View Source Nx (Nx v0.5.3)

Numerical Elixir.

The Nx library is a collection of functions and data types to work with Numerical Elixir. This module defines the main entry point for building and working with said data-structures. For example, to create an n-dimensional tensor, do:

iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.shape(t)
{2, 2}

Nx also provides the so-called numerical definitions under the Nx.Defn module. They are a subset of Elixir tailored for numerical computations. For example, it overrides Elixir's default operators so they are tensor-aware:

defn softmax(t) do
  Nx.exp(t) / Nx.sum(Nx.exp(t))
end

Code inside defn functions can also be given to custom compilers, which can compile said functions just-in-time (JIT) to run on the CPU or on the GPU.

references

References

Here is a general outline of the main references in this library:

  • For an introduction, see our Intro to Nx guide

  • This module provides the main API for working with tensors

  • Nx.Defn provides numerical definitions, CPU/GPU compilation, gradients, and more

  • Nx.LinAlg provides functions related to linear algebra

  • Nx.Constants declares many constants commonly used in numerical code

Continue reading this documentation for an overview of creating, broadcasting, and accessing/slicing Nx tensors.

creating-tensors

Creating tensors

The main APIs for creating tensors are tensor/2, from_binary/2, iota/2, eye/2, random_uniform/2, random_normal/2, and broadcast/3.

The tensor types can be one of:

  • unsigned integers (u8, u16, u32, u64)
  • signed integers (s8, s16, s32, s64)
  • floats (f16, f32, f64)
  • brain floats (bf16)
  • and complex numbers (c64, c128)

The types are tracked as tuples:

iex> Nx.tensor([1, 2, 3], type: {:f, 32})
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>

But a shortcut atom notation is also available:

iex> Nx.tensor([1, 2, 3], type: :f32)
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>

The tensor dimensions can also be named, via the :names option available to all creation functions:

iex> Nx.iota({2, 3}, names: [:x, :y])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [0, 1, 2],
    [3, 4, 5]
  ]
>

Finally, for creating vectors and matrices, a sigil notation is available:

iex> import Nx, only: :sigils
iex> ~V[1 2 3]f32
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>

iex> import Nx, only: :sigils
iex> ~M'''
...> 1 2 3
...> 4 5 6
...> '''s32
#Nx.Tensor<
  s32[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>

All other APIs accept exclusively numbers or tensors, unless explicitly noted otherwise.

broadcasting

Broadcasting

Broadcasting allows operations on two tensors of different shapes to match. For example, most often operations between tensors have the same shape:

iex> a = Nx.tensor([1, 2, 3])
iex> b = Nx.tensor([10, 20, 30])
iex> Nx.add(a, b)
#Nx.Tensor<
  s64[3]
  [11, 22, 33]
>

Now let's imagine you want to multiply a large tensor of dimensions 1000x1000x1000 by 2. If you had to create a similarly large tensor only to perform this operation, it would be inefficient. Therefore, you can simply multiply this large tensor by the scalar 2, and Nx will propagate its dimensions at the time the operation happens, without allocating a large intermediate tensor:

iex> Nx.multiply(Nx.tensor([1, 2, 3]), 2)
#Nx.Tensor<
  s64[3]
  [2, 4, 6]
>

In practice, broadcasting is not restricted only to scalars; it is a general algorithm that applies to all dimensions of a tensor. When broadcasting, Nx compares the shapes of the two tensors, starting with the trailing ones, such that:

  • If the dimensions have equal size, then they are compatible

  • If one of the dimensions have size of 1, it is "broadcast" to match the dimension of the other

In case one tensor has more dimensions than the other, the missing dimensions are considered to be of size one. Here are some examples of how broadcast would work when multiplying two tensors with the following shapes:

s64[3] * s64
#=> s64[3]

s64[255][255][3] * s64[3]
#=> s64[255][255][3]

s64[2][1] * s[1][2]
#=> s64[2][2]

s64[5][1][4][1] * s64[3][4][5]
#=> s64[5][3][4][5]

If any of the dimensions do not match or are not 1, an error is raised.

access-syntax-slicing

Access syntax (slicing)

Nx tensors implement Elixir's access syntax. This allows developers to slice tensors up and easily access sub-dimensions and values.

Access accepts integers:

iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[0]
#Nx.Tensor<
  s64[2]
  [1, 2]
>
iex> t[1]
#Nx.Tensor<
  s64[2]
  [3, 4]
>
iex> t[1][1]
#Nx.Tensor<
  s64
  4
>

If a negative index is given, it accesses the element from the back:

iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[-1][-1]
#Nx.Tensor<
  s64
  4
>

Out of bound access will raise:

iex> Nx.tensor([1, 2])[2]
** (ArgumentError) index 2 is out of bounds for axis 0 in shape {2}

iex> Nx.tensor([1, 2])[-3]
** (ArgumentError) index -3 is out of bounds for axis 0 in shape {2}

The index can also be another tensor but in such cases it must be a scalar between 0 and the dimension size. Out of bound dynamic indexes are always clamped to the tensor dimensions:

iex> two = Nx.tensor(2)
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[two][two]
#Nx.Tensor<
  s64
  4
>

For example, a minus_one dynamic index will be clamped to zero:

iex> minus_one = Nx.tensor(-1)
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[minus_one][minus_one]
#Nx.Tensor<
  s64
  1
>

Access also accepts ranges. Ranges in Elixir are inclusive:

iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[0..1]
#Nx.Tensor<
  s64[2][2]
  [
    [1, 2],
    [3, 4]
  ]
>

Ranges can receive negative positions and they will read from the back. In such cases, the range step must be explicitly given and the right-side of the range must be equal or greater than the left-side:

iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[1..-2//1]
#Nx.Tensor<
  s64[2][2]
  [
    [3, 4],
    [5, 6]
  ]
>

As you can see, accessing with a range does not eliminate the accessed axis. This means that, if you try to cascade ranges, you will always be filtering the highest dimension:

iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[1..-1//1] # Drop the first "row"
#Nx.Tensor<
  s64[3][2]
  [
    [3, 4],
    [5, 6],
    [7, 8]
  ]
>
iex> t[1..-1//1][1..-1//1] # Drop the first "row" twice
#Nx.Tensor<
  s64[2][2]
  [
    [5, 6],
    [7, 8]
  ]
>

Therefore, if you want to slice across multiple dimensions, you can wrap the ranges in a list:

iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[[1..-1//1, 1..-1//1]] # Drop the first "row" and the first "column"
#Nx.Tensor<
  s64[3][1]
  [
    [4],
    [6],
    [8]
  ]
>

You can also use .. as the full-slice range, which means you want to keep a given dimension as is:

iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[[.., 1..-1//1]] # Drop only the first "column"
#Nx.Tensor<
  s64[4][1]
  [
    [2],
    [4],
    [6],
    [8]
  ]
>

You can mix both ranges and integers in the list too:

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
iex> t[[1..2, 2]]
#Nx.Tensor<
  s64[2]
  [6, 9]
>

If the list has less elements than axes, the remaining dimensions are returned in full:

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
iex> t[[1..2]]
#Nx.Tensor<
  s64[2][3]
  [
    [4, 5, 6],
    [7, 8, 9]
  ]
>

The access syntax also pairs nicely with named tensors. By using named tensors, you can pass only the axis you want to slice, leaving the other axes intact:

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], names: [:x, :y])
iex> t[x: 1..2]
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [4, 5, 6],
    [7, 8, 9]
  ]
>
iex> t[x: 1..2, y: 0..1]
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [4, 5],
    [7, 8]
  ]
>
iex> t[x: 1, y: 0..1]
#Nx.Tensor<
  s64[y: 2]
  [4, 5]
>

For a more complex slicing rules, including strides, you can always fallback to Nx.slice/4.

backends

Backends

The Nx library has built-in support for multiple backends. A tensor is always handled by a backend, the default backend being Nx.BinaryBackend, which means the tensor is allocated as a binary within the Erlang VM.

Most often backends are used to provide a completely different implementation of tensor operations, often accelerated to the GPU. In such cases, you want to guarantee all tensors are allocated in the new backend. This can be done by configuring your runtime:

# config/runtime.exs
import Config
config :nx, default_backend: EXLA.Backend

In your notebooks and on Mix.install/2, you might:

Mix.install(
  [
    {:nx, ">= 0.0.0"}
  ],
  config: [nx: [default_backend: EXLA.Backend]]
)

Or by calling Nx.global_default_backend/1 (less preferrable):

Nx.global_default_backend(EXLA.Backend)

To pass options to the backend, replacing EXLA.Backend by {EXLA.Backend, client: :cuda} or similar. See the documentation for EXLA and Torchx for installation and GPU support.

To implement your own backend, check the Nx.Tensor behaviour.

Link to this section Summary

Types

t()

Represents a numerical value.

Guards

Checks whether the value is a valid numerical value.

Functions: Aggregates

Returns a scalar tensor of value 1 if all of the tensor values are not zero. Otherwise the value is 0.

Returns a scalar tensor of value 1 if all element-wise values are within tolerance of b. Otherwise returns value 0.

Returns a scalar tensor of value 1 if any of the tensor values are not zero. Otherwise the value is 0.

Returns the indices of the maximum values.

Returns the indices of the minimum values.

Returns the mean for the tensor.

Returns the median for the tensor.

Returns the mode of a tensor.

Returns the product for the tensor.

Reduces over a tensor with the given accumulator.

Returns the maximum values of the tensor.

Returns the minimum values of the tensor.

Finds the standard deviation of a tensor.

Returns the sum for the tensor.

Finds the variance of a tensor.

Returns the weighted mean for the tensor and the weights.

Functions: Backend

Deallocates data in a device.

Gets the default backend for the current process.

Sets the given backend as default in the current process.

Sets the default backend globally.

Invokes the given function temporarily setting backend as the default backend.

Functions: Conversion

Deserializes a serialized representation of a tensor or a container with the given options.

Loads a .npy file into a tensor.

Loads a .npz archive into a list of tensors.

Serializes the given tensor or container of tensors to iodata.

Converts the underlying tensor to a stream of tensor batches.

Returns the underlying tensor as a binary.

Returns the underlying tensor as a flat list.

Returns a heatmap struct with the tensor data.

Converts the tensor into a list reflecting its structure.

Returns the underlying tensor as a number.

Converts a tensor (or tuples and maps of tensors) to tensor templates.

Converts the given number (or tensor) to a tensor.

Functions: Creation

Creates the identity matrix of size n.

Creates a one-dimensional tensor from a binary with the given type.

Creates a tensor with the given shape which increments along the provided axis. You may optionally provide dimension names.

Creates a tensor of shape {n} with linearly spaced samples between start and stop.

Creates a diagonal tensor from a 1D tensor.

Puts the individual values from a 1D diagonal into the diagonal indices of the given 2D tensor.

A convenient ~M sigil for building matrices (two-dimensional tensors).

A convenient ~V sigil for building vectors (one-dimensional tensors).

Extracts the diagonal of batched matrices.

Creates a tensor template.

Builds a tensor.

Functions: Cumulative

Returns the cumulative maximum of elements along an axis.

Returns the cumulative minimum of elements along an axis.

Returns the cumulative product of elements along an axis.

Returns the cumulative sum of elements along an axis.

Functions: Element-wise

Computes the absolute value of each element in the tensor.

Calculates the inverse cosine of each element in the tensor.

Calculates the inverse hyperbolic cosine of each element in the tensor.

Element-wise addition of two tensors.

Calculates the inverse sine of each element in the tensor.

Calculates the inverse hyperbolic sine of each element in the tensor.

Element-wise arc tangent of two tensors.

Calculates the inverse tangent of each element in the tensor.

Calculates the inverse hyperbolic tangent of each element in the tensor.

Element-wise bitwise AND of two tensors.

Applies bitwise not to each element in the tensor.

Element-wise bitwise OR of two tensors.

Element-wise bitwise XOR of two tensors.

Calculates the cube root of each element in the tensor.

Calculates the ceil of each element in the tensor.

Clips the values of the tensor on the closed interval [min, max].

Constructs a complex tensor from two equally-shaped tensors.

Calculates the complex conjugate of each element in the tensor.

Calculates the cosine of each element in the tensor.

Calculates the hyperbolic cosine of each element in the tensor.

Counts the number of leading zeros of each element in the tensor.

Element-wise division of two tensors.

Element-wise equality comparison of two tensors.

Calculates the error function of each element in the tensor.

Calculates the inverse error function of each element in the tensor.

Calculates the one minus error function of each element in the tensor.

Calculates the exponential of each element in the tensor.

Calculates the exponential minus one of each element in the tensor.

Calculates the floor of each element in the tensor.

Element-wise greater than comparison of two tensors.

Element-wise greater than or equal comparison of two tensors.

