2.0")
Decimal.new("1")
iex> Decimal.min(1, "NaN")
Decimal.new("1")
iex> Decimal.min("NaN", "NaN")
Decimal.new("NaN")
Multiplies two numbers.
exceptional-conditions
Exceptional conditions
- If one number is ±0 and the other is ±Infinity
:invalid_operation
is signalled.
examples
Examples
iex> Decimal.mult("0.5", 3)
Decimal.new("1.5")
iex> Decimal.mult("Inf", -1)
Decimal.new("-Infinity")
Returns true
if number is NaN, otherwise false
.
examples
Examples
iex> Decimal.nan?(Decimal.new("NaN"))
true
iex> Decimal.nan?(Decimal.new(42))
false
Negates the given number.
examples
Examples
iex> Decimal.negate(1)
Decimal.new("-1")
iex> Decimal.negate("-Inf")
Decimal.new("Infinity")
Returns true
if given number is negative, otherwise false
.
examples
Examples
iex> Decimal.negative?(Decimal.new("-42"))
true
iex> Decimal.negative?(Decimal.new("42"))
false
iex> Decimal.negative?(Decimal.new("0"))
false
iex> Decimal.negative?(Decimal.new("NaN"))
false
Creates a new decimal number from an integer or a string representation.
A decimal number will always be created exactly as specified with all digits kept - it will not be rounded with the context.
backus-naur-form
Backus–Naur form
sign ::= "+" | "-"
digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
indicator ::= "e" | "E"
digits ::= digit [digit]...
decimal-part ::= digits "." [digits] | ["."] digits
exponent-part ::= indicator [sign] digits
infinity ::= "Infinity" | "Inf"
nan ::= "NaN" [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan
floats
Floats
See also from_float/1
.
examples
Examples
iex> Decimal.new(1)
Decimal.new("1")
iex> Decimal.new("3.14")
Decimal.new("3.14")
@spec new(sign :: 1 | -1, coef :: non_neg_integer() | :NaN | :inf, exp :: integer()) :: t()
Creates a new decimal number from the sign, coefficient and exponent such that
the number will be: sign * coefficient * 10 ^ exponent
.
A decimal number will always be created exactly as specified with all digits kept - it will not be rounded with the context.
examples
Examples
iex> Decimal.new(1, 42, 0)
Decimal.new("42")
Normalizes the given decimal: removes trailing zeros from coefficient while keeping the number numerically equivalent by increasing the exponent.
examples
Examples
iex> Decimal.normalize(Decimal.new("1.00"))
Decimal.new("1")
iex> Decimal.normalize(Decimal.new("1.01"))
Decimal.new("1.01")
Parses a binary into a decimal.
If successful, returns a tuple in the form of {decimal, remainder_of_binary}
,
otherwise :error
.
examples
Examples
iex> Decimal.parse("3.14")
{%Decimal{coef: 314, exp: -2, sign: 1}, ""}
iex> Decimal.parse("3.14.15")
{%Decimal{coef: 314, exp: -2, sign: 1}, ".15"}
iex> Decimal.parse("-1.1e3")
{%Decimal{coef: 11, exp: 2, sign: -1}, ""}
iex> Decimal.parse("bad")
:error
Returns true
if given number is positive, otherwise false
.
examples
Examples
iex> Decimal.positive?(Decimal.new("42"))
true
iex> Decimal.positive?(Decimal.new("-42"))
false
iex> Decimal.positive?(Decimal.new("0"))
false
iex> Decimal.positive?(Decimal.new("NaN"))
false
Remainder of integer division of two numbers. The result will have the sign of the first number.
exceptional-conditions
Exceptional conditions
- If both numbers are ±Infinity
:invalid_operation
is signalled. - If both numbers are ±0
:invalid_operation
is signalled. - If second number (denominator) is ±0
:division_by_zero
is signalled.
examples
Examples
iex> Decimal.rem(5, 2)
Decimal.new("1")
Rounds the given number to specified decimal places with the given strategy (default is to round to nearest one). If places is negative, at least that many digits to the left of the decimal point will be zero.
See Decimal.Context
for more information about rounding algorithms.
examples
Examples
iex> Decimal.round("1.234")
Decimal.new("1")
iex> Decimal.round("1.234", 1)
Decimal.new("1.2")
@spec scale(t()) :: non_neg_integer()
Returns the scale of the decimal.
A decimal's scale is the number of digits after the decimal point. This
includes trailing zeros; see normalize/1
to remove them.
examples
Examples
iex> Decimal.scale(Decimal.new("42"))
0
iex> Decimal.scale(Decimal.new(1, 2, 26))
0
iex> Decimal.scale(Decimal.new("99.12345"))
5
iex> Decimal.scale(Decimal.new("1.50"))
2
Finds the square root.
examples
Examples
iex> Decimal.sqrt("100")
Decimal.new("10")
Subtracts second number from the first. Equivalent to Decimal.add/2
when the
second number's sign is negated.
exceptional-conditions
Exceptional conditions
- If one number is -Infinity and the other +Infinity
:invalid_operation
will be signalled.
examples
Examples
iex> Decimal.sub(1, "0.1")
Decimal.new("0.9")
iex> Decimal.sub(1, "Inf")
Decimal.new("-Infinity")
Returns the decimal converted to a float.
The returned float may have lower precision than the decimal. Fails if the decimal cannot be converted to a float.
examples
Examples
iex> Decimal.to_float(Decimal.new("1.5"))
1.5
Returns the decimal represented as an integer.
Fails when loss of precision will occur.
examples
Examples
iex> Decimal.to_integer(Decimal.new("42"))
42
iex> Decimal.to_integer(Decimal.new("1.00"))
1
iex> Decimal.to_integer(Decimal.new("1.10"))
** (ArgumentError) cannot convert Decimal.new("1.1") without losing precision. Use Decimal.round/3 first.
Converts given number to its string representation.
options
Options
:scientific
- number converted to scientific notation.:normal
- number converted without a exponent.:xsd
- number converted to the canonical XSD representation.:raw
- number converted to its raw, internal format.
examples
Examples
iex> Decimal.to_string(Decimal.new("1.00"))
"1.00"
iex> Decimal.to_string(Decimal.new("123e1"), :scientific)
"1.23E+3"
iex> Decimal.to_string(Decimal.new("42.42"), :normal)
"42.42"
iex> Decimal.to_string(Decimal.new("1.00"), :xsd)
"1.0"
iex> Decimal.to_string(Decimal.new("4321.768"), :raw)
"4321768E-3"