View Source MatrixReloaded.Matrix (matrix_reloaded v2.3.0)
Provides a set of functions to work with matrices.
Don't forget, numbering of row and column starts from 0
and goes
to m - 1
and n - 1
where {m, n}
is dimension (size) of matrix.
Link to this section Summary
Functions
Summation of two matrices. Sizes (dimensions) of both matrices must be same. Otherwise you get an error message.
Concatenate matrices vertically. Both matrices must have same a column dimension.
Concatenate matrices horizontally. Both matrices must have same a row dimension.
Creates a square diagonal matrix with the elements of vector on the main diagonal
or on lower/upper bidiagonal if diagonal number k
is k < 0
or 0 < k
.
This number k
must be integer.
Drops the column or list of columns from the matrix. The column number (or column numbers) must be positive integer.
Drops the row or list of rows from the matrix. The row number (or row numbers) must be positive integer.
Flip columns of matrix in the left-right direction (i.e. about a vertical axis).
Flip rows of matrix in the up-down direction (i.e. about a horizontal axis).
Gets a whole column from the matrix. By column number you can select the column which you want.
Gets a part column from the matrix. By index and positive number you can select the column and elements which you want.
Gets an element from the matrix. By index you can select an element.
Gets a whole row from the matrix. By row number you can select the row which you want.
Gets a part row from the matrix. By index and positive number you can select the row and elements which you want.
Gets a submatrix from the matrix. By index you can select a submatrix. Dimension of submatrix is given by positive number (result then will be a square matrix) or tuple of two positive numbers (you get then a rectangular matrix).
Creates a new matrix of the specified size. In case of positive number you get
a squared matrix, for tuple {m, n}
you get a rectangular matrix. For negative
values you get an error message. All elements of the matrix are filled with the
default value 0. This value can be changed.
Product of two matrices. If matrix A
has a size n × p
and matrix B
has
a size p × m
then their matrix product A*B
is matrix of size n × m
.
Otherwise you get an error message.
Reshape vector or matrix. The row
and col
numbers must be positive number.
By the row
or col
number you can change shape of matrix, respectively create
new from vector.
Schur product (or the Hadamard product) of two matrices. It produces another
matrix where each element i, j
is the product of elements i, j
of the
original two matrices. Sizes (dimensions) of both matrices must be same.
Otherwise you get an error message.
The size (dimensions) of the matrix.
Subtraction of two matrices. Sizes (dimensions) of both matrices must be same. Otherwise you get an error message.
Transpose of matrix.
Updates the matrix by given a submatrix. The position of submatrix inside
matrix is given by index {row_num, col_num}
and dimension of submatrix.
Size of submatrix must be less than or equal to size of matrix. Otherwise
you get an error message. The values of indices start from 0
to matrix row size - 1
.
Similarly for col
size.
Updates column in the matrix by given a column vector. The column which you
want to change is given by tuple {row_num, col_num}
. Both values are non
negative integers.
Updates the matrix by given a number. The position of element in matrix
which you want to change is given by tuple {row_num, col_num}
.
Updates the matrix by given a submatrices. The positions (or locations) of these submatrices are given by list of indices. Index of the individual submatrices is tuple of two numbers. These two numbers are number row and number column of matrix where the submatrices will be located. All submatrices must have same size (dimension).
Updates row in the matrix by given a row vector (list) of numbers. The row which
you want to change is given by tuple {row_num, col_num}
. Both values are non
negative integers.