Returns the imaginary component of each entry in a complex tensor as a floating point tensor.

Determines if each element in tensor is Inf or -Inf.

Determines if each element in tensor is a NaN.

Element-wise left shift of two tensors.

Element-wise less than comparison of two tensors.

Element-wise less than or equal comparison of two tensors.

Calculates the natural log plus one of each element in the tensor.

Calculates the natural log of each element in the tensor.

Element-wise logical and of two tensors.

Element-wise logical not a tensor.

Element-wise logical or of two tensors.

Element-wise logical xor of two tensors.

Maps the given scalar function over the entire tensor.

Element-wise maximum of two tensors.

Element-wise minimum of two tensors.

Element-wise multiplication of two tensors.

Negates each element in the tensor.

Element-wise not-equal comparison of two tensors.

Calculates the complex phase angle of each element in the tensor. $$phase(z) = atan2(b, a), z = a + bi \in \Complex$$

Computes the bitwise population count of each element in the tensor.

Element-wise power of two tensors.

Element-wise integer division of two tensors.

Returns the real component of each entry in a complex tensor as a floating point tensor.

Element-wise remainder of two tensors.

Element-wise right shift of two tensors.

Calculates the round (away from zero) of each element in the tensor.

Calculates the reverse square root of each element in the tensor.

Constructs a tensor from two tensors, based on a predicate.

Calculates the sigmoid of each element in the tensor.

Computes the sign of each element in the tensor.

Calculates the sine of each element in the tensor.

Calculates the hyperbolic sine of each element in the tensor.

Calculates the square root of each element in the tensor.

Element-wise subtraction of two tensors.

Calculates the tangent of each element in the tensor.

Calculates the hyperbolic tangent of each element in the tensor.

Functions: Indexed

Builds a new tensor by taking individual values from the original tensor at the given indices.

Performs an indexed add operation on the target tensor, adding the updates into the corresponding indices positions.

Puts individual values from updates into the given tensor at the corresponding indices.

Puts the given slice into the given tensor at the given start_indices.

Slices a tensor from start_indices with lengths.

Slices a tensor along the given axis.

Takes and concatenates slices along an axis.

Takes the values from a tensor given an indices tensor, along the specified axis.

Functions: N-dim

Sorts the tensor along the given axis according to the given direction and returns the corresponding indices of the original tensor in the new sorted positions.

Concatenates tensors along the given axis.

Computes an n-D convolution (where n >= 3) as used in neural networks.

Returns the dot product of two tensors.

Computes the generalized dot product between two tensors, given the contracting axes.

Computes the generalized dot product between two tensors, given the contracting and batch axes.

Calculates the DFT of the given tensor.

Calculates the Inverse DFT of the given tensor.

Computes the outer product of two tensors.

Reverses the tensor in the given dimensions.

Sorts the tensor along the given axis according to the given direction.

Stacks a list of tensors with the same shape along a new axis.

Returns a tuple of {values, indices} for the top k values in last dimension of the tensor.

Functions: Shape

Returns all of the axes in a tensor.

Returns the index of the given axis in the tensor.

Returns the size of a given axis of a tensor.

Broadcasts tensor to the given broadcast_shape.

Returns the byte size of the data in the tensor computed from its shape and type.

Checks if two tensors have the same shape, type, and compatible names.

Flattens a n-dimensional tensor to a 1-dimensional tensor.

Returns all of the names in a tensor.

Adds a new axis of size 1 with optional name.

Pads a tensor with a given value.

Returns the rank of a tensor.

Pads a tensor of rank 1 or greater along the given axes through periodic reflections.

Adds (or overrides) the given names to the tensor.

Changes the shape of a tensor.

Returns the shape of the tensor as a tuple.

Returns the number of elements in the tensor.

Squeezes the given size 1 dimensions out of the tensor.

Creates a new tensor by repeating the input tensor along the given axes.

Transposes a tensor to the given axes.

Functions: Type

Changes the type of a tensor.

Changes the type of a tensor, using a bitcast.

Returns the type of the tensor.

Functions: Window

Returns the maximum over each window of size window_dimensions in the given tensor, producing a tensor that contains the same number of elements as valid positions of the window.

Averages over each window of size window_dimensions in the given tensor, producing a tensor that contains the same number of elements as valid positions of the window.

Returns the minimum over each window of size window_dimensions in the given tensor, producing a tensor that contains the same number of elements as valid positions of the window.

Returns the product over each window of size window_dimensions in the given tensor, producing a tensor that contains the same number of elements as valid positions of the window.

Reduces over each window of size dimensions in the given tensor, producing a tensor that contains the same number of elements as valid positions of the window.

Performs a window_reduce to select the maximum index in each window of the input tensor according to and scatters source tensor to corresponding maximum indices in the output tensor.

Performs a window_reduce to select the minimum index in each window of the input tensor according to and scatters source tensor to corresponding minimum indices in the output tensor.

Sums over each window of size window_dimensions in the given tensor, producing a tensor that contains the same number of elements as valid positions of the window.

Link to this section Types

@type axes() :: Nx.Tensor.axes()
@type axis() :: Nx.Tensor.axis()
@type shape() :: number() | Nx.Tensor.t() | Nx.Tensor.shape()
@type t() :: number() | Complex.t() | Nx.Tensor.t()

Represents a numerical value.

Can be a plain number, a Complex number or an Nx.Tensor.

See also: is_tensor/1

@type template() :: Nx.Tensor.t(%Nx.TemplateBackend{})

Link to this section Guards

Checks whether the value is a valid numerical value.

Returns true if the value is a number, a Complex number or an Nx.Tensor.

See also: t/0

Link to this section Functions: Aggregates

Returns a scalar tensor of value 1 if all of the tensor values are not zero. Otherwise the value is 0.

If the :axes option is given, it aggregates over the given dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the reduced axes to size 1.

examples

Examples

iex> Nx.all(Nx.tensor([0, 1, 2]))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all(Nx.tensor([[-1, 0, 1], [2, 3, 4]], names: [:x, :y]), axes: [:x])
#Nx.Tensor<
  u8[y: 3]
  [1, 0, 1]
>

iex> Nx.all(Nx.tensor([[-1, 0, 1], [2, 3, 4]], names: [:x, :y]), axes: [:y])
#Nx.Tensor<
  u8[x: 2]
  [0, 1]
>

keeping-axes

Keeping axes

iex> Nx.all(Nx.tensor([[-1, 0, 1], [2, 3, 4]], names: [:x, :y]), axes: [:y], keep_axes: true)
#Nx.Tensor<
  u8[x: 2][y: 1]
  [
    [0],
    [1]
  ]
>
Link to this function

all_close(a, b, opts \\ [])

View Source

Returns a scalar tensor of value 1 if all element-wise values are within tolerance of b. Otherwise returns value 0.

You may set the absolute tolerance, :atol and relative tolerance :rtol. Given tolerances, this functions returns 1 if

absolute(a - b) <= (atol + rtol * absolute(b))

is true for all elements of a and b.

options

Options

  • :rtol - relative tolerance between numbers, as described above. Defaults to 1.0e-5
  • :atol - absolute tolerance between numbers, as described above. Defaults to 1.0e-8
  • :equal_nan - if false, NaN will always compare as false. Otherwise NaN will only equal NaN. Defaults to false

examples

Examples

iex> Nx.all_close(Nx.tensor([1.0e10, 1.0e-7]), Nx.tensor([1.00001e10, 1.0e-8]))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all_close(Nx.tensor([1.0e-8, 1.0e-8]), Nx.tensor([1.0e-8, 1.0e-9]))
#Nx.Tensor<
  u8
  1
>

Although NaN by definition isn't equal to itself, so this implementation also considers all NaNs different from each other by default:

iex> Nx.all_close(Nx.tensor(:nan), Nx.tensor(:nan))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all_close(Nx.tensor(:nan), Nx.tensor(0))
#Nx.Tensor<
  u8
  0
>

We can change this behavior with the :equal_nan option:

iex> t = Nx.tensor([:nan, 1])
iex> Nx.all_close(t, t, equal_nan: true) # nan == nan -> true
#Nx.Tensor<
  u8
  1
>
iex> Nx.all_close(t, t, equal_nan: false) # nan == nan -> false, default behavior
#Nx.Tensor<
  u8
  0
>

Infinities behave as expected, being "close" to themselves but not to other numbers:

iex> Nx.all_close(Nx.tensor(:infinity), Nx.tensor(:infinity))
#Nx.Tensor<
  u8
  1
>

iex> Nx.all_close(Nx.tensor(:infinity), Nx.tensor(:neg_infinity))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all_close(Nx.tensor(1.0e30), Nx.tensor(:infinity))
#Nx.Tensor<
  u8
  0
>

Returns a scalar tensor of value 1 if any of the tensor values are not zero. Otherwise the value is 0.

If the :axes option is given, it aggregates over the given dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the reduced axes to size 1.

examples

Examples

iex> Nx.any(Nx.tensor([0, 1, 2]))
#Nx.Tensor<
  u8
  1
>

iex> Nx.any(Nx.tensor([[0, 1, 0], [0, 1, 2]], names: [:x, :y]), axes: [:x])
#Nx.Tensor<
  u8[y: 3]
  [0, 1, 1]
>

iex> Nx.any(Nx.tensor([[0, 1, 0], [0, 1, 2]], names: [:x, :y]), axes: [:y])
#Nx.Tensor<
  u8[x: 2]
  [1, 1]
>

keeping-axes

Keeping axes

iex> Nx.any(Nx.tensor([[0, 1, 0], [0, 1, 2]], names: [:x, :y]), axes: [:y], keep_axes: true)
#Nx.Tensor<
  u8[x: 2][y: 1]
  [
    [1],
    [1]
  ]
>
Link to this function

argmax(tensor, opts \\ [])

View Source

Returns the indices of the maximum values.

options

Options

  • :axis - the axis to aggregate on. If no axis is given, returns the index of the absolute maximum value in the tensor.

  • :keep_axis - whether or not to keep the reduced axis with a size of 1. Defaults to false.

  • :tie_break - how to break ties. one of :high, or :low. default behavior is to always return the lower index.

examples

Examples

iex> Nx.argmax(4)
#Nx.Tensor<
  s64
  0
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]])
iex> Nx.argmax(t)
#Nx.Tensor<
  s64
  10
>

If a tensor of floats is given, it still returns integers:

iex> Nx.argmax(Nx.tensor([2.0, 4.0]))
#Nx.Tensor<
  s64
  1
>

aggregating-over-an-axis

Aggregating over an axis

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]])
iex> Nx.argmax(t, axis: 0)
#Nx.Tensor<
  s64[2][3]
  [
    [1, 0, 0],
    [1, 1, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 0, 0],
    [0, 1, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 2],
    [0, 1]
  ]
>

tie-breaks

Tie breaks

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, tie_break: :low, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 0, 0],
    [0, 1, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, tie_break: :high, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 0, 1],
    [0, 1, 1]
  ]
>

keep-axis

Keep axis

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :y, keep_axis: true)
#Nx.Tensor<
  s64[x: 2][y: 1][z: 3]
  [
    [
      [0, 0, 0]
    ],
    [
      [0, 1, 0]
    ]
  ]
>
Link to this function

argmin(tensor, opts \\ [])

View Source

Returns the indices of the minimum values.

options

Options

  • :axis - the axis to aggregate on. If no axis is given, returns the index of the absolute minimum value in the tensor.

  • :keep_axis - whether or not to keep the reduced axis with a size of 1. Defaults to false.

  • :tie_break - how to break ties. one of :high, or :low. Default behavior is to always return the lower index.

examples

Examples

iex> Nx.argmin(4)
#Nx.Tensor<
  s64
  0
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]])
iex> Nx.argmin(t)
#Nx.Tensor<
  s64
  4
>

If a tensor of floats is given, it still returns integers:

iex> Nx.argmin(Nx.tensor([2.0, 4.0]))
#Nx.Tensor<
  s64
  0
>

aggregating-over-an-axis

Aggregating over an axis

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]])
iex> Nx.argmin(t, axis: 0)
#Nx.Tensor<
  s64[2][3]
  [
    [0, 0, 0],
    [0, 0, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: 1)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [1, 1, 0],
    [1, 0, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [1, 1],
    [1, 2]
  ]
>

tie-breaks

Tie breaks

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, tie_break: :low, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [1, 1, 0],
    [1, 0, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, tie_break: :high, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [1, 1, 1],
    [1, 0, 1]
  ]
>

keep-axis

Keep axis

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: :y, keep_axis: true)
#Nx.Tensor<
  s64[x: 2][y: 1][z: 3]
  [
    [
      [1, 1, 0]
    ],
    [
      [1, 0, 0]
    ]
  ]
>
Link to this function

mean(tensor, opts \\ [])

View Source

Returns the mean for the tensor.

