gleam_stats/distributions/chisquared
Functions related to continuous chi-squared random variables.
- Available functions
Functions
pub fn chisquared_cdf(x: Float, d: Int) -> Result(Float, String)
Evaluate, at a certain point $$x \in [0, +\infty]$$, the cumulative distribution function (cdf) of a continuous chi-squared random variable with given degrees of freedom $$d \in \mathbb{Z}_{>0}$$.
The cdf is defined as:
\[ F(x; d) = \frac{\gamma\left(\frac{d}{2}, \frac{x}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \]
In the formula, $$\gamma(\cdot, \cdot)$$ is the lower incomplete gamma function.
Example:
import gleam_stats/distributions/chisquared
import gleeunit/should
pub fn example() {
let ddof: Float = 1.
// For illustrational purposes, evaluate the cdf at the
// point -100.0
chisquared.chisquared_cdf(-100.0, mu, sigma)
|> should.equal(Ok(0.0))
}
pub fn chisquared_mean(d: Int) -> Result(Float, String)
Analytically compute the mean of a continuous chi-squared random variable
with given degrees of freedom $$d \in \mathbb{N}$$.
The mean returned is: $$d$$.
pub fn chisquared_pdf(x: Float, d: Int) -> Result(Float, String)
Evaluate, at a certain point $$x \in [0, +\infty]$$ the probability density function (pdf) of a continuous chi-squared random variable with given degrees of freedom $$d \in \mathbb{Z}_{>0}$$.
The pdf is defined as:
\[ f(x; d) = \begin{cases} \frac{x^{\frac{d}{2} - 1}\cdot e^{-\frac{x}{2}}}{2^{\frac{d}{2}} \cdot \Gamma\left(\frac{d}{2}\right)} &\text{if } x > 0, \\ 0 &\text{if } x \leq 0. \end{cases} \]
Example:
import gleam_stats/distributions/chisquared
import gleeunit/should
pub fn example() {
let ddof: Float = 1.
// For illustrational purposes, evaluate the pdf at the
// point -100.0
chisquared.chisquared_pdf(-100.0, ddof)
|> should.equal(Ok(0.0))
}
pub fn chisquared_random(stream: Iterator(Int), d: Int, m: Int) -> Result(
#(List(Float), Iterator(Int)),
String,
)
Generate $$m \in \mathbb{Z}_{>0}$$ random numbers from a continuous chi-squared distribution with given degrees of freedom $$d \in \mathbb{Z}_{>0}$$.
Example:
import gleam/iterator.{Iterator}
import gleam_stats/generators
import gleam_stats/distributions/chisquared
pub fn example() {
let seed: Int = 5
let seq: Int = 1
let ddof: Float = 1.
assert Ok(out) =
generators.seed_pcg32(seed, seq)
|> chisquared.chisquared_random(ddof, 5_000)
let rands: List(Float) = pair.first(out)
let stream: Iterator(Int) = pair.second(out)
}
pub fn chisquared_variance(d: Int) -> Result(Float, String)
Analytically compute the variance of a continuous chi-squared random variable
with given degrees of freedom $$d \in \mathbb{Z}_{>0}$$.
The variance returned is: $$2 \cdot d$$.