Elixir v1.5.2 Module View Source

Provides functions to deal with modules during compilation time.

It allows a developer to dynamically add, delete and register attributes, attach documentation and so forth.

After a module is compiled, using many of the functions in this module will raise errors, since it is out of their scope to inspect runtime data. Most of the runtime data can be inspected via the __info__/1 function attached to each compiled module.

Module attributes

Each module can be decorated with one or more attributes. The following ones are currently defined by Elixir:

@after_compile

A hook that will be invoked right after the current module is compiled. Accepts a module or a {module, function_name}. See the “Compile callbacks” section below.

@before_compile

A hook that will be invoked before the module is compiled. Accepts a module or a {module, function_or_macro_name} tuple. See the “Compile callbacks” section below.

@behaviour (notice the British spelling)

Behaviours can be referenced by modules to ensure they implement required specific function signatures defined by @callback.

For example, you could specify a URI.Parser behaviour as follows:

defmodule URI.Parser do
  @doc "Defines a default port"
  @callback default_port() :: integer

  @doc "Parses the given URL"
  @callback parse(uri_info :: URI.t) :: URI.t
end

And then a module may use it as:

defmodule URI.HTTP do
  @behaviour URI.Parser
  def default_port(), do: 80
  def parse(info), do: info
end

If the behaviour changes or URI.HTTP does not implement one of the callbacks, a warning will be raised.

@impl

To aid in the correct implementation of behaviours, you may optionally declare @impl for implemented callbacks of a behaviour. This makes callbacks explicit and can help you to catch errors in your code (the compiler will warn you if you mark a function as @impl when in fact it is not a callback, and vice versa). It also helps with maintainability by making it clear to other developers that the function’s purpose is to implement a callback.

Using @impl the example above can be rewritten as:

defmodule URI.HTTP do
  @behaviour URI.parser

  @impl true
  def default_port(), do: 80

  @impl true
  def parse(info), do: info
end

You may pass either false, true, or a specific behaviour to @impl.

defmodule Foo do
  @behaviour Bar
  @behaviour Baz

  @impl true # will warn if neither Bar nor Baz specify a callback named bar/0
  def bar(), do: :ok

  @impl Baz # Will warn if Baz does not specify a callback named baz/0
  def baz(), do: :ok
end

@compile

Defines options for module compilation. This is used to configure both Elixir and Erlang compilers, as any other compilation pass added by external tools. For example:

defmodule MyModule do
  @compile {:inline, my_fun: 1}

  def my_fun(arg) do
    to_string(arg)
  end
end

Multiple uses of @compile will accumulate instead of overriding previous ones. See the “Compile options” section below.

@doc

Provides documentation for the function or macro that follows the attribute.

Accepts a string (often a heredoc) or false where @doc false will make the function/macro invisible to documentation extraction tools like ExDoc. For example:

defmodule MyModule do
  @doc "Hello world"
  def hello do
    "world"
  end

  @doc """
  Sums `a` to `b`.
  """
  def sum(a, b) do
    a + b
  end
end

@dialyzer

Defines warnings to request or suppress when using a version of :dialyzer that supports module attributes.

Accepts an atom, a tuple, or a list of atoms and tuples. For example:

defmodule MyModule do
  @dialyzer {:nowarn_function, my_fun: 1}

  def my_fun(arg) do
    M.not_a_function(arg)
  end
end

For the list of supported warnings, see :dialyzer module.

Multiple uses of @dialyzer will accumulate instead of overriding previous ones.

@external_resource

Specifies an external resource for the current module.

Sometimes a module embeds information from an external file. This attribute allows the module to annotate which external resources have been used.

Tools like Mix may use this information to ensure the module is recompiled in case any of the external resources change.

