View Source Formulae (formulae v0.17.1)
A set of functions to deal with analytical formulae.
The typical way of using this module would be to call Formulae.compile/1
on the binary representing the string.
iex|1 ▶ f = Formulae.compile "a + :math.sin(3.14 * div(b, 2)) - c"
#ℱ<[
sigil: "~F[a + :math.sin(3.14 * div(b, 2)) - c]",
eval: &:"Elixir.Formulae.a + :math.sin(3.14 * div(b, 2)) - c".eval/1,
formula: "a + :math.sin(3.14 * div(b, 2)) - c",
guard: nil,
module: :"Elixir.Formulae.a + :math.sin(3.14 * div(b, 2)) - c",
variables: [:a, :b, :c],
options: [defaults: [], imports: [:...], evaluator: :function, alias: nil]
]>
Now the formula is compiled and might be invoked by calling Formulae.eval/2
passing a formula and bindings. First call to eval/2
would lazily compile
the module if needed.
iex|2 ▶ f.eval.(a: 3, b: 4, c: 2)
0.9968146982068622
Whether one needs to use external modules in formulas, these modules
must be explicitly imported via imports: [Mod1, Mod2]
. In case of clash
against Kernel
functions, the latter might be “unimported” explicitly.
iex|3 ▶ Formulae.compile("div(100, 2)", imports: [Decimal], unimports: [div: 2])
Decimal.new("50")
The formulae might be curried.
iex|4 ▶ Formulae.curry(f, a: 3, b: 4)
#ℱ<[
sigil: "~F[3 + :math.sin(3.14 * div(4, 2)) - c]",
eval: &:"Elixir.Formulae.3 + :math.sin(3.14 * div(4, 2)) - c".eval/1,
formula: "3 + :math.sin(3.14 * div(4, 2)) - c",
guard: nil,
module: :"Elixir.Formulae.3 + :math.sin(3.14 * div(4, 2)) - c",
variables: [:c],
options: [defaults: [], imports: [:...], evaluator: :function, alias: nil]
]>
Since v0.10.0
there is an ability to pass defaults
via options
.
Examples:
iex> "z + t" |> Formulae.compile(defaults: [t: 5]) |> Formulae.eval(t: 10, z: 3)
13
iex> "z + t" |> Formulae.compile(defaults: [t: 5]) |> Formulae.eval(z: 3)
8
Summary
Types
The formulae is internally represented as struct, exposing the original binary representing the formula, AST, the module this formula was compiled into, variables (bindings) this formula has and the evaluator, which is the function of arity one, accepting the bindings as a keyword list and returning the result of this formula application.
Functions
Returns the binding this formula requires.
Revalidates the formula with bindings given. Returns true if the formula
strictly evaluates to true
, false
otherwise. Compiles the formula
before evaluation if needed.
Generated clauses for n ∈ [1..42]
to be used with dynamic number
Compiles the formula into module.
Checks whether the formula was already compiled into module.
Curries the formula by substituting the known bindings into it.
Checks whether the formula was already compiled into module.
Similar to compiled?/1
, but returns what Code.ensure_compiled/1
returns.
Evaluates the formula returning the result back.
Evaluates the formula returning the result back; throws in a case of unseccessful processing.
Evaluates normalized representation of formula.
Lists all the compiled formulas.
Returns a normalized representation for the formula given.
Generated clauses for n ∈ [1..12]
to be used with dynamic number
Purges and discards the module for the formula given (if exists.)
Types
@type t() :: %{ __struct__: atom(), formula: binary(), ast: nil | Macro.t(), eval: nil | (keyword() -> any()), guard: nil | Macro.t(), module: nil | atom(), variables: nil | [atom()], options: options() }
The formulae is internally represented as struct, exposing the original binary representing the formula, AST, the module this formula was compiled into, variables (bindings) this formula has and the evaluator, which is the function of arity one, accepting the bindings as a keyword list and returning the result of this formula application.
Functions
Returns the binding this formula requires.
Examples
iex> "a > 5" |> Formulae.bindings?()
~w|a|a
iex> ":math.sin(a / (3.14 * b)) > c" |> Formulae.bindings?([], imports: [:math])
~w|a b c|a
iex> "a + b * 4 - :math.pow(c, 2) / d > 1.0 * e" |> Formulae.bindings?([], imports: :math)
~w|a b c d e|a
Revalidates the formula with bindings given. Returns true if the formula
strictly evaluates to true
, false
otherwise. Compiles the formula
before evaluation if needed.
@spec combinations(list :: list(), count :: non_neg_integer()) :: [list()]
Generated clauses for n ∈ [1..42]
to be used with dynamic number
Compiles the formula into module.
The allowed imports must be specified explicitly with imports: :all
or
a list of allowed imports imports: [DateTime, Range]
.
Examples:
iex> f = Formulae.compile("rem(a, 5) - b == 0")
iex> f.formula
"rem(a, 5) - b == 0"
iex> f.variables
[:a, :b]
iex> f.module
:"Elixir.Formulae.rem(a, 5) - b == 0"
iex> f.module.eval(a: 12, b: 2)
true
iex> f = Formulae.compile("rem(a, 5) + b == a")
iex> f.variables
[:a, :b]
iex> f.eval.(a: 7, b: 5)
true
iex> f.eval.(a: 7, b: 0)
false
Checks whether the formula was already compiled into module.
Typically one does not need to call this function, since this check would be nevertheless transparently performed before the evaluation.
