Scalability and Parallelism

View Source

This guide covers the scalability features of erlang_python, including execution modes, rate limiting, and parallel execution.

Execution Modes

erlang_python automatically detects the optimal execution mode based on your Python version:

%% Check current execution mode
py:execution_mode().
%% => free_threaded | subinterp | multi_executor

%% Check number of executor threads
py:num_executors().
%% => 4 (default)

Mode Comparison

ModePython VersionParallelismGIL BehaviorBest For
free_threaded3.13+ (nogil build)True N-wayNoneMaximum throughput
subinterp3.12+True N-wayPer-interpreterCPU-bound, isolation
multi_executorAnyGIL contentionShared, round-robinI/O-bound, compatibility

Free-Threaded Mode (Python 3.13+)

When running on a free-threaded Python build (compiled with --disable-gil), erlang_python executes Python calls directly without any executor routing. This provides maximum parallelism for CPU-bound workloads.

Sub-interpreter Mode (Python 3.12+)

Uses Python's sub-interpreter feature with per-interpreter GIL. Each sub-interpreter has its own GIL, allowing true parallel execution across interpreters.

Note: Each sub-interpreter has isolated state. Use the Shared State API to share data between workers.

Multi-Executor Mode (Python < 3.12)

Runs N executor threads that share the GIL. Requests are distributed round-robin across executors. Good for I/O-bound workloads where Python releases the GIL during I/O operations.

Rate Limiting

All Python calls pass through an ETS-based counting semaphore that prevents overload:

%% Check semaphore status
py_semaphore:max_concurrent().  %% => 29 (schedulers * 2 + 1)
py_semaphore:current().         %% => 0 (currently running)

%% Dynamically adjust limit
py_semaphore:set_max_concurrent(50).

How It Works


                      py_semaphore                           
                                                             
          
   Counter   ets:update_counter (atomic)            
    [29]         {write_concurrency, true}              
          
                                                             
  acquire(Timeout)  increment  check  max?           
                                                           
                                    yes  no                
                                                          
                                     ok    backoff     
                                               loop        
  release()  decrement                    

Overload Protection

When the semaphore is exhausted, py:call returns an overload error instead of blocking forever:

{error, {overloaded, Current, Max}} = py:call(module, func, []).

This allows your application to implement backpressure or shed load gracefully.

Configuration

%% sys.config
[
    {erlang_python, [
        %% Maximum concurrent Python operations (semaphore limit)
        %% Default: erlang:system_info(schedulers) * 2 + 1
        {max_concurrent, 50},

        %% Number of executor threads (multi_executor mode only)
        %% Default: 4
        {num_executors, 8},

        %% Worker pool sizes
        {num_workers, 4},
        {num_async_workers, 2},
        {num_subinterp_workers, 4}
    ]}
].

Parallel Execution with Sub-interpreters

For CPU-bound workloads on Python 3.12+, use explicit parallel execution:

%% Check if supported
true = py:subinterp_supported().

%% Execute multiple calls in parallel
{ok, Results} = py:parallel([
    {math, sqrt, [16]},
    {math, sqrt, [25]},
    {math, sqrt, [36]}
]).
%% => {ok, [{ok, 4.0}, {ok, 5.0}, {ok, 6.0}]}

Each call runs in its own sub-interpreter with its own GIL, enabling true parallelism.

Testing with Free-Threading

To test with a free-threaded Python build:

1. Install Python 3.13+ with Free-Threading

# macOS with Homebrew
brew install python@3.13 --with-freethreading

# Or build from source
./configure --disable-gil
make && make install

# Or use pyenv
PYTHON_CONFIGURE_OPTS="--disable-gil" pyenv install 3.13.0

2. Verify Free-Threading is Enabled

python3 -c "import sys; print('GIL disabled:', hasattr(sys, '_is_gil_enabled') and not sys._is_gil_enabled())"

3. Rebuild erlang_python

# Clean and rebuild with free-threaded Python
rebar3 clean
PYTHON_CONFIG=/path/to/python3.13-config rebar3 compile

4. Verify Mode

1> application:ensure_all_started(erlang_python).
2> py:execution_mode().
free_threaded