@file

Changes the filename used in stacktraces for the function or macro that follows the attribute, such as:

defmodule MyModule do
  @doc "Hello world"
  @file "hello.ex"
  def hello do
    "world"
  end
end

@moduledoc

Provides documentation for the current module.

defmodule MyModule do
  @moduledoc """
  A very useful module.
  """
end

Accepts a string (often a heredoc) or false where @moduledoc false will make the module invisible to documentation extraction tools like ExDoc.

@on_definition

A hook that will be invoked when each function or macro in the current module is defined. Useful when annotating functions.

Accepts a module or a {module, function_name} tuple. See the “Compile callbacks” section below.

@on_load

A hook that will be invoked whenever the module is loaded.

Accepts the function name (as an atom) of a function in the current module or {function_name, 0} tuple where function_name is the name of a function in the current module. The function must have arity 0 (no arguments) and has to return :ok, otherwise the loading of the module will be aborted. For example:

defmodule MyModule do
  @on_load :load_check

  def load_check do
    if some_condition() do
      :ok
    else
      :abort
    end
  end

  def some_condition do
    false
  end
end

@vsn

Specify the module version. Accepts any valid Elixir value, for example:

defmodule MyModule do
  @vsn "1.0"
end

Typespec attributes

The following attributes are part of typespecs and are also reserved by Elixir:

  • @type - defines a type to be used in @spec
  • @typep - defines a private type to be used in @spec
  • @opaque - defines an opaque type to be used in @spec
  • @spec - provides a specification for a function
  • @callback - provides a specification for a behaviour callback
  • @macrocallback - provides a specification for a macro behaviour callback
  • @optional_callbacks - specifies which behaviour callbacks and macro behaviour callbacks are optional
  • @impl - declares an implementation of a callback function or macro

Custom attributes

In addition to the built-in attributes outlined above, custom attributes may also be added. A custom attribute is any valid identifier prefixed with an @ and followed by a valid Elixir value:

defmodule MyModule do
  @custom_attr [some: "stuff"]
end

For more advanced options available when defining custom attributes, see register_attribute/3.

Compile callbacks

There are three callbacks that are invoked when functions are defined, as well as before and immediately after the module bytecode is generated.

@after_compile

A hook that will be invoked right after the current module is compiled.

Accepts a module or a {module, function_name} tuple. The function must take two arguments: the module environment and its bytecode. When just a module is provided, the function is assumed to be __after_compile__/2.

Example

defmodule MyModule do
  @after_compile __MODULE__

  def __after_compile__(env, _bytecode) do
    IO.inspect env
  end
end

@before_compile

A hook that will be invoked before the module is compiled.

Accepts a module or a {module, function_or_macro_name} tuple. The function/macro must take one argument: the module environment. If it’s a macro, its returned value will be injected at the end of the module definition before the compilation starts.

When just a module is provided, the function/macro is assumed to be __before_compile__/1.

Note: unlike @after_compile, the callback function/macro must be placed in a separate module (because when the callback is invoked, the current module does not yet exist).

Example

defmodule A do
  defmacro __before_compile__(_env) do
    quote do
      def hello, do: "world"
    end
  end
end

defmodule B do
  @before_compile A
end

B.hello()
#=> "world"

@on_definition

A hook that will be invoked when each function or macro in the current module is defined. Useful when annotating functions.

Accepts a module or a {module, function_name} tuple. The function must take 6 arguments:

  • the module environment
  • the kind of the function/macro: :def, :defp, :defmacro, or :defmacrop
  • the function/macro name
  • the list of quoted arguments
  • the list of quoted guards
  • the squoted function body

Note the hook receives the quoted arguments and it is invoked before the function is stored in the module. So Module.defines?/2 will return false for the first clause of every function.

If the function/macro being defined has multiple clauses, the hook will be called for each clause.

Unlike other hooks, @on_definition will only invoke functions and never macros. This is to avoid @on_definition callbacks from redefining functions that have just been defined in favor of more explicit approaches.

When just a module is provided, the function is assumed to be __on_definition__/6.