If the :axes option is given, it aggregates over that dimension, effectively removing it. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the averaged axes to size 1.

examples

Examples

iex> Nx.mean(Nx.tensor(42))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.mean(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  f32
  2.0
>

aggregating-over-an-axis

Aggregating over an axis

iex> Nx.mean(Nx.tensor([1, 2, 3]), axes: [0])
#Nx.Tensor<
  f32
  2.0
>

iex> Nx.mean(Nx.tensor([1, 2, 3], type: :u8, names: [:x]), axes: [:x])
#Nx.Tensor<
  f32
  2.0
>

iex> t = Nx.tensor(Nx.iota({2, 2, 3}), names: [:x, :y, :z])
iex> Nx.mean(t, axes: [:x])
#Nx.Tensor<
  f32[y: 2][z: 3]
  [
    [3.0, 4.0, 5.0],
    [6.0, 7.0, 8.0]
  ]
>

iex> t = Nx.tensor(Nx.iota({2, 2, 3}), names: [:x, :y, :z])
iex> Nx.mean(t, axes: [:x, :z])
#Nx.Tensor<
  f32[y: 2]
  [4.0, 7.0]
>

iex> t = Nx.tensor(Nx.iota({2, 2, 3}), names: [:x, :y, :z])
iex> Nx.mean(t, axes: [-1])
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [1.0, 4.0],
    [7.0, 10.0]
  ]
>

keeping-axes

Keeping axes

iex> t = Nx.tensor(Nx.iota({2, 2, 3}), names: [:x, :y, :z])
iex> Nx.mean(t, axes: [-1], keep_axes: true)
#Nx.Tensor<
  f32[x: 2][y: 2][z: 1]
  [
    [
      [1.0],
      [4.0]
    ],
    [
      [7.0],
      [10.0]
    ]
  ]
>
Link to this function

median(tensor, opts \\ [])

View Source

Returns the median for the tensor.

The median is the value in the middle of a data set.

If the :axis option is given, it aggregates over that dimension, effectively removing it. axis: 0 implies aggregating over the highest order dimension and so forth. If the axis is negative, then the axis will be counted from the back. For example, axis: -1 will always aggregate over the last dimension.

You may optionally set :keep_axis to true, which will retain the rank of the input tensor by setting the reduced axis to size 1.

examples

Examples

iex> Nx.median(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.median(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  2
>

iex> Nx.median(Nx.tensor([1, 2]))
#Nx.Tensor<
  f32
  1.5
>

aggregating-over-an-axis

Aggregating over an axis

iex> Nx.median(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y]), axis: 0)
#Nx.Tensor<
  f32[y: 3]
  [2.5, 3.5, 4.5]
>

iex> Nx.median(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y]), axis: :y)
#Nx.Tensor<
  s64[x: 2]
  [2, 5]
>

iex> t = Nx.tensor(Nx.iota({2, 2, 3}), names: [:x, :y, :z])
iex> Nx.median(t, axis: :x)
#Nx.Tensor<
  f32[y: 2][z: 3]
  [
    [3.0, 4.0, 5.0],
    [6.0, 7.0, 8.0]
  ]
>

iex> t = Nx.tensor([[[1, 2, 2], [3, 4, 2]], [[4, 5, 2], [7, 9, 2]]])
iex> Nx.median(t, axis: -1)
#Nx.Tensor<
  s64[2][2]
  [
    [2, 3],
    [4, 7]
  ]
>

keeping-axis

Keeping axis

iex> t = Nx.tensor([[[1, 2, 2], [3, 4, 2]], [[4, 5, 2], [7, 9, 2]]])
iex> Nx.median(t, axis: -1, keep_axis: true)
#Nx.Tensor<
  s64[2][2][1]
  [
    [
      [2],
      [3]
    ],
    [
      [4],
      [7]
    ]
  ]
>
Link to this function

mode(tensor, opts \\ [])

View Source

Returns the mode of a tensor.

The mode is the value that appears most often.

If the :axis option is given, it aggregates over that dimension, effectively removing it. axis: 0 implies aggregating over the highest order dimension and so forth. If the axis is negative, then the axis will be counted from the back. For example, axis: -1 will always aggregate over the last dimension.

You may optionally set :keep_axis to true, which will retain the rank of the input tensor by setting the reduced axis to size 1.

examples

Examples

iex> Nx.mode(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.mode(Nx.tensor([[1]]))
#Nx.Tensor<
  s64
  1
>

iex> Nx.mode(Nx.tensor([1, 2, 2, 3, 5]))
#Nx.Tensor<
  s64
  2
>

iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]))
#Nx.Tensor<
  s64
  1
>

aggregating-over-an-axis

Aggregating over an axis

iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]), axis: 0)
#Nx.Tensor<
  s64[5]
  [1, 1, 2, 3, 1]
>

iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]), axis: 1)
#Nx.Tensor<
  s64[2]
  [2, 1]
>

iex> Nx.mode(Nx.tensor([[[1]]]), axis: 1)
#Nx.Tensor<
  s64[1][1]
  [
    [1]
  ]
>

keeping-axis

Keeping axis

iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]), axis: 1, keep_axis: true)
#Nx.Tensor<
  s64[2][1]
  [
    [2],
    [1]
  ]
>
Link to this function

product(tensor, opts \\ [])

View Source

Returns the product for the tensor.

If the :axes option is given, it aggregates over the given dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the multiplied axes to size 1.

examples

Examples

By default the product always returns a scalar:

iex> Nx.product(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.product(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  6
>

iex> Nx.product(Nx.tensor([[1.0, 2.0], [3.0, 4.0]]))
#Nx.Tensor<
  f32
  24.0
>

Giving a tensor with low precision casts it to a higher precision to make sure the sum does not overflow:

iex> Nx.product(Nx.tensor([[10, 20], [30, 40]], type: :u8, names: [:x, :y]))
#Nx.Tensor<
  u64
  240000
>

iex> Nx.product(Nx.tensor([[10, 20], [30, 40]], type: :s8, names: [:x, :y]))
#Nx.Tensor<
  s64
  240000
>

aggregating-over-an-axis

Aggregating over an axis

iex> Nx.product(Nx.tensor([1, 2, 3]), axes: [0])
#Nx.Tensor<
  s64
  6
>

Same tensor over different axes combinations:

iex> t = Nx.iota({2, 2, 3}, names: [:x, :y, :z])
iex> Nx.product(t, axes: [:x])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [0, 7, 16],
    [27, 40, 55]
  ]
>
iex> Nx.product(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 4, 10],
    [54, 70, 88]
  ]
>
iex> Nx.product(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [0, 59400]
>
iex> Nx.product(t, axes: [:z])
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 60],
    [336, 990]
  ]
>
iex> Nx.product(t, axes: [-3])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [0, 7, 16],
    [27, 40, 55]
  ]
>

keeping-axes

Keeping axes

iex> t = Nx.iota({2, 2, 3}, names: [:x, :y, :z])
iex> Nx.product(t, axes: [:z], keep_axes: true)
#Nx.Tensor<
  s64[x: 2][y: 2][z: 1]
  [
    [
      [0],
      [60]
    ],
    [
      [336],
      [990]
    ]
  ]
>

errors

Errors

iex> Nx.product(Nx.tensor([[1, 2]]), axes: [2])
** (ArgumentError) given axis (2) invalid for shape with rank 2
Link to this function

reduce(tensor, acc, opts \\ [], fun)

View Source

Reduces over a tensor with the given accumulator.

The given fun will receive two tensors and it must return the reduced value.

The tensor may be reduced in parallel and the reducer function can be called with arguments in any order, the initial accumulator may be given multiples, and it may be non-deterministic. Therefore, the reduction function should be associative (or as close as possible to associativity considered floats themselves are not strictly associative).

By default, it reduces all dimensions of the tensor and return a scalar. If the :axes option is given, it aggregates over multiple dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

The type of the returned tensor will be computed based on the given tensor and the initial value. For example, a tensor of integers with a float accumulator will be cast to float, as done by most binary operators. You can also pass a :type option to change this behaviour.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the reduced axes to size 1.

limitations

Limitations

Given this function relies on anonymous functions, it may not be available or efficient on all Nx backends. Therefore, you should avoid using reduce/4 whenever possible. Instead, use functions sum/2, reduce_max/2, all/1, and so forth.

Inside defn, consider using Nx.Defn.Kernel.while/4 instead.

examples

Examples

iex> Nx.reduce(Nx.tensor(42), 0, fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64
  42
>

iex> Nx.reduce(Nx.tensor([1, 2, 3]), 0, fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64
  6
>

iex> Nx.reduce(Nx.tensor([[1.0, 2.0], [3.0, 4.0]]), 0, fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  f32
  10.0
>

aggregating-over-axes

Aggregating over axes

iex> t = Nx.tensor([1, 2, 3], names: [:x])
iex> Nx.reduce(t, 0, [axes: [:x]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64
  6
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [8, 10, 12],
    [14, 16, 18]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:y]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [5, 7, 9],
    [17, 19, 21]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x, 2]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[y: 2]
  [30, 48]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [-1]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [6, 15],
    [24, 33]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [8, 10, 12],
    [14, 16, 18]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x], keep_axes: true], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[x: 1][y: 2][z: 3]
  [
    [
      [8, 10, 12],
      [14, 16, 18]
    ]
  ]
>
Link to this function

reduce_max(tensor, opts \\ [])

View Source

Returns the maximum values of the tensor.

If the :axes option is given, it aggregates over the given dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the reduced axes to size 1.

examples

Examples

iex> Nx.reduce_max(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.reduce_max(Nx.tensor(42.0))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.reduce_max(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  3
>

aggregating-over-an-axis

Aggregating over an axis

iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_max(t, axes: [:x])
#Nx.Tensor<
  s64[y: 3]
  [3, 1, 4]
>

iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_max(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2]
  [4, 2]
>

iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_max(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [4, 8]
>

keeping-axes

Keeping axes

iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_max(t, axes: [:x, :z], keep_axes: true)
#Nx.Tensor<
  s64[x: 1][y: 2][z: 1]
  [
    [
      [4],
      [8]
    ]
  ]
>
Link to this function

reduce_min(tensor, opts \\ [])

View Source

Returns the minimum values of the tensor.

If the :axes option is given, it aggregates over the given dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the reduced axes to size 1.

examples

Examples

iex> Nx.reduce_min(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.reduce_min(Nx.tensor(42.0))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.reduce_min(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  1
>

aggregating-over-an-axis

Aggregating over an axis

iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_min(t, axes: [:x])
#Nx.Tensor<
  s64[y: 3]
  [2, 1, 1]
>

iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_min(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2]
  [1, 1]
>

iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_min(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [1, 3]
>

keeping-axes

Keeping axes

iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_min(t, axes: [:x, :z], keep_axes: true)
#Nx.Tensor<
  s64[x: 1][y: 2][z: 1]
  [
    [
      [1],
      [3]
    ]
  ]
>
Link to this function

standard_deviation(tensor, opts \\ [])

View Source
@spec standard_deviation(tensor :: Nx.Tensor.t(), opts :: Keyword.t()) ::
  Nx.Tensor.t()

Finds the standard deviation of a tensor.

The standard deviation is taken as the square root of the variance. If the :ddof (delta degrees of freedom) option is given, the divisor n - ddof is used to calculate the variance. See variance/2.

examples

Examples

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
  f32
  1.1180340051651
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), ddof: 1)
#Nx.Tensor<
  f32
  1.29099440574646
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [10, 20]]), axes: [0])
#Nx.Tensor<
  f32[2]
  [4.5, 9.0]
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [10, 20]]), axes: [1])
#Nx.Tensor<
  f32[2]
  [0.5, 5.0]
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [10, 20]]), axes: [0], ddof: 1)
#Nx.Tensor<
  f32[2]
  [6.363961219787598, 12.727922439575195]
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [10, 20]]), axes: [1], ddof: 1)
#Nx.Tensor<
  f32[2]
  [0.7071067690849304, 7.071067810058594]
>

keeping-axes

Keeping axes

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [10, 20]]), keep_axes: true)
#Nx.Tensor<
  f32[1][1]
  [
    [7.628073215484619]
  ]
>

Returns the sum for the tensor.

