View Source Evision.BackgroundSubtractorMOG2 (Evision v0.1.17)
Link to this section Summary
Types
Type that represents an Evision.BackgroundSubtractorMOG2
struct.
Functions
Computes a foreground mask.
Computes a foreground mask.
Returns the "background ratio" parameter of the algorithm
Returns the complexity reduction threshold
Returns the shadow detection flag
Returns the number of last frames that affect the background model
Returns the number of gaussian components in the background model
Returns the shadow threshold
Returns the shadow value
Returns the initial variance of each gaussian component
getVarMax
getVarMin
Returns the variance threshold for the pixel-model match
Returns the variance threshold for the pixel-model match used for new mixture component generation
Sets the "background ratio" parameter of the algorithm
Sets the complexity reduction threshold
Enables or disables shadow detection
Sets the number of last frames that affect the background model
Sets the number of gaussian components in the background model.
Sets the shadow threshold
Sets the shadow value
Sets the initial variance of each gaussian component
setVarMax
setVarMin
Sets the variance threshold for the pixel-model match
Sets the variance threshold for the pixel-model match used for new mixture component generation
Link to this section Types
@type t() :: %Evision.BackgroundSubtractorMOG2{ref: reference()}
Type that represents an Evision.BackgroundSubtractorMOG2
struct.
ref.
reference()
The underlying erlang resource variable.
Link to this section Functions
@spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}
Computes a foreground mask.
Positional Arguments
self:
Evision.BackgroundSubtractorMOG2.t()
image:
Evision.Mat
.Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
Keyword Arguments
learningRate:
double
.The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
Return
fgmask:
Evision.Mat
.The output foreground mask as an 8-bit binary image.
Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask
@spec apply(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: Evision.Mat.t() | {:error, String.t()}
Computes a foreground mask.
Positional Arguments
self:
Evision.BackgroundSubtractorMOG2.t()
image:
Evision.Mat
.Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
Keyword Arguments
learningRate:
double
.The value between 0 and 1 that indicates how fast the background model is learnt. Negative parameter value makes the algorithm to use some automatically chosen learning rate. 0 means that the background model is not updated at all, 1 means that the background model is completely reinitialized from the last frame.
Return
fgmask:
Evision.Mat
.The output foreground mask as an 8-bit binary image.
Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask
Returns the "background ratio" parameter of the algorithm
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
If a foreground pixel keeps semi-constant value for about backgroundRatio*history frames, it's considered background and added to the model as a center of a new component. It corresponds to TB parameter in the paper.
Python prototype (for reference only):
getBackgroundRatio() -> retval
Returns the complexity reduction threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05 is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the standard Stauffer&Grimson algorithm.
Python prototype (for reference only):
getComplexityReductionThreshold() -> retval
Returns the shadow detection flag
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
bool
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for details.
Python prototype (for reference only):
getDetectShadows() -> retval
Returns the number of last frames that affect the background model
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
int
Python prototype (for reference only):
getHistory() -> retval
Returns the number of gaussian components in the background model
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
int
Python prototype (for reference only):
getNMixtures() -> retval
Returns the shadow threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara, Detecting Moving Shadows...*, IEEE PAMI,2003.
Python prototype (for reference only):
getShadowThreshold() -> retval
Returns the shadow value
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
int
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0 in the mask always means background, 255 means foreground.
Python prototype (for reference only):
getShadowValue() -> retval
Returns the initial variance of each gaussian component
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Python prototype (for reference only):
getVarInit() -> retval
getVarMax
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Python prototype (for reference only):
getVarMax() -> retval
getVarMin
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Python prototype (for reference only):
getVarMin() -> retval
Returns the variance threshold for the pixel-model match
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by the background model or not. Related to Cthr from the paper.
Python prototype (for reference only):
getVarThreshold() -> retval
Returns the variance threshold for the pixel-model match used for new mixture component generation
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
Return
- retval:
double
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it is considered foreground or added as a new component. 3 sigma => Tg=3*3=9 is default. A smaller Tg value generates more components. A higher Tg value may result in a small number of components but they can grow too large.
Python prototype (for reference only):
getVarThresholdGen() -> retval
Sets the "background ratio" parameter of the algorithm
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- ratio:
double
Python prototype (for reference only):
setBackgroundRatio(ratio) -> None
Sets the complexity reduction threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- ct:
double
Python prototype (for reference only):
setComplexityReductionThreshold(ct) -> None
Enables or disables shadow detection
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- detectShadows:
bool
Python prototype (for reference only):
setDetectShadows(detectShadows) -> None
Sets the number of last frames that affect the background model
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- history:
int
Python prototype (for reference only):
setHistory(history) -> None
Sets the number of gaussian components in the background model.
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- nmixtures:
int
The model needs to be reinitalized to reserve memory.
Python prototype (for reference only):
setNMixtures(nmixtures) -> None
Sets the shadow threshold
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- threshold:
double
Python prototype (for reference only):
setShadowThreshold(threshold) -> None
Sets the shadow value
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- value:
int
Python prototype (for reference only):
setShadowValue(value) -> None
Sets the initial variance of each gaussian component
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varInit:
double
Python prototype (for reference only):
setVarInit(varInit) -> None
setVarMax
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varMax:
double
Python prototype (for reference only):
setVarMax(varMax) -> None
setVarMin
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varMin:
double
Python prototype (for reference only):
setVarMin(varMin) -> None
Sets the variance threshold for the pixel-model match
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varThreshold:
double
Python prototype (for reference only):
setVarThreshold(varThreshold) -> None
Sets the variance threshold for the pixel-model match used for new mixture component generation
Positional Arguments
- self:
Evision.BackgroundSubtractorMOG2.t()
- varThresholdGen:
double
Python prototype (for reference only):
setVarThresholdGen(varThresholdGen) -> None