Link to this section Types
@type dimension() :: {pos_integer(), pos_integer()} | pos_integer()
@type index() :: {non_neg_integer(), non_neg_integer()}
@type submatrix() :: number() | MatrixReloaded.Vector.t() | t()
@type t() :: [MatrixReloaded.Vector.t()]
Link to this section Functions
Summation of two matrices. Sizes (dimensions) of both matrices must be same. Otherwise you get an error message.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
examples
Examples
iex> mat1 = {:ok, [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
iex> mat2 = MatrixReloaded.Matrix.new(3,1)
iex> Result.and_then_x([mat1, mat2], &MatrixReloaded.Matrix.add(&1, &2))
{:ok,
[
[2, 3, 4],
[5, 6, 7],
[8, 9, 10]
]
}
Concatenate matrices vertically. Both matrices must have same a column dimension.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat1 = MatrixReloaded.Matrix.diag([1, 1, 1])
iex> mat2 = MatrixReloaded.Matrix.diag([2, 2, 2])
iex> Result.and_then_x([mat1, mat2], &MatrixReloaded.Matrix.concat_col(&1, &2))
{:ok,
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[2, 0, 0],
[0, 2, 0],
[0, 0, 2]
]
}
Concatenate matrices horizontally. Both matrices must have same a row dimension.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat1 = MatrixReloaded.Matrix.diag([1, 1, 1])
iex> mat2 = MatrixReloaded.Matrix.diag([2, 2, 2])
iex> Result.and_then_x([mat1, mat2], &MatrixReloaded.Matrix.concat_row(&1, &2))
{:ok,
[
[1, 0, 0, 2, 0, 0],
[0, 1, 0, 0, 2, 0],
[0, 0, 1, 0, 0, 2]
]
}
@spec diag(MatrixReloaded.Vector.t(), integer()) :: Result.t(String.t(), t())
Creates a square diagonal matrix with the elements of vector on the main diagonal
or on lower/upper bidiagonal if diagonal number k
is k < 0
or 0 < k
.
This number k
must be integer.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> MatrixReloaded.Matrix.diag([1, 2, 3])
{:ok,
[
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]
]
}
iex> MatrixReloaded.Matrix.diag([1, 2, 3], 1)
{:ok,
[
[0, 1, 0, 0],
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]
]
}
@spec drop_col(t(), non_neg_integer() | [non_neg_integer()]) :: Result.t(String.t(), t())
Drops the column or list of columns from the matrix. The column number (or column numbers) must be positive integer.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.drop_col(mat, 2)
{:ok,
[
[0, 0, 0],
[0, 0, 2],
[0, 0, 4],
[0, 0, 0]
]
}
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.drop_col(mat, [0, 1])
{:ok,
[
[0, 0],
[1, 2],
[3, 4],
[0, 0]
]
}
@spec drop_row(t(), non_neg_integer() | [non_neg_integer()]) :: Result.t(String.t(), t())
Drops the row or list of rows from the matrix. The row number (or row numbers) must be positive integer.
Returns matrix.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.drop_row(mat, 2)
{:ok,
[
[0, 0, 0, 0],
[0, 0, 1, 2],
[0, 0, 0, 0]
]
}
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.drop_row(mat, [0, 3])
{:ok,
[
[0, 0, 1, 2],
[0, 0, 3, 4]
]
}
Flip columns of matrix in the left-right direction (i.e. about a vertical axis).
example
Example:
iex> mat = [[1,2,3], [4,5,6], [7,8,9]]
iex> MatrixReloaded.Matrix.flip_lr(mat)
[
[3, 2, 1],
[6, 5, 4],
[9, 8, 7]
]
Flip rows of matrix in the up-down direction (i.e. about a horizontal axis).
example
Example:
iex> mat = [[1,2,3], [4,5,6], [7,8,9]]
iex> MatrixReloaded.Matrix.flip_ud(mat)
[
[7, 8, 9],
[4, 5, 6],
[1, 2, 3]
]
@spec get_col(t(), non_neg_integer()) :: Result.t(String.t(), MatrixReloaded.Vector.column())
Gets a whole column from the matrix. By column number you can select the column which you want.
Returns result, it means either tuple of {:ok, number}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.get_col(mat, 3)
{:ok, [[0], [2], [4], [0]]}
@spec get_col(t(), index(), non_neg_integer()) :: Result.t(String.t(), MatrixReloaded.Vector.column())
Gets a part column from the matrix. By index and positive number you can select the column and elements which you want.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.get_col(mat, {1, 2}, 2)
{:ok, [[1], [3]]}
Gets an element from the matrix. By index you can select an element.