If the :axes option is given, it aggregates over the given dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axis is negative, then counts the axis from the back. For example, axes: [-1] will always aggregate all rows.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the summed axes to size 1.

examples

Examples

By default the sum always returns a scalar:

iex> Nx.sum(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.sum(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  6
>

iex> Nx.sum(Nx.tensor([[1.0, 2.0], [3.0, 4.0]]))
#Nx.Tensor<
  f32
  10.0
>

Giving a tensor with low precision casts it to a higher precision to make sure the sum does not overflow:

iex> Nx.sum(Nx.tensor([[101, 102], [103, 104]], type: :s8))
#Nx.Tensor<
  s64
  410
>

iex> Nx.sum(Nx.tensor([[101, 102], [103, 104]], type: :s16))
#Nx.Tensor<
  s64
  410
>

aggregating-over-an-axis

Aggregating over an axis

iex> Nx.sum(Nx.tensor([1, 2, 3]), axes: [0])
#Nx.Tensor<
  s64
  6
>

Same tensor over different axes combinations:

iex> t = Nx.iota({2, 2, 3}, names: [:x, :y, :z])
iex> Nx.sum(t, axes: [:x])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [6, 8, 10],
    [12, 14, 16]
  ]
>
iex> Nx.sum(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [3, 5, 7],
    [15, 17, 19]
  ]
>
iex> Nx.sum(t, axes: [:z])
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [3, 12],
    [21, 30]
  ]
>
iex> Nx.sum(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [24, 42]
>
iex> Nx.sum(t, axes: [-3])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [6, 8, 10],
    [12, 14, 16]
  ]
>

keeping-axes

Keeping axes

iex> t = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> Nx.sum(t, axes: [:x], keep_axes: true)
#Nx.Tensor<
  s64[x: 1][y: 2]
  [
    [4, 6]
  ]
>

errors

Errors

iex> Nx.sum(Nx.tensor([[1, 2]]), axes: [2])
** (ArgumentError) given axis (2) invalid for shape with rank 2
Link to this function

variance(tensor, opts \\ [])

View Source
@spec variance(tensor :: Nx.Tensor.t(), opts :: Keyword.t()) :: Nx.Tensor.t()

Finds the variance of a tensor.

The variance is the average of the squared deviations from the mean. The mean is typically calculated as sum(tensor) / n, where n is the total of elements. If, however, :ddof (delta degrees of freedom) is specified, the divisor n - ddof is used instead.

examples

Examples

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
  f32
  1.25
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), ddof: 1)
#Nx.Tensor<
  f32
  1.6666666269302368
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [0])
#Nx.Tensor<
  f32[2]
  [1.0, 1.0]
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [1])
#Nx.Tensor<
  f32[2]
  [0.25, 0.25]
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [0], ddof: 1)
#Nx.Tensor<
  f32[2]
  [2.0, 2.0]
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [1], ddof: 1)
#Nx.Tensor<
  f32[2]
  [0.5, 0.5]
>

keeping-axes

Keeping axes

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [1], keep_axes: true)
#Nx.Tensor<
  f32[2][1]
  [
    [0.25],
    [0.25]
  ]
>
Link to this function

weighted_mean(tensor, weights, opts \\ [])

View Source

Returns the weighted mean for the tensor and the weights.

If the :axes option is given, it aggregates over those dimensions, effectively removing them. axes: [0] implies aggregating over the highest order dimension and so forth. If the axes are negative, then the axes will be counted from the back. For example, axes: [-1] will always aggregate over the last dimension.

You may optionally set :keep_axes to true, which will retain the rank of the input tensor by setting the averaged axes to size 1.

examples

Examples

iex> Nx.weighted_mean(Nx.tensor(42), Nx.tensor(2))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.weighted_mean(Nx.tensor([1, 2, 3]), Nx.tensor([3, 2, 1]))
#Nx.Tensor<
  f32
  1.6666666269302368
>

aggregating-over-axes

Aggregating over axes

iex> Nx.weighted_mean(Nx.tensor([1, 2, 3], names: [:x]), Nx.tensor([4, 5, 6]), axes: [0])
#Nx.Tensor<
  f32
  2.133333444595337
>

iex> Nx.weighted_mean(Nx.tensor([1, 2, 3], type: :u8, names: [:x]), Nx.tensor([1, 3, 5]), axes: [:x])
#Nx.Tensor<
  f32
  2.444444417953491
>

iex> t = Nx.iota({3, 4})
iex> weights = Nx.tensor([1, 2, 3, 4])
iex> Nx.weighted_mean(t, weights, axes: [1])
#Nx.Tensor<
  f32[3]
  [2.0, 6.0, 10.0]
>

iex> t = Nx.iota({2, 4, 4, 1})
iex> weights = Nx.broadcast(2, {4, 4})
iex> Nx.weighted_mean(t, weights, axes: [1, 2])
#Nx.Tensor<
  f32[2][1]
  [
    [7.5],
    [23.5]
  ]
>

keeping-axes

Keeping axes

iex> t = Nx.tensor(Nx.iota({2, 2, 3}), names: [:x, :y, :z])
iex> weights = Nx.tensor([[[0, 1, 2], [1, 1, 0]], [[-1, 1, -1], [1, 1, -1]]])
iex> Nx.weighted_mean(t, weights, axes: [-1], keep_axes: true)
#Nx.Tensor<
  f32[x: 2][y: 2][z: 1]
  [
    [
      [1.6666666269302368],
      [3.5]
    ],
    [
      [7.0],
      [8.0]
    ]
  ]
>

Link to this section Functions: Backend

Link to this function

backend_copy(tensor_or_container, backend \\ Nx.BinaryBackend)

View Source

Copies data to the given backend.

If a backend is not given, Nx.Tensor is used, which means the given tensor backend will pick the most appropriate backend to copy the data to.

Note this function keeps the data in the original backend. Therefore, use this function with care, as it may duplicate large amounts of data across backends. Generally speaking, you may want to use backend_transfer/2, unless you explicitly want to copy the data.

For convenience, this function accepts tensors and any container (such as maps and tuples as defined by the Nx.Container protocol) and recursively copies all tensors in them. This behaviour exists as it is common to transfer data before and after defn functions.

Note:

  • Nx.default_backend/1 does not affect the behaviour of this function.
  • This function cannot be used in defn.

examples

Examples

iex> Nx.backend_copy(Nx.tensor([[1, 2, 3], [4, 5, 6]])) #Nx.Tensor<

s64[2][3]
[
  [1, 2, 3],
  [4, 5, 6]
]
Link to this function

backend_deallocate(tensor_or_container)

View Source

Deallocates data in a device.

It returns either :ok or :already_deallocated.

For convenience, this function accepts tensors and any container (such as maps and tuples as defined by the Nx.Container protocol) and deallocates all devices in them. This behaviour exists as it is common to deallocate data after defn functions.

Note: This function cannot be used in defn.

Link to this function

backend_transfer(tensor_or_container, backend \\ Nx.BinaryBackend)

View Source

Transfers data to the given backend.

This operation can be seen as an equivalent to backend_copy/3 followed by a backend_deallocate/1 on the initial tensor:

new_tensor = Nx.backend_copy(old_tensor, new_backend)
Nx.backend_deallocate(old_tensor)

If a backend is not given, Nx.Tensor is used, which means the given tensor backend will pick the most appropriate backend to transfer to.

For Elixir's builtin tensor, transferring to another backend will call new_backend.from_binary(tensor, binary, opts). Transferring from a mutable backend, such as GPU memory, implies the data is copied from the GPU to the Erlang VM and then deallocated from the device.

For convenience, this function accepts tensors and any container (such as maps and tuples as defined by the Nx.Container protocol) and transfers all tensors in them. This behaviour exists as it is common to transfer data from tuples and maps before and after defn functions.

Note:

  • Nx.default_backend/1 does not affect the behaviour of this function.
  • This function cannot be used in defn.

examples

Examples

Transfer a tensor to an EXLA device backend, stored in the GPU:

device_tensor = Nx.backend_transfer(tensor, {EXLA.Backend, client: :cuda})

Transfer the device tensor back to an Elixir tensor:

tensor = Nx.backend_transfer(device_tensor)

Gets the default backend for the current process.

Note: This function cannot be used in defn.

Link to this function

default_backend(backend)

View Source

Sets the given backend as default in the current process.

The default backend is stored only in the process dictionary. This means if you start a separate process, such as Task, the default backend must be set on the new process too.

Due to this reason, this function is mostly used for scripting and testing. In your applications, you must prefer to set the backend in your config files:

config :nx, :default_backend, {EXLA.Backend, device: :cuda}

In your notebooks and on Mix.install/2, you might:

Mix.install(
  [
    {:nx, ">= 0.0.0"}
  ],
  config: [nx: [default_backend: {EXLA.Backend, device: :cuda}]]
)

Or use Nx.global_default_backend/1 as it changes the default backend on all processes.

The function returns the value that was previously set as backend.

Note: This function cannot be used in defn.

examples

Examples

Nx.default_backend({EXLA.Backend, device: :cuda})
#=> {Nx.BinaryBackend, []}
Link to this function

global_default_backend(backend)

View Source

Sets the default backend globally.

You must avoid calling this function at runtime. It is mostly useful during scripts or code notebooks to set a default.

If you need to configure a global default backend in your applications, it is generally preferred to do so in your config/*.exs files:

config :nx, :default_backend, {EXLA.Backend, []}

In your notebooks and on Mix.install/2, you might:

Mix.install(
  [
    {:nx, ">= 0.0.0"}
  ],
  config: [nx: [default_backend: {EXLA.Backend, device: :cuda}]]
)

The function returns the value that was previously set as global backend.

Link to this function

with_default_backend(backend, fun)

View Source

Invokes the given function temporarily setting backend as the default backend.

Link to this section Functions: Conversion

Link to this function

deserialize(data, opts \\ [])

View Source

Deserializes a serialized representation of a tensor or a container with the given options.

It is the opposite of Nx.serialize/2.

Note: This function cannot be used in defn.

examples

Examples

iex> a = Nx.tensor([1, 2, 3])
iex> serialized_a = Nx.serialize(a)
iex> Nx.deserialize(serialized_a)
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> container = {Nx.tensor([1, 2, 3]), %{b: Nx.tensor([4, 5, 6])}}
iex> serialized_container = Nx.serialize(container)
iex> {a, %{b: b}} = Nx.deserialize(serialized_container)
iex> a
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>
iex> b
#Nx.Tensor<
  s64[3]
  [4, 5, 6]
>
@spec load_numpy!(data :: binary()) :: Nx.Tensor.t()

Loads a .npy file into a tensor.

An .npy file stores a single array created from Python's NumPy library. This function can be useful for loading data originally created or intended to be loaded from NumPy into Elixir.

This function will raise if the archive or any of its contents are invalid.

Note: This function cannot be used in defn.

examples

Examples

"array.npy"
|> File.read!()
|> Nx.load_numpy!()
#=>
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>
Link to this function

load_numpy_archive!(archive)

View Source
@spec load_numpy_archive!(data :: binary()) :: [{name :: binary(), Nx.Tensor.t()}]

Loads a .npz archive into a list of tensors.

An .npz file is a zipped, possibly compressed archive containing multiple .npy files.

It returns a list of two elements tuples, where the tensor name is first and the serialized tensor is second. The list is returned in the same order as in the archive. Use Map.new/1 afterwards if you want to access the list elements by name.

It will raise if the archive or any of its contents are invalid.

Note: This function cannot be used in defn.

examples

Examples

"archive.npz"
|> File.read!()
|> Nx.load_numpy_archive!()
#=>
[
  {"foo",
   #Nx.Tensor<
     s64[3]
     [1, 2, 3]
   >},
  {"bar",
   #Nx.Tensor<
     f64[5]
     [-1.0, -0.5, 0.0, 0.5, 1.0]
   >}
]
Link to this function

serialize(tensor_or_container, opts \\ [])

View Source

Serializes the given tensor or container of tensors to iodata.

You may pass any tensor or Nx.Container to serialization.

opts controls the serialization options. For example, you can choose to compress the given tensor or container of tensors by passing a compression level:

Nx.serialize(tensor, compressed: 9)

Compression level corresponds to compression options in :erlang.term_to_iovec/2.

iodata is a list of binaries that can be written to any io device, such as a file or a socket. You can ensure the result is a binary by calling IO.iodata_to_binary/1.

Note: This function cannot be used in defn.

examples

Examples

iex> a = Nx.tensor([1, 2, 3])
iex> serialized_a = Nx.serialize(a)
iex> Nx.deserialize(serialized_a)
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> container = {Nx.tensor([1, 2, 3]), %{b: Nx.tensor([4, 5, 6])}}
iex> serialized_container = Nx.serialize(container)
iex> {a, %{b: b}} = Nx.deserialize(serialized_container)
iex> a
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>
iex> b
#Nx.Tensor<
  s64[3]
  [4, 5, 6]
>
Link to this function

to_batched(tensor, batch_size, opts \\ [])

View Source

Converts the underlying tensor to a stream of tensor batches.

The first dimension (axis 0) is divided by batch_size. In case the dimension cannot be evenly divided by batch_size, you may specify what to do with leftover data using :leftover. :leftover must be one of :repeat or :discard. :repeat repeats the first n values to make the last batch match the desired batch size. :discard discards excess elements.

