gleastsq
Functions
pub fn gauss_newton(
x: List(Float),
y: List(Float),
func: fn(Float, List(Float)) -> Float,
initial_params: List(Float),
opts opts: List(LeastSquareOptions),
) -> Result(List(Float), FitErrors)
The gauss_newton
function performs a basic least squares optimization algorithm.
It is used to find the best-fit parameters for a given model function to a set of data points.
This function takes as input the data points, the model function, and several optional parameters to control the optimization process.
Parameters
x
(List(Float)) A list of x-values of the data points.y
(List(Float)) A list of y-values of the data points.func
(fn(Float, List(Float)) -> Float) The model function that takes an x-value and a list of parameters, and returns the corresponding y-value.initial_params
(List(Float)) A list of initial guesses for the parameters of the model function.opts
(List(LeastSquareOptions)) A list of optional parameters to control the optimization process. The available options are:Iterations(Int)
: The maximum number of iterations to perform. Default is 100.Epsilon(Float)
: A small value to change x when calculating the derivatives for the function. Default is 0.0001.Tolerance(Float)
: The convergence tolerance. Default is 0.0001.Damping(Float)
: The value of the damping parameter. Default is 0.0001.
Example
import gleam/io
import gleastsq
import gleastsq/options.{Iterations, Tolerance}
fn parabola(x: Float, params: List(Float)) -> Float {
let assert [a, b, c] = params
a *. x *. x +. b *. x +. c
}
pub fn main() {
let x = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
let y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0]
let initial_guess = [1.0, 1.0, 1.0]
let assert Ok(result) =
gleastsq.gauss_newton(
x,
y,
parabola,
initial_guess,
opts: [Iterations(1000), Tolerance(0.001)]
)
io.debug(result) // [1.0, 0.0, 0.0] (within numerical error)
}
pub fn least_squares(
x: List(Float),
y: List(Float),
func: fn(Float, List(Float)) -> Float,
initial_params: List(Float),
opts opts: List(LeastSquareOptions),
) -> Result(List(Float), FitErrors)
The least_squares
function is an alias for the levenberg_marquardt
function.
Check the documentation of the levenberg_marquardt
function for more information.
pub fn levenberg_marquardt(
x: List(Float),
y: List(Float),
func: fn(Float, List(Float)) -> Float,
initial_params: List(Float),
opts opts: List(LeastSquareOptions),
) -> Result(List(Float), FitErrors)
The levenberg_marquardt
function performs the Levenberg-Marquardt optimization algorithm.
It is used to solve non-linear least squares problems. This function takes as input the data points,
the model function, and several optional parameters to control the optimization process.
Parameters
x
(List(Float)) A list of x-values of the data points.y
(List(Float)) A list of y-values of the data points.func
(fn(Float, List(Float)) -> Float) The model function that takes an x-value and a list of parameters, and returns the corresponding y-value.initial_params
(List(Float)) A list of initial guesses for the parameters of the model function.opts
(List(LeastSquareOptions)) A list of optional parameters to control the optimization process. The available options are:Iterations(Int)
: The maximum number of iterations to perform. Default is 100.Epsilon(Float)
: A small value to change x when calculating the derivatives for the function. Default is 0.0001.Tolerance(Float)
: The convergence tolerance. Default is 0.0001.Damping(Float)
: The initial value of the damping parameter. Default is 0.0001.DampingIncrease(Float)
: The factor by which the damping parameter is increased when a step fails. Default is 10.0.DampingDecrease(Float)
: The factor by which the damping parameter is decreased when a step succeeds. Default is 0.1.
Example
import gleam/io
import gleastsq
import gleastsq/options.{Iterations, Tolerance}
fn parabola(x: Float, params: List(Float)) -> Float {
let assert [a, b, c] = params
a *. x *. x +. b *. x +. c
}
pub fn main() {
let x = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
let y = [0.0, 1.0, 4.0, 9.0, 16.0, 25.0]
let initial_guess = [1.0, 1.0, 1.0]
let assert Ok(result) =
gleastsq.levenberg_marquardt(
x,
y,
parabola,
initial_guess,
opts: [Iterations(1000), Tolerance(0.001)]
)
io.debug(result) // [1.0, 0.0, 0.0] (within numerical error)
}