Example

defmodule Hooks do
  def on_def(_env, kind, name, args, guards, body) do
    IO.puts "Defining #{kind} named #{name} with args:"
    IO.inspect args
    IO.puts "and guards"
    IO.inspect guards
    IO.puts "and body"
    IO.puts Macro.to_string(body)
  end
end

defmodule MyModule do
  @on_definition {Hooks, :on_def}

  def hello(arg) when is_binary(arg) or is_list(arg) do
    "Hello" <> to_string(arg)
  end

  def hello(_) do
    :ok
  end
end

Compile options

The @compile attribute accepts different options that are used by both Elixir and Erlang compilers. Some of the common use cases are documented below:

  • @compile :debug_info - includes :debug_info regardless of the corresponding setting in Code.compiler_options/1

  • @compile {:debug_info, false} - disables :debug_info regardless of the corresponding setting in Code.compiler_options/1

  • @compile {:inline, some_fun: 2, other_fun: 3} - inlines the given name/arity pairs

  • @compile {:autoload, false} - disables automatic loading of modules after compilation. Instead, the module will be loaded after it is dispatched to

You can see a handful more options used by the Erlang compiler in the documentation for the :compile module.

Link to this section Summary

Functions

Provides runtime information about functions and macros defined by the module, enables docstring extraction, etc

Attaches documentation to a given function or type

Concatenates a list of aliases and returns a new alias

Concatenates two aliases and returns a new alias

Creates a module with the given name and defined by the given quoted expressions

Checks if the module defines the given function or macro

Checks if the module defines a function or macro of the given kind

Returns all functions defined in module

Returns all functions defined in module, according to its kind

Deletes the module attribute that matches the given key

Evaluates the quoted contents in the given module’s context

Gets the given attribute from a module

Makes the given functions in module overridable

Checks if a module is open

Returns true if tuple in module is marked as overridable

Puts a module attribute with key and value in the given module

Concatenates a list of aliases and returns a new alias only if the alias was already referenced

Concatenates two aliases and returns a new alias only if the alias was already referenced

Splits the given module name into binary parts

Link to this section Functions

Link to this function __info__(kind) View Source
__info__(:attributes | :compile | :exports | :functions | :macros | :md5 | :module) ::
  atom() |
  [{atom(), any()} | {atom(), byte(), integer()}]

Provides runtime information about functions and macros defined by the module, enables docstring extraction, etc.

Each module gets an __info__/1 function when it’s compiled. The function takes one of the following atoms:

  • :functions - keyword list of public functions along with their arities

  • :macros - keyword list of public macros along with their arities

  • :module - module name (Module == Module.__info__(:module))

In addition to the above, you may also pass to __info__/1 any atom supported by :erlang.module_info/0 which also gets defined for each compiled module.

For a list of supported attributes and more information, see Modules – Erlang Reference Manual.

Link to this function add_doc(module, line, kind, function_tuple, signature \\ [], doc) View Source
add_doc(module(), non_neg_integer(), def_kind() | type_kind(), definition(), list(), String.t() | boolean() | nil) ::
  :ok |
  {:error, :private_doc}

Attaches documentation to a given function or type.

It expects the module the function/type belongs to, the line (a non-negative integer), the kind (:def, :defmacro, :type, :opaque), a tuple {<function name>, <arity>}, the function signature (the signature should be omitted for types) and the documentation, which should be either a binary or a boolean.

It returns :ok or {:error, :private_doc}.

Examples

defmodule MyModule do
  Module.add_doc(__MODULE__, __ENV__.line + 1, :def, {:version, 0}, [], "Manually added docs")
  def version, do: 1
end
Link to this function concat(list) View Source
concat([binary() | atom()]) :: atom()

Concatenates a list of aliases and returns a new alias.

Examples

iex> Module.concat([Foo, Bar])
Foo.Bar

iex> Module.concat([Foo, "Bar"])
Foo.Bar
Link to this function concat(left, right) View Source
concat(binary() | atom(), binary() | atom()) :: atom()

Concatenates two aliases and returns a new alias.

