gleastsq
A least squares curve fitting library for Gleam. This library uses the Nx library from Elixir under the hood to perform matrix operations.
Which method should I use?
The library provides three functions for curve fitting: least_squares
, gauss_newton
and levenberg_marquardt
.
Least Squares
The least_squares
function is just an alias for the levenberg_marquardt
function.
Gauss-Newton
The gauss_newton
function is best for least squares problems with good initial guesses and small residuals.
It is less computationally intensive and thus can be faster than the Levenberg-Marquardt method but can be unstable
with poor initial guesses or large residuals.
Levenberg-Marquardt
The levenberg_marquardt
function is robust for nonlinear least squares problems, handling large residuals and poor
initial guesses effectively. It is more computationally intensive but provides reliable convergence for a wider range
of problems, especially in challenging or ill-conditioned cases.
Installation
gleam add gleastsq
import gleam/io
import gleastsq
fn parabola(x: Float, params: List(Float)) -> Float {
let assert [a, b, c] = params
a *. x *. x +. b *. x +. c
}
pub fn main() {
let x = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
let y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0]
let initial_guess = [1.0, 1.0, 1.0]
let assert Ok(result) =
gleastsq.least_squares(x, y, parabola, initial_guess, opts: [])
io.debug(result) // [1.0, 0.0, 0.0] (within numerical error)
}
Further documentation can be found at https://hexdocs.pm/gleastsq.