ex_rlp v0.2.1 ExRLP

ExRLP CircleCI

Elixir implementation of Ethereum’s RLP (Recursive Length Prefix) encoding

The encoding’s specification can be found in the yellow paper or in the ethereum wiki

Installation

The easiest way to add ExRLP to your project is by using Mix.

Add :ex_rlp as a dependency to your project’s mix.exs:

defp deps do
  [
    {:ex_rlp, "~> 0.1.0"}
  ]
end

And run:

$ mix deps.get

Basic Usage

Use ExRLP.encode/1 method to encode an item to RLP representation. An item can be nonnegative integer, binary or list. List can contain integers, binaries or lists.

  ## Examples
  
      iex(1)> "dog" |> ExRLP.encode(encoding: :hex)
      "83646f67"

      iex(2)> "dog" |> ExRLP.encode(encoding: :binary)
      <<0x83, 0x64, 0x6f, 0x67>>

      iex(3)> 1000 |> ExRLP.encode(encoding: :hex)
      "8203e8"

      # Default encoding is binary
      iex(3)> 1000 |> ExRLP.encode
      <<0x82, 0x03, 0xe8>>

      iex(4)> [ [ [], [] ], [] ] |> ExRLP.encode(encoding: :hex)
      "c4c2c0c0c0"

Use ExRLP.decode/1 method to decode a rlp encoded data. All items except lists are decoded as binaries so additional deserialization is needed if initially an item of another type was encoded.


  ## Examples
  
      iex(1)> "83646f67" |> ExRLP.decode(:binary, encoding: :hex)
      "dog"

      iex(2)> "8203e8" |> ExRLP.decode(:binary, encoding: :hex) |> :binary.decode_unsigned
      1000

      iex(3)> "c4c2c0c0c0" |> ExRLP.decode(:binary, encoding: :hex)
      [[[], []], []]

More examples can be found in test files.

Protocols

You can define protocols for encoding/decoding custom data types.

Custom protocols for Map have already been implemented in ExRLP:


defimpl ExRLP.Encoder, for: Map do
  alias ExRLP.Encode

  def encode(map, _) do
    map
    |> Map.keys
    |> Enum.reduce([], fn(key, acc) ->
      value = Map.get(map, key)

      acc ++ [value]
    end)
    |> Encode.encode
  end
end

defimpl ExRLP.Decoder, for: BitString do
  alias ExRLP.Decode

  def decode(value, :map, options) do
    keys =
      options
      |> Keyword.fetch!(:keys)
      |> Enum.sort

    value
    |> Decode.decode
    |> Enum.with_index
    |> Enum.reduce(%{}, fn({value, index}, acc) ->
      key = keys |> Enum.at(index)

      acc |> Map.put(key, value)
    end)

    ...
  end
end

So now it’s possible to encode/decode maps:

iex(1)> %{name: "Vitalik", surname: "Buterin"} |> ExRLP.encode(encoding: :hex)
"d087566974616c696b874275746572696e"

iex(2)> "d087566974616c696b874275746572696e" |> ExRLP.decode(:map, keys: [:surname, :name], encoding: :hex)
%{name: "Vitalik", surname: "Buterin"}

Contributing

  1. Fork it!
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Author

Ayrat Badykov (@ayrat555)

License

ExRLP is released under the MIT License. See the LICENSE file for further details.

Link to this section Summary

Functions

Given an RLP-encoded string, returns a decoded RPL structure (which is an array of RLP structures or binaries)

Given an RLP structure, returns the encoding as a string

Link to this section Types

Link to this type t()
t() :: nil | binary | integer | [t]

Link to this section Functions

Link to this function decode(item, type \\ :binary, options \\ [])
decode(binary, atom, keyword) :: t

Given an RLP-encoded string, returns a decoded RPL structure (which is an array of RLP structures or binaries).

Examples

iex> ExRLP.decode(<<>>) nil

iex> ExRLP.decode(<<0x83, ?d, ?o, ?g>>) “dog”

iex> ExRLP.decode(“83646f67”, :binary, encoding: :hex) “dog”

iex> ExRLP.decode(<<184, 60, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65>>) Enum.join(for _ <- 1..60, do: “A”)

iex> ExRLP.decode(<<0xc8, 0x83, ?c, ?a, ?t, 0x83, ?d, ?o, ?g>>) [“cat”, “dog”]

iex> ExRLP.decode(<<198, 51, 132, 99, 111, 111, 108>>) [“3”, “cool”]

iex> ExRLP.decode(<<0x80>>) “”

iex> ExRLP.decode(<<0xc0>>) []

iex> ExRLP.decode(<<0x0f>>) <<0x0f>>

iex> ExRLP.decode(<<0x82, 0x04, 0x00>>) “”

iex> ExRLP.decode(<<0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0>>) [[],[[]],[[],[[]]]]

iex> ExRLP.decode(<<248, 60, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192>>) for _ <- 1..60, do: []

iex> ExRLP.decode(<<143, 2, 227, 142, 158, 4, 75, 160, 83, 84, 85, 150, 0, 0, 0, 0>>) |> :binary.decode_unsigned 15_000_000_000_000_000_000_000_000_000_000_000

Link to this function encode(item, options \\ [])
encode(t, keyword) :: binary

Given an RLP structure, returns the encoding as a string.

Examples

iex> ExRLP.encode(“dog”) <<0x83, ?d, ?o, ?g>>

iex> ExRLP.encode(“dog”, encoding: :hex) “83646f67”

iex> ExRLP.encode(Enum.join(for _ <- 1..60, do: “A”)) <<184, 60, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65>>

iex> ExRLP.encode([“cat”, “dog”]) <<0xc8, 0x83, ?c, ?a, ?t, 0x83, ?d, ?o, ?g>>

iex> ExRLP.encode(“”) <<0x80>>

iex> ExRLP.encode([]) <<0xc0>>

iex> ExRLP.encode(“”) <<0x0f>>

iex> ExRLP.encode(15) <<0x0f>>

iex> ExRLP.encode(15_000_000_000_000_000_000_000_000_000_000_000) <<143, 2, 227, 142, 158, 4, 75, 160, 83, 84, 85, 150, 0, 0, 0, 0>>

iex> ExRLP.encode(1024) <<0x82, 0x04, 0x00>>

iex> ExRLP.encode(“”) <<0x82, 0x04, 0x00>>

iex> ExRLP.encode([[],[[]],[[],[[]]]]) <<0xc7, 0xc0, 0xc1, 0xc0, 0xc3, 0xc0, 0xc1, 0xc0>>

iex> ExRLP.encode(for _ <- 1..60, do: []) <<248, 60, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192>>