Examples

iex> Module.concat(Foo, Bar)
Foo.Bar

iex> Module.concat(Foo, "Bar")
Foo.Bar
Link to this function create(module, quoted, opts) View Source
create(module(), Macro.t(), Macro.Env.t() | keyword()) :: {:module, module(), binary(), term()}

Creates a module with the given name and defined by the given quoted expressions.

The line where the module is defined and its file must be passed as options.

Examples

contents =
  quote do
    def world, do: true
  end

Module.create(Hello, contents, Macro.Env.location(__ENV__))

Hello.world #=> true

Differences from defmodule

Module.create/3 works similarly to defmodule and return the same results. While one could also use defmodule to define modules dynamically, this function is preferred when the module body is given by a quoted expression.

Another important distinction is that Module.create/3 allows you to control the environment variables used when defining the module, while defmodule automatically shares the same environment.

Link to this function defines?(module, tuple) View Source
defines?(module(), definition()) :: boolean()

Checks if the module defines the given function or macro.

Use defines?/3 to assert for a specific type.

This function can only be used on modules that have not yet been compiled. Use Kernel.function_exported?/3 to check compiled modules.

Examples

defmodule Example do
  Module.defines? __MODULE__, {:version, 0} #=> false
  def version, do: 1
  Module.defines? __MODULE__, {:version, 0} #=> true
end
Link to this function defines?(module, tuple, def_kind) View Source
defines?(module(), definition(), def_kind()) :: boolean()

Checks if the module defines a function or macro of the given kind.

kind can be any of :def, :defp, :defmacro, or :defmacrop.

This function can only be used on modules that have not yet been compiled. Use Kernel.function_exported?/3 to check compiled modules.

Examples

defmodule Example do
  Module.defines? __MODULE__, {:version, 0}, :defp #=> false
  def version, do: 1
  Module.defines? __MODULE__, {:version, 0}, :defp #=> false
end
Link to this function definitions_in(module) View Source
definitions_in(module()) :: [definition()]

Returns all functions defined in module.

Examples

defmodule Example do
  def version, do: 1
  Module.definitions_in __MODULE__ #=> [{:version, 0}]
end
Link to this function definitions_in(module, def_kind) View Source
definitions_in(module(), def_kind()) :: [definition()]

Returns all functions defined in module, according to its kind.

Examples

defmodule Example do
  def version, do: 1
  Module.definitions_in __MODULE__, :def  #=> [{:version, 0}]
  Module.definitions_in __MODULE__, :defp #=> []
end
Link to this function delete_attribute(module, key) View Source
delete_attribute(module(), atom()) :: term()

Deletes the module attribute that matches the given key.

It returns the deleted attribute value (or nil if nothing was set).

Examples

defmodule MyModule do
  Module.put_attribute __MODULE__, :custom_threshold_for_lib, 10
  Module.delete_attribute __MODULE__, :custom_threshold_for_lib
end
Link to this function eval_quoted(module_or_env, quoted, binding \\ [], opts \\ []) View Source
eval_quoted(module() | Macro.Env.t(), Macro.t(), list(), keyword() | Macro.Env.t()) :: term()

Evaluates the quoted contents in the given module’s context.

A list of environment options can also be given as argument. See Code.eval_string/3 for more information.

Raises an error if the module was already compiled.

Examples

defmodule Foo do
  contents = quote do: (def sum(a, b), do: a + b)
  Module.eval_quoted __MODULE__, contents
end

Foo.sum(1, 2) #=> 3

For convenience, you can pass any Macro.Env struct, such as __ENV__/0, as the first argument or as options. Both the module and all options will be automatically extracted from the environment:

defmodule Foo do
  contents = quote do: (def sum(a, b), do: a + b)
  Module.eval_quoted __ENV__, contents
end

Foo.sum(1, 2) #=> 3

Note that if you pass a Macro.Env struct as first argument while also passing opts, they will be merged with opts having precedence.