Examples:
iex> Formulae.compiled?("foo > 42")
false
iex> Formulae.compile("foo > 42")
iex> Formulae.compiled?("foo > 42")
true
Curries the formula by substituting the known bindings into it.
Example
iex> Formulae.curry("(temp - foo * 4) > speed / 3.14", temp: 7, speed: 3.14).formula
"7 - foo * 4 > 3.14 / 3.14"
@spec ensure_compiled(binary() | t(), options :: options()) :: {:module, module()} | {:error, :embedded | :badfile | :nofile | :on_load_failure | :unavailable | {:already_taken, module()} | {:external_module, module()}}
Checks whether the formula was already compiled into module.
Similar to compiled?/1
, but returns what Code.ensure_compiled/1
returns.
Typically one does not need to call this function, since this check would be nevertheless transparently performed before the evaluation.
Examples:
iex> Formulae.ensure_compiled("bar > 42")
{:error, :nofile}
iex> Formulae.compile("bar > 42")
iex> Formulae.ensure_compiled("bar > 42")
{:module, :"Elixir.Formulae.bar > 42"}
@spec eval(input :: binary() | t(), bindings :: keyword(), options :: options()) :: term() | {:error, any()}
Evaluates the formula returning the result back.
Examples:
iex> Formulae.eval("rem(a, 5) + rem(b, 4) == 0", a: 20, b: 20)
true
iex> Formulae.eval("rem(a, 5) == 0", a: 21)
false
iex> Formulae.eval("rem(a, 5) + rem(b, 4)", a: 21, b: 22)
3
iex> Formulae.eval("rem(a, 5) == b", [a: 8], defaults: [b: 3])
true
iex> Formulae.eval("rem(a, 5) == c", [a: 8, c: 3], defaults: [b: 3])
true
iex> Formulae.eval("to_integer(s) == i", [s: "42", i: 42], imports: [String])
true
Binary input is deprecated, create a formula explicitly with Formulae.compile/2
and then pass it as the first argument to eval/2
".
The call to eval/3
would compile the formulae with default options.
Evaluates the formula returning the result back; throws in a case of unseccessful processing.
Examples:
iex> Formulae.eval!("rem(a, 5) == 0", a: 20)
true
iex> Formulae.eval!("rem(a, 5) == 0")
** (Formulae.RunnerError) Formula ~F[rem(a, 5) == 0] failed to run (compile): [:missing_arguments], wrong or incomplete evaluator call: [given_keys: [], expected_keys: [:a]].
@spec evaluate( input :: binary() | tuple(), binding :: keyword(), options :: options() ) :: boolean() | no_return()
Evaluates normalized representation of formula.
Examples
iex> Formulae.eval("3 > 2")
true
iex> Formulae.eval("3 < 2")
false
iex> Formulae.eval("a < 2", a: 1)
true
iex> Formulae.eval("a > 2", a: 1)
false
iex> Formulae.eval("a < 2", [])
{:error, {:missing_arguments, [given_keys: [], expected_keys: [:a]]}}
iex> Formulae.eval!("a < 2", [])
** (Formulae.RunnerError) Formula ~F[a < 2] failed to run (compile): [:missing_arguments], wrong or incomplete evaluator call: [given_keys: [], expected_keys: [:a]].
iex> Formulae.eval("a + 2 == 3", a: 1)
true
iex> Formulae.eval("a + 2 == 3", a: 2)
false
iex> Formulae.eval(~S|a == "3"|, a: "3")
true
iex> Formulae.eval(~S|a == "3"|, a: 3)
false
iex> Formulae.eval(~S|a == "3"|, a: "hello")
false
iex> Formulae.eval("a + 2 == 3", a: 2)
false
iex> Formulae.eval(~S|a == "3"|, a: "3")
true
iex> Formulae.eval("a_b_c_490000 > 2", a_b_c_490000: 3)
true
Lists all the compiled formulas.
Returns a normalized representation for the formula given.
@spec permutations(list :: list(), count :: non_neg_integer()) :: [list()]
Generated clauses for n ∈ [1..12]
to be used with dynamic number
Purges and discards the module for the formula given (if exists.)
Produces the normalized representation of formula. If the rho is
an instance of Integer
or Float
,
it’s left intact, otherwise it’s moved to the left side with negation.
Examples
iex > Formulae.unit("3 > 2")
{"3 > 2", {:>, [], [3, 2]}}
iex > Formulae.unit("3 - a > 2")
{"3 - a > 2", {:>, [], [{:-, [line: 1], [3, {:a, [line: 1], nil}]}, 2]}}
iex > Formulae.unit("3 > A + 2")
{"3 > a + 2",
{:>, [],
[{:-, [context: Formulae, import: Kernel],
[3, {:+, [line: 1], [{:a, [line: 1], nil}, 2]}]}, 0]}}
iex > Formulae.unit("3 >= a + 2")
{"3 >= a + 2",
{:>=, [],
[{:-, [context: Formulae, import: Kernel],
[3, {:+, [line: 1], [{:a, [line: 1], nil}, 2]}]}, 0]}}
iex > Formulae.unit("3 a > A + 2")
** (Formulae.SyntaxError) Formula [3 a > A + 2] syntax is incorrect (parsing): syntax error before: “a”.
iex > Formulae.unit("a + 2 = 3")
{"a + 2 = 3", {:==, [], [{:+, [line: 1], [{:a, [line: 1], nil}, 2]}, 3]}}
iex > Formulae.unit(~S|A = "3"|)
{"a = \"3\"", {:==, [], [{:a, [line: 1], nil}, "3"]}}