Numerix v0.6.0 Numerix.Distance View Source
Distance functions between two vectors.
Link to this section Summary
Functions
The Euclidean distance between two vectors.
The Jaccard distance (1 - Jaccard index) between two vectors.
The Manhattan distance between two vectors.
The Minkowski distance between two vectors.
Mean squared error, the average of the squares of the errors betwen two vectors, i.e. the difference between predicted and actual values.
The Pearson's distance between two vectors.
Root mean square error of two vectors, or simply the square root of mean squared error of the same set of values. It is a measure of the differences between predicted and actual values.
Link to this section Functions
euclidean(x, y)
View Sourceeuclidean(Numerix.Common.vector(), Numerix.Common.vector()) :: Numerix.Common.maybe_float()
The Euclidean distance between two vectors.
jaccard(vector1, vector2)
View Sourcejaccard(Numerix.Common.vector(), Numerix.Common.vector()) :: Numerix.Common.maybe_float()
The Jaccard distance (1 - Jaccard index) between two vectors.
manhattan(x, y)
View Sourcemanhattan(Numerix.Common.vector(), Numerix.Common.vector()) :: Numerix.Common.maybe_float()
The Manhattan distance between two vectors.
minkowski(x, y, p \\ 3)
View Sourceminkowski(Numerix.Common.vector(), Numerix.Common.vector(), integer()) :: Numerix.Common.maybe_float()
The Minkowski distance between two vectors.
mse(x, y)
View Sourcemse(Numerix.Common.vector(), Numerix.Common.vector()) :: Numerix.Common.maybe_float()
Mean squared error, the average of the squares of the errors betwen two vectors, i.e. the difference between predicted and actual values.
pearson(vector1, vector2)
View Sourcepearson(Numerix.Common.vector(), Numerix.Common.vector()) :: Numerix.Common.maybe_float()
The Pearson's distance between two vectors.
rmse(vector1, vector2)
View Sourcermse(Numerix.Common.vector(), Numerix.Common.vector()) :: Numerix.Common.maybe_float()
Root mean square error of two vectors, or simply the square root of mean squared error of the same set of values. It is a measure of the differences between predicted and actual values.