View Source Evision.DNN.Model (Evision v0.1.17)
Link to this section Summary
Types
Type that represents an Evision.DNN.Model
struct.
Functions
Variant 1:
Create model from deep learning network.
Create model from deep learning network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.
Given the @p input frame, create input blob, run net and return the output @p blobs.
Given the @p input frame, create input blob, run net and return the output @p blobs.
Set flag crop for frame.
Set mean value for frame.
Set preprocessing parameters for frame.
Set preprocessing parameters for frame.
Set scalefactor value for frame.
Set input size for frame.
setInputSize
Set flag swapRB for frame.
setPreferableBackend
setPreferableTarget
Link to this section Types
@type t() :: %Evision.DNN.Model{ref: reference()}
Type that represents an Evision.DNN.Model
struct.
ref.
reference()
The underlying erlang resource variable.
Link to this section Functions
@spec model(Evision.DNN.Net.t()) :: t() | {:error, String.t()}
@spec model(binary()) :: t() | {:error, String.t()}
Variant 1:
Create model from deep learning network.
Positional Arguments
network:
Evision.DNN.Net
.Net object.
Return
- self:
Evision.DNN.Model
Python prototype (for reference only):
Model(network) -> <dnn_Model object>
Variant 2:
Create model from deep learning network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.
Positional Arguments
model:
String
.Binary file contains trained weights.
Keyword Arguments
config:
String
.Text file contains network configuration.
Return
- self:
Evision.DNN.Model
Python prototype (for reference only):
Model(model[, config]) -> <dnn_Model object>
Create model from deep learning network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.
Positional Arguments
model:
String
.Binary file contains trained weights.
Keyword Arguments
config:
String
.Text file contains network configuration.
Return
- self:
Evision.DNN.Model
Python prototype (for reference only):
Model(model[, config]) -> <dnn_Model object>
@spec predict(t(), Evision.Mat.maybe_mat_in()) :: [Evision.Mat.t()] | {:error, String.t()}
Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
- self:
Evision.DNN.Model.t()
- frame:
Evision.Mat
Return
outs:
[Evision.Mat]
.Allocated output blobs, which will store results of the computation.
Python prototype (for reference only):
predict(frame[, outs]) -> outs
@spec predict(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) :: [Evision.Mat.t()] | {:error, String.t()}
Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
- self:
Evision.DNN.Model.t()
- frame:
Evision.Mat
Return
outs:
[Evision.Mat]
.Allocated output blobs, which will store results of the computation.
Python prototype (for reference only):
predict(frame[, outs]) -> outs
Set flag crop for frame.
Positional Arguments
self:
Evision.DNN.Model.t()
crop:
bool
.Flag which indicates whether image will be cropped after resize or not.
Return
- retval:
Evision.DNN.Model
Python prototype (for reference only):
setInputCrop(crop) -> retval
@spec setInputMean( t(), {number()} | {number(), number()} | {number() | number() | number()} | {number(), number(), number(), number()} ) :: t() | {:error, String.t()}
Set mean value for frame.
Positional Arguments
self:
Evision.DNN.Model.t()
mean:
Scalar
.Scalar with mean values which are subtracted from channels.
Return
- retval:
Evision.DNN.Model
Python prototype (for reference only):
setInputMean(mean) -> retval
Set preprocessing parameters for frame.
Positional Arguments
- self:
Evision.DNN.Model.t()
Keyword Arguments
scale:
double
.Multiplier for frame values.
size:
Size
.New input size.
mean:
Scalar
.Scalar with mean values which are subtracted from channels.
swapRB:
bool
.Flag which indicates that swap first and last channels.
crop:
bool
.Flag which indicates whether image will be cropped after resize or not. blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None
Set preprocessing parameters for frame.
Positional Arguments
- self:
Evision.DNN.Model.t()
Keyword Arguments
scale:
double
.Multiplier for frame values.
size:
Size
.New input size.
mean:
Scalar
.Scalar with mean values which are subtracted from channels.
swapRB:
bool
.Flag which indicates that swap first and last channels.
crop:
bool
.Flag which indicates whether image will be cropped after resize or not. blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None
Set scalefactor value for frame.
Positional Arguments
self:
Evision.DNN.Model.t()
scale:
double
.Multiplier for frame values.
Return
- retval:
Evision.DNN.Model
Python prototype (for reference only):
setInputScale(scale) -> retval
Set input size for frame.
Positional Arguments
self:
Evision.DNN.Model.t()
size:
Size
.New input size.
Return
- retval:
Evision.DNN.Model
Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval
setInputSize
Positional Arguments
self:
Evision.DNN.Model.t()
width:
int
.New input width.
height:
int
.New input height.
Return
- retval:
Evision.DNN.Model
Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval
Set flag swapRB for frame.
Positional Arguments
self:
Evision.DNN.Model.t()
swapRB:
bool
.Flag which indicates that swap first and last channels.
Return
- retval:
Evision.DNN.Model
Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval
setPreferableBackend
Positional Arguments
- self:
Evision.DNN.Model.t()
- backendId:
dnn_Backend
Return
- retval:
Evision.DNN.Model
Python prototype (for reference only):
setPreferableBackend(backendId) -> retval
setPreferableTarget
Positional Arguments
- self:
Evision.DNN.Model.t()
- targetId:
dnn_Target
Return
- retval:
Evision.DNN.Model
Python prototype (for reference only):
setPreferableTarget(targetId) -> retval