View Source Evision.DNN.Layer (Evision v0.1.17)

Link to this section Summary

Types

t()

Type that represents an Evision.DNN.Layer struct.

Functions

Computes and sets internal parameters according to inputs, outputs and blobs.

Computes and sets internal parameters according to inputs, outputs and blobs.

Returns index of output blob in output array.

Allocates layer and computes output.

Allocates layer and computes output.

Link to this section Types

@type t() :: %Evision.DNN.Layer{ref: reference()}

Type that represents an Evision.DNN.Layer struct.

  • ref. reference()

    The underlying erlang resource variable.

Link to this section Functions

@spec finalize(t(), [Evision.Mat.maybe_mat_in()]) ::
  [Evision.Mat.t()] | {:error, String.t()}

Computes and sets internal parameters according to inputs, outputs and blobs.

Positional Arguments
  • self: Evision.DNN.Layer.t()
  • inputs: [Evision.Mat]
Return
  • outputs: [Evision.Mat].

    vector of already allocated output blobs

If this method is called after network has allocated all memory for input and output blobs and before inferencing.

Python prototype (for reference only):

finalize(inputs[, outputs]) -> outputs
Link to this function

finalize(self, inputs, opts)

View Source
@spec finalize(t(), [Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
  [Evision.Mat.t()] | {:error, String.t()}

Computes and sets internal parameters according to inputs, outputs and blobs.

Positional Arguments
  • self: Evision.DNN.Layer.t()
  • inputs: [Evision.Mat]
Return
  • outputs: [Evision.Mat].

    vector of already allocated output blobs

If this method is called after network has allocated all memory for input and output blobs and before inferencing.

Python prototype (for reference only):

finalize(inputs[, outputs]) -> outputs
@spec get_blobs(t()) :: [Evision.Mat.t()]
@spec get_name(t()) :: binary()
Link to this function

get_preferableTarget(self)

View Source
@spec get_preferableTarget(t()) :: integer()
@spec get_type(t()) :: binary()
Link to this function

outputNameToIndex(self, outputName)

View Source
@spec outputNameToIndex(t(), binary()) :: integer() | {:error, String.t()}

Returns index of output blob in output array.

Positional Arguments
  • self: Evision.DNN.Layer.t()
  • outputName: String
Return
  • retval: int

@see inputNameToIndex()

Python prototype (for reference only):

outputNameToIndex(outputName) -> retval
Link to this function

run(self, inputs, internals)

View Source
@spec run(t(), [Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()]) ::
  {[Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}

Allocates layer and computes output.

Positional Arguments
  • self: Evision.DNN.Layer.t()
  • inputs: [Evision.Mat]
Return
  • outputs: [Evision.Mat].
  • internals: [Evision.Mat]

@deprecated This method will be removed in the future release.

Python prototype (for reference only):

run(inputs, internals[, outputs]) -> outputs, internals
Link to this function

run(self, inputs, internals, opts)

View Source
@spec run(
  t(),
  [Evision.Mat.maybe_mat_in()],
  [Evision.Mat.maybe_mat_in()],
  [{atom(), term()}, ...] | nil
) :: {[Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}

Allocates layer and computes output.

Positional Arguments
  • self: Evision.DNN.Layer.t()
  • inputs: [Evision.Mat]
Return
  • outputs: [Evision.Mat].
  • internals: [Evision.Mat]

@deprecated This method will be removed in the future release.

Python prototype (for reference only):

run(inputs, internals[, outputs]) -> outputs, internals
@spec set_blobs(t(), [Evision.Mat.maybe_mat_in()]) :: t()