Performance Tuning

For CPU-Bound Workloads

  • Use py:parallel/1 with sub-interpreters (Python 3.12+)
  • Or use free-threaded Python (3.13+)
  • Increase max_concurrent to match available CPU cores

For I/O-Bound Workloads

  • Multi-executor mode works well (GIL released during I/O)
  • Increase num_executors to handle more concurrent I/O
  • Use asyncio integration for async I/O

For Mixed Workloads

  • Balance max_concurrent based on memory constraints
  • Monitor py_semaphore:current() for load metrics
  • Implement application-level backpressure based on overload errors

Monitoring

%% Current load
Load = py_semaphore:current(),
Max = py_semaphore:max_concurrent(),
Utilization = Load / Max * 100,
io:format("Python load: ~.1f%~n", [Utilization]).

%% Execution mode info
Mode = py:execution_mode(),
Executors = py:num_executors(),
io:format("Mode: ~p, Executors: ~p~n", [Mode, Executors]).

%% Memory stats
{ok, Stats} = py:memory_stats(),
io:format("GC stats: ~p~n", [maps:get(gc_stats, Stats)]).

Shared State

Since workers (and sub-interpreters) have isolated namespaces, erlang_python provides ETS-backed shared state accessible from both Python and Erlang:

from erlang import state_set, state_get, state_incr, state_decr

# Share configuration across workers
config = state_get('app_config')

# Thread-safe metrics
state_incr('requests_total')
state_incr('bytes_processed', len(data))
%% Set config that all workers can read
py:state_store(<<"app_config">>, #{model => <<"gpt-4">>, timeout => 30000}).

%% Read metrics
{ok, Total} = py:state_fetch(<<"requests_total">>).

The state is backed by ETS with {write_concurrency, true}, making atomic counter operations fast and lock-free. See Getting Started for the full API.

Reentrant Callbacks

erlang_python supports reentrant callbacks where Python code calls Erlang functions that themselves call back into Python. This is handled without deadlocking through a suspension/resume mechanism:

%% Register an Erlang function that calls Python
py:register_function(compute_via_python, fun([X]) ->
    {ok, Result} = py:call('__main__', complex_compute, [X]),
    Result * 2  %% Erlang post-processing
end).

%% Python code that uses the callback
py:exec(<<"
def process(x):
    from erlang import call
    # Calls Erlang, which calls Python's complex_compute
    result = call('compute_via_python', x)
    return result + 1
">>).

How Reentrant Callbacks Work


                     Reentrant Callback Flow                      
                                                                 
  1. Python calls erlang.call('func', args)                      
      Returns suspension marker, frees dirty scheduler       
                                                                 
  2. Erlang executes the registered callback                     
      May call py:call() to run Python (on different worker) 
                                                                 
  3. Erlang calls resume_callback with result                    
      Schedules dirty NIF to return result to Python         
                                                                 
  4. Python continues with the callback result                   
                                                                 

Benefits

  • No Deadlocks: Dirty schedulers are freed during callback execution
  • Nested Callbacks: Multiple levels of Python→Erlang→Python→... are supported
  • Transparent: From Python's perspective, erlang.call() appears synchronous
  • No Configuration: Works automatically with all execution modes

Performance Considerations

  • Reentrant callbacks have slightly higher overhead due to suspension/resume
  • For tight loops, consider batching operations to reduce callback overhead
  • Concurrent reentrant calls are fully supported and scale well

Example: Nested Callbacks

%% Each level alternates between Erlang and Python
py:register_function(level, fun([N, Max]) ->
    case N >= Max of
        true -> N;
        false ->
            {ok, Result} = py:call('__main__', next_level, [N + 1, Max]),
            Result
    end
end).

py:exec(<<"
def next_level(n, max):
    from erlang import call
    return call('level', n, max)

def start(max):
    from erlang import call
    return call('level', 1, max)
">>).

%% Test 10 levels of nesting
{ok, 10} = py:call('__main__', start, [10]).

Example

See examples/reentrant_demo.erl and examples/reentrant_demo.py for a complete demonstration including:

  • Basic reentrant calls with arithmetic expressions
  • Fibonacci with Erlang memoization
  • Deeply nested callbacks (10+ levels)
  • OOP-style class method callbacks
# Run the demo
rebar3 shell
1> reentrant_demo:start().
2> reentrant_demo:demo_all().

See Also