Returns result, it means either tuple of {:ok, number}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.get_element(mat, {2, 2})
{:ok, 3}
@spec get_row(t(), non_neg_integer()) :: Result.t(String.t(), MatrixReloaded.Vector.t())
Gets a whole row from the matrix. By row number you can select the row which you want.
Returns result, it means either tuple of {:ok, number}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.get_row(mat, 1)
{:ok, [0, 0, 1, 2]}
@spec get_row(t(), index(), non_neg_integer()) :: Result.t(String.t(), MatrixReloaded.Vector.t())
Gets a part row from the matrix. By index and positive number you can select the row and elements which you want.
Returns result, it means either tuple of {:ok, number}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.get_row(mat, {2, 1}, 2)
{:ok, [0, 3]}
Gets a submatrix from the matrix. By index you can select a submatrix. Dimension of submatrix is given by positive number (result then will be a square matrix) or tuple of two positive numbers (you get then a rectangular matrix).
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat = [[0, 0, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 0, 0]]
iex> MatrixReloaded.Matrix.get_submatrix(mat, {1, 2}, 2)
{:ok,
[
[1, 2],
[3, 4]
]
}
iex> mat = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 2, 3], [0, 4, 5, 6]]
iex> MatrixReloaded.Matrix.get_submatrix(mat, {2, 1}, {3, 3})
{:ok,
[
[1, 2, 3],
[4, 5, 6]
]
}
Creates a new matrix of the specified size. In case of positive number you get
a squared matrix, for tuple {m, n}
you get a rectangular matrix. For negative
values you get an error message. All elements of the matrix are filled with the
default value 0. This value can be changed.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
examples
Examples
iex> MatrixReloaded.Matrix.new(3)
{:ok, [[0, 0, 0], [0, 0, 0], [0, 0, 0]]}
iex> MatrixReloaded.Matrix.new({2, 3}, -10)
{:ok, [[-10, -10, -10], [-10, -10, -10]]}
Product of two matrices. If matrix A
has a size n × p
and matrix B
has
a size p × m
then their matrix product A*B
is matrix of size n × m
.
Otherwise you get an error message.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
examples
Examples
iex> mat1 = {:ok, [[1, 2], [3, 4], [5, 6], [7, 8]]}
iex> mat2 = {:ok, [[1, 2 ,3], [4, 5, 6]]}
iex> Result.and_then_x([mat1, mat2], &MatrixReloaded.Matrix.product(&1, &2))
{:ok,
[
[9, 12, 15],
[19, 26, 33],
[29, 40, 51],
[39, 54, 69]
]
}
@spec reshape(MatrixReloaded.Vector.t() | t(), pos_integer(), pos_integer()) :: Result.t(String.t(), MatrixReloaded.Vector.t()) | Result.t(String.t(), t())
Reshape vector or matrix. The row
and col
numbers must be positive number.
By the row
or col
number you can change shape of matrix, respectively create
new from vector.
Returns result, it means either tuple of {:ok, vector | matrix}
or {:error, "msg"}
.
example
Example:
iex> 1..10 |> Enum.to_list |> MatrixReloaded.Matrix.reshape(5, 2)
{:ok,
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 10]
]
}
iex> MatrixReloaded.Matrix.new({3,4}) |> Result.map(&MatrixReloaded.Matrix.reshape(&1, 2, 6))
{:ok,
[
[0, 0, 0, 0, 0, 0,],
[0, 0, 0, 0, 0, 0,]
]
}
Schur product (or the Hadamard product) of two matrices. It produces another
matrix where each element i, j
is the product of elements i, j
of the
original two matrices. Sizes (dimensions) of both matrices must be same.