Note: This function cannot be used in defn.

examples

Examples

In the examples below we immediately pipe to Enum.to_list/1 for convenience, but in practice you want to lazily traverse the batches to avoid allocating multiple tensors at once in certain backends:

iex> [first, second] = Nx.to_batched(Nx.iota({2, 2, 2}), 1) |> Enum.to_list()
iex> first
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [0, 1],
      [2, 3]
    ]
  ]
>
iex> second
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [4, 5],
      [6, 7]
    ]
  ]
>

If the batch size would result in uneven batches, you can repeat or discard excess data. By default, we repeat:

iex> [first, second, third] = Nx.to_batched(Nx.iota({5, 2}, names: [:x, :y]), 2) |> Enum.to_list()
iex> first
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 1],
    [2, 3]
  ]
>
iex> second
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [4, 5],
    [6, 7]
  ]
>
iex> third
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [8, 9],
    [0, 1]
  ]
>

But you can also discard:

iex> [first, second] = Nx.to_batched(Nx.iota({5, 2}, names: [:x, :y]), 2, leftover: :discard) |> Enum.to_list()
iex> first
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 1],
    [2, 3]
  ]
>
iex> second
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [4, 5],
    [6, 7]
  ]
>
Link to this function

to_binary(tensor, opts \\ [])

View Source

Returns the underlying tensor as a binary.

Warning: converting a tensor to a binary can potentially be a very expensive operation, as it may copy a GPU tensor fully to the machine memory.

It returns the in-memory binary representation of the tensor in a row-major fashion. The binary is in the system endianness, which has to be taken into account if the binary is meant to be serialized to other systems.

Note: This function cannot be used in defn.

options

Options

  • :limit - limit the number of entries represented in the binary

examples

Examples

iex> Nx.to_binary(1)
<<1::64-native>>

iex> Nx.to_binary(Nx.tensor([1.0, 2.0, 3.0]))
<<1.0::float-32-native, 2.0::float-32-native, 3.0::float-32-native>>

iex> Nx.to_binary(Nx.tensor([1.0, 2.0, 3.0]), limit: 2)
<<1.0::float-32-native, 2.0::float-32-native>>
Link to this function

to_flat_list(tensor, opts \\ [])

View Source

Returns the underlying tensor as a flat list.

Negative infinity (-Inf), infinity (Inf), and "not a number" (NaN) will be represented by the atoms :neg_infinity, :infinity, and :nan respectively.

Note: This function cannot be used in defn.

examples

Examples

iex> Nx.to_flat_list(1)
[1]

iex> Nx.to_flat_list(Nx.tensor([1.0, 2.0, 3.0]))
[1.0, 2.0, 3.0]

iex> Nx.to_flat_list(Nx.tensor([1.0, 2.0, 3.0]), limit: 2)
[1.0, 2.0]

Non-finite numbers are returned as atoms:

iex> t = Nx.tensor([:neg_infinity, :nan, :infinity])
iex> Nx.to_flat_list(t)
[:neg_infinity, :nan, :infinity]
Link to this function

to_heatmap(tensor, opts \\ [])

View Source

Returns a heatmap struct with the tensor data.

On terminals, coloring is done via ANSI colors. If ANSI is not enabled, the tensor is normalized to show numbers between 0 and 9.

terminal-coloring

Terminal coloring

Coloring is enabled by default on most Unix terminals. It is also available on Windows consoles from Windows 10, although it must be explicitly enabled for the current user in the registry by running the following command:

reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d 1

After running the command above, you must restart your current console.

options

Options

  • :ansi_enabled - forces ansi to be enabled or disabled. Defaults to IO.ANSI.enabled?/0

  • :ansi_whitespace - which whitespace character to use when printing. By default it uses "\u3000", which is a full-width whitespace which often prints more precise shapes

Converts the tensor into a list reflecting its structure.

Negative infinity (-Inf), infinity (Inf), and "not a number" (NaN) will be represented by the atoms :neg_infinity, :infinity, and :nan respectively.

It raises if a scalar tensor is given, use to_number/1 instead.

Note: This function cannot be used in defn.

examples

Examples

iex> Nx.iota({2, 3}) |> Nx.to_list()
[
  [0, 1, 2],
  [3, 4, 5]
]

iex> Nx.tensor(123) |> Nx.to_list()
** (ArgumentError) cannot convert a scalar tensor to a list, got: #Nx.Tensor<
  s64
  123
>

Returns the underlying tensor as a number.

Negative infinity (-Inf), infinity (Inf), and "not a number" (NaN) will be represented by the atoms :neg_infinity, :infinity, and :nan respectively.

If the tensor has a dimension, it raises.

Note: This function cannot be used in defn.

examples

Examples

iex> Nx.to_number(1)
1

iex> Nx.to_number(Nx.tensor([1.0, 2.0, 3.0]))
** (ArgumentError) cannot convert tensor of shape {3} to number
Link to this function

to_template(tensor_or_container)

View Source

Converts a tensor (or tuples and maps of tensors) to tensor templates.

Templates are useful when you need to pass types and shapes to operations and the data is not yet available.

For convenience, this function accepts tensors and any container (such as maps and tuples as defined by the Nx.LazyContainer protocol) and recursively converts all tensors to templates.

examples

Examples

iex> Nx.iota({2, 3}) |> Nx.to_template()
#Nx.Tensor<
  s64[2][3]
  Nx.TemplateBackend
>

iex> {int, float} = Nx.to_template({1, 2.0})
iex> int
#Nx.Tensor<
  s64
  Nx.TemplateBackend
>
iex> float
#Nx.Tensor<
  f32
  Nx.TemplateBackend
>

Although note it is impossible to perform any operation on a tensor template:

iex> t = Nx.iota({2, 3}) |> Nx.to_template()
iex> Nx.abs(t)
** (RuntimeError) cannot perform operations on a Nx.TemplateBackend tensor

To build a template from scratch, use template/3.

Converts the given number (or tensor) to a tensor.

This function only converts types which are automatically cast to tensors throughout Nx API: numbers, complex numbers, and tensors themselves.

If your goal is to create tensors from lists, see tensor/2. If you want to create a tensor from binary, see from_binary/3. If you want to convert non-tensor data structures or Nx.Containers into tensors, see stack/2 or concatenate/2 instead.

Link to this section Functions: Creation

Link to this function

eye(n_or_tensor_or_shape, opts \\ [])

View Source

Creates the identity matrix of size n.

examples

Examples

iex> Nx.eye(2)
#Nx.Tensor<
  s64[2][2]
  [
    [1, 0],
    [0, 1]
  ]
>

iex> Nx.eye(3, type: :f32, names: [:height, :width])
#Nx.Tensor<
  f32[height: 3][width: 3]
  [
    [1.0, 0.0, 0.0],
    [0.0, 1.0, 0.0],
    [0.0, 0.0, 1.0]
  ]
>

The first argument can also be a shape of a matrix:

iex> Nx.eye({1, 2})
#Nx.Tensor<
  s64[1][2]
  [
    [1, 0]
  ]
>

The shape can also represent a tensor batch. In this case, the last two axes will represent the same identity matrix.

iex> Nx.eye({2, 4, 3})
#Nx.Tensor<
  s64[2][4][3]
  [
    [
      [1, 0, 0],
      [0, 1, 0],
      [0, 0, 1],
      [0, 0, 0]
    ],
    [
      [1, 0, 0],
      [0, 1, 0],
      [0, 0, 1],
      [0, 0, 0]
    ]
  ]
>

options

Options

  • :type - the type of the tensor

  • :names - the names of the tensor dimensions

  • :backend - the backend to allocate the tensor on. It is either an atom or a tuple in the shape {backend, options}. This option is ignored inside defn

Link to this function

from_binary(binary, type, opts \\ [])

View Source

Creates a one-dimensional tensor from a binary with the given type.

If the binary size does not match its type, an error is raised.

examples

Examples

iex> Nx.from_binary(<<1, 2, 3, 4>>, :s8)
#Nx.Tensor<
  s8[4]
  [1, 2, 3, 4]
>

The atom notation for types is also supported:

iex> Nx.from_binary(<<12.3::float-64-native>>, :f64)
#Nx.Tensor<
  f64[1]
  [12.3]
>

An error is raised for incompatible sizes:

iex> Nx.from_binary(<<1, 2, 3, 4>>, :f64)
** (ArgumentError) binary does not match the given size

options

Options

  • :backend - the backend to allocate the tensor on. It is either an atom or a tuple in the shape {backend, options}. This option is ignored inside defn
Link to this function

iota(tensor_or_shape, opts \\ [])

View Source

Creates a tensor with the given shape which increments along the provided axis. You may optionally provide dimension names.

If no axis is provided, index counts up at each element.

If a tensor or a number are given, the shape and names are taken from the tensor.

examples

Examples

iex> Nx.iota({})
#Nx.Tensor<
  s64
  0
>

iex> Nx.iota({5})
#Nx.Tensor<
  s64[5]
  [0, 1, 2, 3, 4]
>

iex> Nx.iota({3, 2, 3}, names: [:batch, :height, :width])
#Nx.Tensor<
  s64[batch: 3][height: 2][width: 3]
  [
    [
      [0, 1, 2],
      [3, 4, 5]
    ],
    [
      [6, 7, 8],
      [9, 10, 11]
    ],
    [
      [12, 13, 14],
      [15, 16, 17]
    ]
  ]
>

iex> Nx.iota({3, 3}, axis: 1, names: [:batch, nil])
#Nx.Tensor<
  s64[batch: 3][3]
  [
    [0, 1, 2],
    [0, 1, 2],
    [0, 1, 2]
  ]
>

iex> Nx.iota({3, 3}, axis: -1)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 2],
    [0, 1, 2],
    [0, 1, 2]
  ]
>

iex> Nx.iota({3, 4, 3}, axis: 0, type: :f64)
#Nx.Tensor<
  f64[3][4][3]
  [
    [
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0]
    ],
    [
      [1.0, 1.0, 1.0],
      [1.0, 1.0, 1.0],
      [1.0, 1.0, 1.0],
      [1.0, 1.0, 1.0]
    ],
    [
      [2.0, 2.0, 2.0],
      [2.0, 2.0, 2.0],
      [2.0, 2.0, 2.0],
      [2.0, 2.0, 2.0]
    ]
  ]
>

iex> Nx.iota({1, 3, 2}, axis: 2)
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [0, 1],
      [0, 1],
      [0, 1]
    ]
  ]
>

options

Options

  • :type - the type of the tensor

  • :axis - an axis to repeat the iota over

  • :names - the names of the tensor dimensions

  • :backend - the backend to allocate the tensor on. It is either an atom or a tuple in the shape {backend, options}. This option is ignored inside defn

Link to this function

linspace(start, stop, opts \\ [])

View Source

Creates a tensor of shape {n} with linearly spaced samples between start and stop.

options

Options

  • :n - The number of samples in the tensor.
  • :name - Optional name for the output axis.
  • :type - Optional type for the output. Defaults to {:f, 32}
  • :endpoint - Boolean that indicates whether to include stop as the last point in the output. Defaults to true

examples

Examples

iex> Nx.linspace(5, 8, n: 5)
#Nx.Tensor<
  f32[5]
  [5.0, 5.75, 6.5, 7.25, 8.0]
>

iex> Nx.linspace(0, 10, n: 5, endpoint: false, name: :x)
#Nx.Tensor<
  f32[x: 5]
  [0.0, 2.0, 4.0, 6.0, 8.0]
>

For integer types, the results might not be what's expected. When endpoint: true (the default), the step is given by step = (stop - start) / (n - 1), which means that instead of a step of 3 in the example below, we get a step close to 3.42. The results are calculated first and only cast in the end, so that the :endpoint condition is respected.

iex> Nx.linspace(0, 24, n: 8, type: {:u, 8}, endpoint: true)
#Nx.Tensor<
  u8[8]
  [0, 3, 6, 10, 13, 17, 20, 24]
>

iex> Nx.linspace(0, 24, n: 8, type: {:s, 64}, endpoint: false)
#Nx.Tensor<
  s64[8]
  [0, 3, 6, 9, 12, 15, 18, 21]
>

One can also pass two higher order tensors with the same shape {j, k, ...}, in which case the output will be of shape {j, k, ..., n}.

iex> Nx.linspace(Nx.tensor([[[0, 10]]]), Nx.tensor([[[10, 100]]]), n: 10, name: :samples, type: {:u, 8}) #Nx.Tensor<

u8[1][1][2][samples: 10]
[
  [
    [
      [0, 1, 2, 3, 4, 5, 6, 7, 8, 10],
      [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
    ]
  ]
]

error-cases

Error cases

iex> Nx.linspace(0, 24, n: 1.0)
** (ArgumentError) expected n to be a non-negative integer, got: 1.0

iex> Nx.linspace(Nx.tensor([[0, 1]]), Nx.tensor([1, 2, 3]), n: 2)
** (ArgumentError) expected start and stop to have the same shape. Got shapes {1, 2} and {3}
Link to this function

make_diagonal(tensor, opts \\ [])

View Source

Creates a diagonal tensor from a 1D tensor.