Link to this function get_attribute(module, key) View Source
get_attribute(module(), atom()) :: term()

Gets the given attribute from a module.

If the attribute was marked with accumulate with Module.register_attribute/3, a list is always returned. nil is returned if the attribute has not been marked with accumulate and has not been set to any value.

The @ macro compiles to a call to this function. For example, the following code:

@foo

Expands to something akin to:

Module.get_attribute(__MODULE__, :foo)

Examples

defmodule Foo do
  Module.put_attribute __MODULE__, :value, 1
  Module.get_attribute __MODULE__, :value #=> 1

  Module.register_attribute __MODULE__, :value, accumulate: true
  Module.put_attribute __MODULE__, :value, 1
  Module.get_attribute __MODULE__, :value #=> [1]
end
Link to this function make_overridable(module, tuples) View Source
make_overridable(module(), module()) :: :ok
make_overridable(module(), [definition()]) :: :ok

Makes the given functions in module overridable.

An overridable function is lazily defined, allowing a developer to customize it. See Kernel.defoverridable/1 for more information and documentation.

Checks if a module is open.

A module is “open” if it is currently being defined and its attributes and functions can be modified.

Link to this function overridable?(module, tuple) View Source
overridable?(module(), definition()) :: boolean()

Returns true if tuple in module is marked as overridable.

Link to this function put_attribute(module, key, value) View Source
put_attribute(module(), atom(), term()) :: :ok

Puts a module attribute with key and value in the given module.

Examples

defmodule MyModule do
  Module.put_attribute __MODULE__, :custom_threshold_for_lib, 10
end
Link to this function register_attribute(module, attribute, options) View Source
register_attribute(module(), atom(), [accumulate: boolean(), persist: boolean()]) :: :ok

Registers an attribute.

By registering an attribute, a developer is able to customize how Elixir will store and accumulate the attribute values.

Options

When registering an attribute, two options can be given:

  • :accumulate - several calls to the same attribute will accumulate instead of override the previous one. New attributes are always added to the top of the accumulated list.

  • :persist - the attribute will be persisted in the Erlang Abstract Format. Useful when interfacing with Erlang libraries.

By default, both options are false.

Examples

defmodule MyModule do
  Module.register_attribute __MODULE__,
    :custom_threshold_for_lib,
    accumulate: true, persist: false

  @custom_threshold_for_lib 10
  @custom_threshold_for_lib 20
  @custom_threshold_for_lib #=> [20, 10]
end
Link to this function safe_concat(list) View Source
safe_concat([binary() | atom()]) :: atom()

Concatenates a list of aliases and returns a new alias only if the alias was already referenced.

If the alias was not referenced yet, fails with ArgumentError. It handles charlists, binaries and atoms.

Examples

iex> Module.safe_concat([Module, Unknown])
** (ArgumentError) argument error

iex> Module.safe_concat([List, Chars])
List.Chars
Link to this function safe_concat(left, right) View Source
safe_concat(binary() | atom(), binary() | atom()) :: atom()

Concatenates two aliases and returns a new alias only if the alias was already referenced.

If the alias was not referenced yet, fails with ArgumentError. It handles charlists, binaries and atoms.

Examples

iex> Module.safe_concat(Module, Unknown)
** (ArgumentError) argument error

iex> Module.safe_concat(List, Chars)
List.Chars
Link to this function split(module) View Source
split(module() | String.t()) :: [String.t(), ...]

Splits the given module name into binary parts.

module has to be an Elixir module, as split/1 won’t work with Erlang-style modules (for example, split(:lists) raises an error).

split/1 also supports splitting the string representation of Elixir modules (that is, the result of calling Atom.to_string/1 with the module name).

Examples

iex> Module.split(Very.Long.Module.Name.And.Even.Longer)
["Very", "Long", "Module", "Name", "And", "Even", "Longer"]
iex> Module.split("Elixir.String.Chars")
["String", "Chars"]