Otherwise you get an error message.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
examples
Examples
iex> mat1 = {:ok, [[1, 2, 3], [5, 6, 7]]}
iex> mat2 = {:ok, [[1, 2 ,3], [4, 5, 6]]}
iex> Result.and_then_x([mat1, mat2], &MatrixReloaded.Matrix.schur_product(&1, &2))
{:ok,
[
[1, 4, 9],
[20, 30, 42]
]
}
@spec size(t()) :: {pos_integer(), pos_integer()}
The size (dimensions) of the matrix.
Returns tuple of {row_size, col_size}.
example
Example:
iex> MatrixReloaded.Matrix.new({3,4}) |> Result.map(&MatrixReloaded.Matrix.size(&1))
{:ok, {3, 4}}
Subtraction of two matrices. Sizes (dimensions) of both matrices must be same. Otherwise you get an error message.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
examples
Examples
iex> mat1 = {:ok, [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
iex> mat2 = MatrixReloaded.Matrix.new(3,1)
iex> Result.and_then_x([mat1, mat2], &MatrixReloaded.Matrix.sub(&1, &2))
{:ok,
[
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]
]
}
Transpose of matrix.
example
Example:
iex> mat = [[1,2,3], [4,5,6], [7,8,9]]
iex> MatrixReloaded.Matrix.transpose(mat)
[
[1, 4, 7],
[2, 5, 8],
[3, 6, 9]
]
Updates the matrix by given a submatrix. The position of submatrix inside
matrix is given by index {row_num, col_num}
and dimension of submatrix.
Size of submatrix must be less than or equal to size of matrix. Otherwise
you get an error message. The values of indices start from 0
to matrix row size - 1
.
Similarly for col
size.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat = MatrixReloaded.Matrix.new(4)
iex> mat |> Result.and_then(&MatrixReloaded.Matrix.update(&1, [[1,2],[3,4]], {1,2}))
{:ok,
[
[0, 0, 0, 0],
[0, 0, 1, 2],
[0, 0, 3, 4],
[0, 0, 0, 0]
]
}
Updates column in the matrix by given a column vector. The column which you
want to change is given by tuple {row_num, col_num}
. Both values are non
negative integers.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> {:ok, mat} = MatrixReloaded.Matrix.new(4)
iex> MatrixReloaded.Matrix.update_col(mat, [[1], [2], [3]], {0, 1})
{:ok,
[
[0, 1, 0, 0],
[0, 2, 0, 0],
[0, 3, 0, 0],
[0, 0, 0, 0]
]
}
Updates the matrix by given a number. The position of element in matrix
which you want to change is given by tuple {row_num, col_num}
.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat = MatrixReloaded.Matrix.new(3)
iex> mat |> Result.and_then(&MatrixReloaded.Matrix.update_element(&1, -1, {1, 1}))
{:ok,
[
[0, 0, 0],
[0, -1, 0],
[0, 0, 0]
]
}
Updates the matrix by given a submatrices. The positions (or locations) of these submatrices are given by list of indices. Index of the individual submatrices is tuple of two numbers. These two numbers are number row and number column of matrix where the submatrices will be located. All submatrices must have same size (dimension).
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> mat = MatrixReloaded.Matrix.new(5)
iex> sub_mat = MatrixReloaded.Matrix.new(2,1)
iex> positions = [{0,0}, {3, 3}]
iex> [mat, sub_mat] |> Result.and_then_x(&MatrixReloaded.Matrix.update_map(&1, &2, positions))
{:ok,
[
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 1, 1]
]
}
Updates row in the matrix by given a row vector (list) of numbers. The row which
you want to change is given by tuple {row_num, col_num}
. Both values are non
negative integers.
Returns result, it means either tuple of {:ok, matrix}
or {:error, "msg"}
.
example
Example:
iex> {:ok, mat} = MatrixReloaded.Matrix.new(4)
iex> MatrixReloaded.Matrix.update_row(mat, [1, 2, 3], {3, 1})
{:ok,
[
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 1, 2, 3]
]
}