Converse of take_diagonal/2.

The returned tensor will be a square matrix of dimensions equal to the size of the tensor. If an offset is given, the absolute value of the offset is added to the matrix dimensions sizes.

examples

Examples

Given a 1D tensor:

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4][4]
  [
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0],
    [0, 0, 0, 4]
  ]
>

Given a 1D tensor with an offset:

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: 1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 1, 0, 0],
    [0, 0, 2, 0],
    [0, 0, 0, 3],
    [0, 0, 0, 0]
  ]
>

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: -1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 0, 0, 0],
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0]
  ]
>

You can also have offsets with an abs greater than the tensor length:

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: -4)
#Nx.Tensor<
  s64[7][7]
  [
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [1, 0, 0, 0, 0, 0, 0],
    [0, 2, 0, 0, 0, 0, 0],
    [0, 0, 3, 0, 0, 0, 0]
  ]
>

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: 4)
#Nx.Tensor<
  s64[7][7]
  [
    [0, 0, 0, 0, 1, 0, 0],
    [0, 0, 0, 0, 0, 2, 0],
    [0, 0, 0, 0, 0, 0, 3],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0]
  ]
>

options

Options

  • :offset - offset used for making the diagonal. Use offset > 0 for diagonals above the main diagonal, and offset < 0 for diagonals below the main diagonal. Defaults to 0.

error-cases

Error cases

iex> Nx.make_diagonal(Nx.tensor([[0, 0], [0, 1]]))
** (ArgumentError) make_diagonal/2 expects tensor of rank 1, got tensor of rank: 2
Link to this function

put_diagonal(tensor, diagonal, opts \\ [])

View Source

Puts the individual values from a 1D diagonal into the diagonal indices of the given 2D tensor.

See also: take_diagonal/2, make_diagonal/2.

examples

Examples

Given a 2D tensor and a 1D diagonal:

iex> t = Nx.broadcast(0, {4, 4})
#Nx.Tensor<
  s64[4][4]
  [
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]
  ]
>
iex> Nx.put_diagonal(t, Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4][4]
  [
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0],
    [0, 0, 0, 4]
  ]
>

iex> t = Nx.broadcast(0, {4, 3})
#Nx.Tensor<
  s64[4][3]
  [
    [0, 0, 0],
    [0, 0, 0],
    [0, 0, 0],
    [0, 0, 0]
  ]
>
iex> Nx.put_diagonal(t, Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64[4][3]
  [
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3],
    [0, 0, 0]
  ]
>

Given a 2D tensor and a 1D diagonal with a positive offset:

iex> Nx.put_diagonal(Nx.broadcast(0, {4, 4}), Nx.tensor([1, 2, 3]), offset: 1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 1, 0, 0],
    [0, 0, 2, 0],
    [0, 0, 0, 3],
    [0, 0, 0, 0]
  ]
>

iex> Nx.put_diagonal(Nx.broadcast(0, {4, 3}), Nx.tensor([1, 2]), offset: 1)
#Nx.Tensor<
  s64[4][3]
  [
    [0, 1, 0],
    [0, 0, 2],
    [0, 0, 0],
    [0, 0, 0]
  ]
>

Given a 2D tensor and a 1D diagonal with a negative offset:

iex> Nx.put_diagonal(Nx.broadcast(0, {4, 4}), Nx.tensor([1, 2, 3]), offset: -1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 0, 0, 0],
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0]
  ]
>

iex> Nx.put_diagonal(Nx.broadcast(0, {4, 3}), Nx.tensor([1, 2, 3]), offset: -1)
#Nx.Tensor<
  s64[4][3]
  [
    [0, 0, 0],
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]
  ]
>

options

Options

  • :offset - offset used for putting the diagonal. Use offset > 0 for diagonals above the main diagonal, and offset < 0 for diagonals below the main diagonal. Defaults to 0.

error-cases

Error cases

Given an invalid tensor:

iex> Nx.put_diagonal(Nx.iota({3, 3, 3}), Nx.iota({3}))
** (ArgumentError) put_diagonal/3 expects tensor of rank 2, got tensor of rank: 3

Given invalid diagonals:

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3, 3}))
** (ArgumentError) put_diagonal/3 expects diagonal of rank 1, got tensor of rank: 2

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({2}))
** (ArgumentError) expected diagonal tensor of length: 3, got diagonal tensor of length: 2

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3}), offset: 1)
** (ArgumentError) expected diagonal tensor of length: 2, got diagonal tensor of length: 3

Given invalid offsets:

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3}), offset: 4)
** (ArgumentError) offset must be less than length of axis 1 when positive, got: 4

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3}), offset: -3)
** (ArgumentError) absolute value of offset must be less than length of axis 0 when negative, got: -3
Link to this macro

sigil_M(arg, modifiers)

View Source (macro)

A convenient ~M sigil for building matrices (two-dimensional tensors).

examples

Examples

Before using sigils, you must first import them:

import Nx, only: :sigils

Then you use the sigil to create matrices. The sigil:

~M<
  -1 0 0 1
  0 2 0 0
  0 0 3 0
  0 0 0 4
>

Is equivalent to:

Nx.tensor([
  [-1, 0, 0, 1],
  [0, 2, 0, 0],
  [0, 0, 3, 0],
  [0, 0, 0, 4]
])

If the tensor has any complex type, it defaults to c64. If the tensor has any float type, it defaults to f32. Otherwise, it is s64. You can specify the tensor type as a sigil modifier:

iex> import Nx, only: :sigils
iex> ~M[0.1 0.2 0.3 0.4]f16
#Nx.Tensor<
  f16[1][4]
  [
    [0.0999755859375, 0.199951171875, 0.300048828125, 0.39990234375]
  ]
>
iex> ~M[1+1i 2-2.0i -3]
#Nx.Tensor<
  c64[1][3]
  [
    [1.0+1.0i, 2.0-2.0i, -3.0+0.0i]
  ]
>
iex> ~M[1 Inf NaN]
#Nx.Tensor<
  f32[1][3]
  [
    [1.0, Inf, NaN]
  ]
>
iex> ~M[1i Inf NaN]
#Nx.Tensor<
  c64[1][3]
  [
    [0.0+1.0i, Inf+0.0i, NaN+0.0i]
  ]
>
iex> ~M[1i Inf+2i NaN-Infi]
#Nx.Tensor<
  c64[1][3]
  [
    [0.0+1.0i, Inf+2.0i, NaN-Infi]
  ]
>
Link to this macro

sigil_V(arg, modifiers)

View Source (macro)

A convenient ~V sigil for building vectors (one-dimensional tensors).

examples

Examples

Before using sigils, you must first import them:

import Nx, only: :sigils

Then you use the sigil to create vectors. The sigil:

~V[-1 0 0 1]

Is equivalent to:

Nx.tensor([-1, 0, 0, 1])

If the tensor has any complex type, it defaults to c64. If the tensor has any float type, it defaults to f32. Otherwise, it is s64. You can specify the tensor type as a sigil modifier:

iex> import Nx, only: :sigils
iex> ~V[0.1 0.2 0.3 0.4]f16
#Nx.Tensor<
  f16[4]
  [0.0999755859375, 0.199951171875, 0.300048828125, 0.39990234375]
>
iex> ~V[1+1i 2-2.0i -3]
#Nx.Tensor<
  c64[3]
  [1.0+1.0i, 2.0-2.0i, -3.0+0.0i]
>
iex> ~V[1 Inf NaN]
#Nx.Tensor<
  f32[3]
  [1.0, Inf, NaN]
>
iex> ~V[1i Inf NaN]
#Nx.Tensor<
  c64[3]
  [0.0+1.0i, Inf+0.0i, NaN+0.0i]
>
iex> ~V[1i Inf+2i NaN-Infi]
#Nx.Tensor<
  c64[3]
  [0.0+1.0i, Inf+2.0i, NaN-Infi]
>
Link to this function

take_diagonal(tensor, opts \\ [])

View Source

Extracts the diagonal of batched matrices.

Converse of make_diagonal/2.

examples

Examples

Given a matrix without offset:

iex> Nx.take_diagonal(Nx.tensor([
...> [0, 1, 2],
...> [3, 4, 5],
...> [6, 7, 8]
...> ]))
#Nx.Tensor<
  s64[3]
  [0, 4, 8]
>

And if given a matrix along with an offset:

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: 1)
#Nx.Tensor<
  s64[2]
  [1, 5]
>

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: -1)
#Nx.Tensor<
  s64[2]
  [3, 7]
>

Given batched matrix:

iex> Nx.take_diagonal(Nx.iota({3, 2, 2}))
#Nx.Tensor<
  s64[3][2]
  [
    [0, 3],
    [4, 7],
    [8, 11]
  ]
>

iex> Nx.take_diagonal(Nx.iota({3, 2, 2}), offset: -1)
#Nx.Tensor<
  s64[3][1]
  [
    [2],
    [6],
    [10]
  ]
>

options

Options

  • :offset - offset used for extracting the diagonal. Use offset > 0 for diagonals above the main diagonal, and offset < 0 for diagonals below the main diagonal. Defaults to 0.

error-cases

Error cases

iex> Nx.take_diagonal(Nx.tensor([0, 1, 2]))
** (ArgumentError) take_diagonal/2 expects tensor of rank 2 or higher, got tensor of rank: 1

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: 3)
** (ArgumentError) offset must be less than length of axis 1 when positive, got: 3

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: -4)
** (ArgumentError) absolute value of offset must be less than length of axis 0 when negative, got: -4
Link to this function

template(shape, type, opts \\ [])

View Source

Creates a tensor template.

You can't perform any operation on this tensor. It exists exclusively to define APIs that say a tensor with a certain type, shape, and names is expected in the future.

examples

Examples

iex> Nx.template({2, 3}, :f32)
#Nx.Tensor<
  f32[2][3]
  Nx.TemplateBackend
>

iex> Nx.template({2, 3}, {:f, 32}, names: [:rows, :columns])
#Nx.Tensor<
  f32[rows: 2][columns: 3]
  Nx.TemplateBackend
>

Although note it is impossible to perform any operation on a tensor template:

iex> t = Nx.template({2, 3}, {:f, 32}, names: [:rows, :columns])
iex> Nx.abs(t)
** (RuntimeError) cannot perform operations on a Nx.TemplateBackend tensor

To convert existing tensors to templates, use to_template/1.

Builds a tensor.

The argument must be one of:

  • a tensor
  • a number (which means the tensor is scalar/zero-dimensional)
  • a boolean (also scalar/zero-dimensional)
  • an arbitrarily nested list of numbers and booleans

If a new tensor has to be allocated, it will be allocated in Nx.default_backend/0, unless the :backend option is given, which overrides the default one.

examples

Examples

A number returns a tensor of zero dimensions:

iex> Nx.tensor(0)
#Nx.Tensor<
  s64
  0
>

iex> Nx.tensor(1.0)
#Nx.Tensor<
  f32
  1.0
>

Giving a list returns a vector (a one-dimensional tensor):

iex> Nx.tensor([1, 2, 3])
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> Nx.tensor([1.2, 2.3, 3.4, 4.5])
#Nx.Tensor<
  f32[4]
  [1.2000000476837158, 2.299999952316284, 3.4000000953674316, 4.5]
>

The type can be explicitly given. Integers and floats bigger than the given size overflow:

iex> Nx.tensor([300, 301, 302], type: :s8)
#Nx.Tensor<
  s8[3]
  [44, 45, 46]
>

Mixed types give higher priority to floats:

iex> Nx.tensor([1, 2, 3.0])
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>

Boolean values are also accepted, where true is converted to 1 and false to 0, with the type being inferred as {:u, 8}

iex> Nx.tensor(true)
#Nx.Tensor<
  u8
  1
>

iex> Nx.tensor(false)
#Nx.Tensor<
  u8
  0
>

iex> Nx.tensor([true, false])
#Nx.Tensor<
  u8[2]
  [1, 0]
>

Multi-dimensional tensors are also possible:

iex> Nx.tensor([[1, 2, 3], [4, 5, 6]])
#Nx.Tensor<
  s64[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>

iex> Nx.tensor([[1, 2], [3, 4], [5, 6]])
#Nx.Tensor<
  s64[3][2]
  [
    [1, 2],
    [3, 4],
    [5, 6]
  ]
>

iex> Nx.tensor([[[1, 2], [3, 4], [5, 6]], [[-1, -2], [-3, -4], [-5, -6]]])
#Nx.Tensor<
  s64[2][3][2]
  [
    [
      [1, 2],
      [3, 4],
      [5, 6]
    ],
    [
      [-1, -2],
      [-3, -4],
      [-5, -6]
    ]
  ]
>

floats-and-complex-numbers

Floats and complex numbers

Besides single-precision (32 bits), floats can also have half-precision (16) or double-precision (64):

iex> Nx.tensor([1, 2, 3], type: :f16)
#Nx.Tensor<
  f16[3]
  [1.0, 2.0, 3.0]
>

iex> Nx.tensor([1, 2, 3], type: :f64)
#Nx.Tensor<
  f64[3]
  [1.0, 2.0, 3.0]
>

Brain-floating points are also supported:

iex> Nx.tensor([1, 2, 3], type: :bf16)
#Nx.Tensor<
  bf16[3]
  [1.0, 2.0, 3.0]
>

In all cases, the non-finite values negative infinity (-Inf), infinity (Inf), and "not a number" (NaN) can be represented by the atoms :neg_infinity, :infinity, and :nan respectively:

iex> Nx.tensor([:neg_infinity, :nan, :infinity])
#Nx.Tensor<
  f32[3]
  [-Inf, NaN, Inf]
>

Finally, complex numbers are also supported in tensors:

iex> Nx.tensor(Complex.new(1, -1))
#Nx.Tensor<
  c64
  1.0-1.0i
>

naming-dimensions

Naming dimensions

You can provide names for tensor dimensions. Names are atoms:

iex> Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>

Names make your code more expressive:

iex> Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:batch, :height, :width])
#Nx.Tensor<
  s64[batch: 1][height: 3][width: 3]
  [
    [
      [1, 2, 3],
      [4, 5, 6],
      [7, 8, 9]
    ]
  ]
>

You can also leave dimension names as nil:

iex> Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:batch, nil, nil])
#Nx.Tensor<
  s64[batch: 1][3][3]
  [
    [
      [1, 2, 3],
      [4, 5, 6],
      [7, 8, 9]
    ]
  ]
>

However, you must provide a name for every dimension in the tensor:

iex> Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:batch])
** (ArgumentError) invalid names for tensor of rank 3, when specifying names every dimension must have a name or be nil

tensors

Tensors

Tensors can also be given as inputs:

iex> Nx.tensor(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

If the :backend and :type options are given, the tensor will compared against those values and raise in case of mismatch:

iex> Nx.tensor(Nx.tensor([1, 2, 3]), type: :f32)
** (ArgumentError) Nx.tensor/2 expects a tensor with type :f32 but it was given a tensor of type {:s, 64}

The :backend option will check only against the backend name and not specific backend configuration such as device and client. In case the backend differs, it will also raise.

The names in the given tensor are always discarded but Nx will raise in case the tensor already has names that conflict with the assigned ones:

iex> Nx.tensor(Nx.tensor([1, 2, 3]), names: [:row])
#Nx.Tensor<
  s64[row: 3]
  [1, 2, 3]
>

iex> Nx.tensor(Nx.tensor([1, 2, 3], names: [:column]))
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> Nx.tensor(Nx.tensor([1, 2, 3], names: [:column]), names: [:row])
** (ArgumentError)  cannot merge name :column on axis 0 with name :row on axis 0

options

Options

  • :type - sets the type of the tensor. If one is not given, one is automatically inferred based on the input.

  • :names - dimension names. If you wish to specify dimension names you must specify a name for every dimension in the tensor. Only nil and atoms are supported as dimension names.

  • :backend - the backend to allocate the tensor on. It is either an atom or a tuple in the shape {backend, options}. It defaults to Nx.default_backend/0 for new tensors

Link to this section Functions: Cumulative

Link to this function

cumulative_max(tensor, opts \\ [])

View Source

Returns the cumulative maximum of elements along an axis.

options

Options

  • :axis - the axis to compare elements along. Defaults to 0
  • :reverse - whether to perform accumulation in the opposite direction. Defaults to false

examples

Examples

iex> Nx.cumulative_max(Nx.tensor([3, 4, 2, 1]))
#Nx.Tensor<
  s64[4]
  [3, 4, 4, 4]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 1],
    [2, 3, 2],
    [2, 3, 3]
  ]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 3],
    [1, 3, 3],
    [2, 2, 3]
  ]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 3],
    [2, 3, 3],
    [2, 1, 3]
  ]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [3, 3, 1],
    [3, 3, 2],
    [3, 3, 3]
  ]
>
Link to this function

cumulative_min(tensor, opts \\ [])

View Source

Returns the cumulative minimum of elements along an axis.

options

Options

  • :axis - the axis to compare elements along. Defaults to 0
  • :reverse - whether to perform accumulation in the opposite direction. Defaults to false

examples

Examples

iex> Nx.cumulative_min(Nx.tensor([3, 4, 2, 1]))
#Nx.Tensor<
  s64[4]
  [3, 3, 2, 1]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 1],
    [1, 3, 1],
    [1, 1, 1]
  ]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 2, 1],
    [1, 1, 1],
    [2, 1, 1]
  ]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [1, 1, 1],
    [1, 1, 2],
    [2, 1, 3]
  ]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [1, 1, 1],
    [1, 2, 2],
    [1, 1, 3]
  ]
>
Link to this function

cumulative_product(tensor, opts \\ [])

View Source

Returns the cumulative product of elements along an axis.

options

Options

  • :axis - the axis to multiply elements along. Defaults to 0
  • :reverse - whether to perform accumulation in the opposite direction. Defaults to false

examples

Examples

iex> Nx.cumulative_product(Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4]
  [1, 2, 6, 24]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 2],
    [0, 4, 10],
    [0, 28, 80]
  ]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 0, 0],
    [3, 12, 60],
    [6, 42, 336]
  ]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 28, 80],
    [18, 28, 40],
    [6, 7, 8]
  ]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 2, 2],
    [60, 20, 5],
    [336, 56, 8]
  ]
>
Link to this function

cumulative_sum(tensor, opts \\ [])

View Source

Returns the cumulative sum of elements along an axis.

options

Options

  • :axis - the axis to sum elements along. Defaults to 0
  • :reverse - whether to perform accumulation in the opposite direction. Defaults to false

examples

Examples

iex> Nx.cumulative_sum(Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4]
  [1, 3, 6, 10]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 2],
    [3, 5, 7],
    [9, 12, 15]
  ]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 3],
    [3, 7, 12],
    [6, 13, 21]
  ]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [9, 12, 15],
    [9, 11, 13],
    [6, 7, 8]
  ]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [3, 3, 2],
    [12, 9, 5],
    [21, 15, 8]
  ]
>

Link to this section Functions: Element-wise

Computes the absolute value of each element in the tensor.

examples

Examples

iex> Nx.abs(Nx.tensor([-2, -1, 0, 1, 2], names: [:x]))
#Nx.Tensor<
  s64[x: 5]
  [2, 1, 0, 1, 2]
>

Calculates the inverse cosine of each element in the tensor.

It is equivalent to:

$$acos(cos(z)) = z$$

examples

Examples

iex> Nx.acos(0.10000000149011612)
#Nx.Tensor<
  f32
  1.4706288576126099
>

iex> Nx.acos(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.4706288576126099, 1.0471975803375244, 0.4510268568992615]
>

Calculates the inverse hyperbolic cosine of each element in the tensor.

It is equivalent to:

$$acosh(cosh(z)) = z$$

examples

Examples

iex> Nx.acosh(1)
#Nx.Tensor<
  f32
  0.0
>

iex> Nx.acosh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.0, 1.316957950592041, 1.7627471685409546]
>

Element-wise addition of two tensors.

If a number is given, it is converted to a tensor.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

If you're using Nx.Defn.defn/2, you can use the + operator in place of this function: left + right.

examples

Examples

adding-scalars

Adding scalars

iex> Nx.add(1, 2)
#Nx.Tensor<
  s64
  3
>

iex> Nx.add(1, 2.2)
#Nx.Tensor<
  f32
  3.200000047683716
>

adding-a-scalar-to-a-tensor

Adding a scalar to a tensor

iex> Nx.add(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [2, 3, 4]
>

iex> Nx.add(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  s64[data: 3]
  [2, 3, 4]
>

Given a float scalar converts the tensor to a float:

iex> Nx.add(Nx.tensor([1, 2, 3], names: [:data]), 1.0)
#Nx.Tensor<
  f32[data: 3]
  [2.0, 3.0, 4.0]
>

iex> Nx.add(Nx.tensor([1.0, 2.0, 3.0], names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [2.0, 3.0, 4.0]
>

iex> Nx.add(Nx.tensor([1.0, 2.0, 3.0], type: :f32, names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [2.0, 3.0, 4.0]
>

Unsigned tensors become signed and double their size if a negative number is given:

iex> Nx.add(Nx.tensor([0, 1, 2], type: :u8, names: [:data]), -1)
#Nx.Tensor<
  s16[data: 3]
  [-1, 0, 1]
>

adding-tensors-of-the-same-shape

Adding tensors of the same shape

iex> left = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> right = Nx.tensor([[10, 20], [30, 40]], names: [nil, :y])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [11, 22],
    [33, 44]
  ]
>

adding-tensors-with-broadcasting

Adding tensors with broadcasting

iex> left = Nx.tensor([[1], [2]], names: [nil, :y])
iex> right = Nx.tensor([[10, 20]], names: [:x, nil])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [11, 21],
    [12, 22]
  ]
>

iex> left = Nx.tensor([[10, 20]], names: [:x, nil])
iex> right = Nx.tensor([[1], [2]], names: [nil, :y])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [11, 21],
    [12, 22]
  ]
>

iex> left = Nx.tensor([[1], [2]], names: [:x, nil])
iex> right = Nx.tensor([[10, 20], [30, 40]])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][2]
  [
    [11, 21],
    [32, 42]
  ]
>

iex> left = Nx.tensor([[1, 2]])
iex> right = Nx.tensor([[10, 20], [30, 40]])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[2][2]
  [
    [11, 22],
    [31, 42]
  ]
>

Calculates the inverse sine of each element in the tensor.

It is equivalent to:

$$asin(sin(z)) = z$$

examples

Examples

iex> Nx.asin(0.10000000149011612)
#Nx.Tensor<
  f32
  0.1001674234867096
>

iex> Nx.asin(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.1001674234867096, 0.5235987901687622, 1.1197694540023804]
>

Calculates the inverse hyperbolic sine of each element in the tensor.

It is equivalent to:

$$asinh(sinh(z)) = z$$

examples

Examples

iex> Nx.asinh(1)
#Nx.Tensor<
  f32
  0.8813735842704773
>

iex> Nx.asinh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.8813735842704773, 1.4436354637145996, 1.8184465169906616]
>

Element-wise arc tangent of two tensors.

If a number is given, it is converted to a tensor.

It always returns a float tensor. If any of the input tensors are not float, they are converted to f32.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

examples

Examples

arc-tangent-between-scalars

Arc tangent between scalars

iex> Nx.atan2(1, 2)
#Nx.Tensor<
  f32
  0.46364760398864746
>

arc-tangent-between-tensors-and-scalars

Arc tangent between tensors and scalars

iex> Nx.atan2(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [0.7853981852531433, 1.1071487665176392, 1.249045729637146]
>

iex> Nx.atan2(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [0.7853981852531433, 0.46364760398864746, 0.32175055146217346]
>

arc-tangent-between-tensors

Arc tangent between tensors

iex> neg_and_pos_zero_columns = Nx.tensor([[-0.0], [0.0]], type: :f64)
iex> neg_and_pos_zero_rows = Nx.tensor([-0.0, 0.0], type: :f64)
iex> Nx.atan2(neg_and_pos_zero_columns, neg_and_pos_zero_rows)
#Nx.Tensor<
  f64[2][2]
  [
    [-3.141592653589793, -0.0],
    [3.141592653589793, 0.0]
  ]
>

Calculates the inverse tangent of each element in the tensor.

It is equivalent to:

$$atan(tan(z)) = z$$

examples

Examples

iex> Nx.atan(0.10000000149011612)
#Nx.Tensor<
  f32
  0.09966865181922913
>

iex> Nx.atan(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.09966865181922913, 0.46364760398864746, 0.7328150868415833]
>

Calculates the inverse hyperbolic tangent of each element in the tensor.

It is equivalent to:

$$atanh(tanh(z)) = z$$

examples

Examples

iex> Nx.atanh(0.10000000149011612)
#Nx.Tensor<
  f32
  0.10033535212278366
>

iex> Nx.atanh(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.10033535212278366, 0.5493061542510986, 1.4722193479537964]
>
Link to this function

bitwise_and(left, right)

View Source

Element-wise bitwise AND of two tensors.

Only integer tensors are supported. If a float or complex tensor is given, an error is raised.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

If you're using Nx.Defn.defn/2, you can use the &&& operator in place of this function: left &&& right.

examples

Examples

bitwise-and-between-scalars

bitwise and between scalars

iex> Nx.bitwise_and(1, 0)
#Nx.Tensor<
  s64
  0
>

bitwise-and-between-tensors-and-scalars

bitwise and between tensors and scalars

iex> Nx.bitwise_and(Nx.tensor([0, 1, 2], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [0, 1, 0]
>

iex> Nx.bitwise_and(Nx.tensor([0, -1, -2], names: [:data]), -1)
#Nx.Tensor<
  s64[data: 3]
  [0, -1, -2]
>

bitwise-and-between-tensors

bitwise and between tensors

iex> Nx.bitwise_and(Nx.tensor([0, 0, 1, 1], names: [:data]), Nx.tensor([0, 1, 0, 1]))
#Nx.Tensor<
  s64[data: 4]
  [0, 0, 0, 1]
>

error-cases

Error cases

iex> Nx.bitwise_and(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

Applies bitwise not to each element in the tensor.

If you're using Nx.Defn.defn/2, you can use the ~~~ operator in place of this function: ~~~tensor.

examples

Examples

iex> Nx.bitwise_not(1)
#Nx.Tensor<
  s64
  -2
>

iex> Nx.bitwise_not(Nx.tensor([-1, 0, 1], type: :s8, names: [:x]))
#Nx.Tensor<
  s8[x: 3]
  [0, -1, -2]
>

iex> Nx.bitwise_not(Nx.tensor([0, 1, 254, 255], type: :u8, names: [:x]))
#Nx.Tensor<
  u8[x: 4]
  [255, 254, 1, 0]
>

error-cases

Error cases

iex> Nx.bitwise_not(Nx.tensor([0.0, 1.0]))
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

Element-wise bitwise OR of two tensors.

Only integer tensors are supported. If a float or complex tensor is given, an error is raised.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

If you're using Nx.Defn.defn/2, you can use the ||| operator in place of this function: left ||| right.

examples

Examples

bitwise-or-between-scalars

bitwise or between scalars

iex> Nx.bitwise_or(1, 0)
#Nx.Tensor<
  s64
  1
>

bitwise-or-between-tensors-and-scalars

bitwise or between tensors and scalars

iex> Nx.bitwise_or(Nx.tensor([0, 1, 2], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [1, 1, 3]
>

iex> Nx.bitwise_or(Nx.tensor([0, -1, -2], names: [:data]), -1)
#Nx.Tensor<
  s64[data: 3]
  [-1, -1, -1]
>

bitwise-or-between-tensors

bitwise or between tensors

iex> Nx.bitwise_or(Nx.tensor([0, 0, 1, 1], names: [:data]), Nx.tensor([0, 1, 0, 1], names: [:data]))
#Nx.Tensor<
  s64[data: 4]
  [0, 1, 1, 1]
>

error-cases

Error cases

iex> Nx.bitwise_or(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}
Link to this function

bitwise_xor(left, right)

View Source

Element-wise bitwise XOR of two tensors.

Only integer tensors are supported. If a float or complex tensor is given, an error is raised.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

examples

Examples

bitwise-xor-between-scalars

Bitwise xor between scalars

iex> Nx.bitwise_xor(1, 0)
#Nx.Tensor<
  s64
  1
>

bitwise-xor-and-between-tensors-and-scalars

Bitwise xor and between tensors and scalars

iex> Nx.bitwise_xor(Nx.tensor([1, 2, 3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [3, 0, 1]
>

iex> Nx.bitwise_xor(Nx.tensor([-1, -2, -3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [-3, -4, -1]
>

bitwise-xor-between-tensors

Bitwise xor between tensors

iex> Nx.bitwise_xor(Nx.tensor([0, 0, 1, 1]), Nx.tensor([0, 1, 0, 1], names: [:data]))
#Nx.Tensor<
  s64[data: 4]
  [0, 1, 1, 0]
>

error-cases

Error cases

iex> Nx.bitwise_xor(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

Calculates the cube root of each element in the tensor.

It is equivalent to:

$$cbrt(z) = z^{\frac{1}{3}}$$

examples

Examples

iex> Nx.cbrt(1)
#Nx.Tensor<
  f32
  1.0
>

iex> Nx.cbrt(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.0, 1.2599210739135742, 1.4422495365142822]
>

Calculates the ceil of each element in the tensor.

If a non-floating tensor is given, it is returned as is. If a floating tensor is given, then we apply the operation, but keep its type.

examples

Examples

iex> Nx.ceil(Nx.tensor([-1, 0, 1], names: [:x]))
#Nx.Tensor<
  s64[x: 3]
  [-1, 0, 1]
>

iex> Nx.ceil(Nx.tensor([-1.5, -0.5, 0.5, 1.5], names: [:x]))
#Nx.Tensor<
  f32[x: 4]
  [-1.0, 0.0, 1.0, 2.0]
>

Clips the values of the tensor on the closed interval [min, max].

You can pass a tensor to min or max as long as the tensor has a scalar shape.

examples

Examples

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
iex> Nx.clip(t, 2, 4)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [2, 2, 3],
    [4, 4, 4]
  ]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
iex> Nx.clip(t, 2.0, 3)
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [2.0, 2.0, 3.0],
    [3.0, 3.0, 3.0]
  ]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
iex> Nx.clip(t, Nx.tensor(2.0), Nx.max(1.0, 3.0))
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [2.0, 2.0, 3.0],
    [3.0, 3.0, 3.0]
  ]
>

iex> t = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], names: [:x, :y])
iex> Nx.clip(t, 2, 6.0)
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [2.0, 2.0, 3.0],
    [4.0, 5.0, 6.0]
  ]
>

iex> t = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], type: :f32, names: [:x, :y])
iex> Nx.clip(t, 1, 4)
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [1.0, 2.0, 3.0],
    [4.0, 4.0, 4.0]
  ]
>

Constructs a complex tensor from two equally-shaped tensors.

Does not accept complex tensors as inputs.

examples

Examples

iex> Nx.complex(Nx.tensor(1), Nx.tensor(2))
#Nx.Tensor<
  c64
  1.0+2.0i
>

iex> Nx.complex(Nx.tensor([1, 2]), Nx.tensor([3, 4]))
#Nx.Tensor<
  c64[2]
  [1.0+3.0i, 2.0+4.0i]
>

Calculates the complex conjugate of each element in the tensor.

If $$z = a + bi = r e^\theta$$, $$conjugate(z) = z^* = a - bi = r e^{-\theta}$$

examples

Examples

 iex> Nx.conjugate(Complex.new(1, 2))
 #Nx.Tensor<
   c64
   1.0-2.0i
 >

 iex> Nx.conjugate(1)
 #Nx.Tensor<
   c64
   1.0+0.0i
 >

 iex> Nx.conjugate(Nx.tensor([Complex.new(1, 2), Complex.new(2, -4)]))
 #Nx.Tensor<
   c64[2]
   [1.0-2.0i, 2.0+4.0i]
 >

Calculates the cosine of each element in the tensor.

It is equivalent to:

$$cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

examples

Examples

iex> Nx.cos(1)
#Nx.Tensor<
  f32
  0.5403022766113281
>

iex> Nx.cos(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.5403022766113281, -0.416146844625473, -0.9899924993515015]
>

Calculates the hyperbolic cosine of each element in the tensor.

It is equivalent to:

$$cosh(z) = \frac{e^z + e^{-z}}{2}$$

examples

Examples

iex> Nx.cosh(1)
#Nx.Tensor<
  f32
  1.5430806875228882
>

iex> Nx.cosh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.5430806875228882, 3.762195587158203, 10.067662239074707]
>
Link to this function

count_leading_zeros(tensor)

View Source

Counts the number of leading zeros of each element in the tensor.

examples

Examples

iex> Nx.count_leading_zeros(1)
#Nx.Tensor<
  s64
  63
>

iex> Nx.count_leading_zeros(-1)
#Nx.Tensor<
  s64
  0
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 0xF, 0xFF, 0xFFFF], names: [:x]))
#Nx.Tensor<
  s64[x: 4]
  [64, 60, 56, 48]
>

iex> Nx.count_leading_zeros(Nx.tensor([0xF000000000000000, 0x0F00000000000000], names: [:x]))
#Nx.Tensor<
  s64[x: 2]
  [0, 4]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 0xF, 0xFF, 0xFFFF], type: :s32, names: [:x]))
#Nx.Tensor<
  s32[x: 4]
  [32, 28, 24, 16]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 0xF, 0xFF, 0xFFFF], type: :s16, names: [:x]))
#Nx.Tensor<
  s16[x: 4]
  [16, 12, 8, 0]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 1, 2, 4, 8, 16, 32, 64, -1, -128], type: :s8, names: [:x]))
#Nx.Tensor<
  s8[x: 10]
  [8, 7, 6, 5, 4, 3, 2, 1, 0, 0]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 1, 2, 4, 8, 16, 32, 64, 128], type: :u8, names: [:x]))
#Nx.Tensor<
  u8[x: 9]
  [8, 7, 6, 5, 4, 3, 2, 1, 0]
>

error-cases

Error cases

iex> Nx.count_leading_zeros(Nx.tensor([0.0, 1.0]))
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

Element-wise division of two tensors.

If a number is given, it is converted to a tensor.

It always returns a float tensor. If any of the input tensors are not float, they are converted to f32. Division by zero raises, but it may trigger undefined behaviour on some compilers.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

If you're using Nx.Defn.defn/2, you can use the / operator in place of this function: left / right.

examples

Examples

dividing-scalars

Dividing scalars

iex> Nx.divide(1, 2)
#Nx.Tensor<
  f32
  0.5
>

dividing-tensors-and-scalars

Dividing tensors and scalars

iex> Nx.divide(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [1.0, 2.0, 3.0]
>

iex> Nx.divide(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [1.0, 0.5, 0.3333333432674408]
>

dividing-tensors

Dividing tensors

iex> left = Nx.tensor([[1], [2]], names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], names: [nil, :y])
iex> Nx.divide(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [0.10000000149011612, 0.05000000074505806],
    [0.20000000298023224, 0.10000000149011612]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :s8)
iex> right = Nx.tensor([[10, 20]], type: :s8, names: [:x, :y])
iex> Nx.divide(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [0.10000000149011612, 0.05000000074505806],
    [0.20000000298023224, 0.10000000149011612]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :f32, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :f32, names: [nil, :y])
iex> Nx.divide(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [0.10000000149011612, 0.05000000074505806],
    [0.20000000298023224, 0.10000000149011612]
  ]
>

Element-wise equality comparison of two tensors.

If a number is given, it is converted to a tensor.

It will broadcast tensors whenever the dimensions do not match and broadcasting is possible.

If you're using Nx.Defn.defn/2, you can use the == operator in place of this function: left == right.

examples

Examples

comparison-of-scalars

Comparison of scalars

iex> Nx.equal(1, 2)
#Nx.Tensor<
  u8
  0
>

comparison-of-tensors-and-scalars

Comparison of tensors and scalars

iex> Nx.equal(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 0, 0]
>

comparison-of-tensors

Comparison of tensors

iex> left = Nx.tensor([1, 2, 3], names: [:data])
iex> right = Nx.tensor([1, 2, 5])
iex> Nx.equal(left, right)
#Nx.Tensor<
  u8[data: 3]
  [1, 1, 0]
>

iex> left = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], names: [:x, nil])
iex> right = Nx.tensor([1, 2, 3])
iex> Nx.equal(left, right)
#Nx.Tensor<
  u8[x: 2][3]
  [
    [1, 1, 1],
    [0, 0, 0]
  ]
>

Calculates the error function of each element in the tensor.

It is equivalent to:

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2}dt$$

examples

Examples

iex> Nx.erf(1)
#Nx.Tensor<
  f32
  0.8427007794380188
>

iex> Nx.erf(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.8427007794380188, 0.9953222870826721, 0.9999778866767883]
>

Calculates the inverse error function of each element in the tensor.

It is equivalent to:

$$erf\text{\textunderscore}inv(erf(z)) = z$$

examples

Examples

iex> Nx.erf_inv(0.10000000149011612)
#Nx.Tensor<
  f32
  0.08885598927736282
>

iex> Nx.erf_inv(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.08885598927736282, 0.4769362807273865, 1.163087010383606]
>

Calculates the one minus error function of each element in the tensor.

It is equivalent to:

$$erfc(z) = 1 - erf(z)$$

examples

Examples

iex> Nx.erfc(1)
#Nx.Tensor<
  f32
  0.15729920566082
>

iex> Nx.erfc(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.15729920566082, 0.004677734803408384, 2.2090496713644825e-5]
>

Calculates the exponential of each element in the tensor.

It is equivalent to:

$$exp(z) = e^z$$