Object.TransferLearning (object v0.1.2)
Object-Oriented Transfer Learning mechanisms for OORL framework.
Implements transfer learning capabilities as specified in AAOS section 11, enabling objects to leverage prior experience and knowledge to learn faster and generalize better to new tasks and domains.
Key mechanisms:
- Object similarity and embedding spaces
- Analogical reasoning between objects and domains
- Meta-learning for rapid adaptation
- Knowledge distillation between objects
- Cross-domain policy transfer
Summary
Functions
Computes similarity between two objects using multiple metrics.
Evaluates the effectiveness of transfer learning.
Identifies transfer opportunities from source to target domain.
Executes meta-learning for rapid adaptation to new tasks.
Creates a new transfer learning system for an object.
Performs analogical reasoning to find structural correspondences.
Transfers knowledge from source object to target object.
Updates object embeddings in the shared embedding space.
Types
@type abstraction_level() :: integer()
@type action_id() :: String.t()
@type adaptation_strategy() :: map()
@type analogy_engine() :: %{ analogy_templates: [analogy_template()], mapping_rules: [mapping_rule()], abstraction_levels: [abstraction_level()], analogy_cache: %{required(analogy_key()) => analogy_result()} }
@type analogy_key() :: term()
@type analogy_result() :: map()
@type analogy_template() :: map()
@type domain_id() :: String.t()
@type domain_mapping() :: %{ domain_id: domain_id(), feature_mapping: %{required(feature_id()) => feature_id()}, action_mapping: %{required(action_id()) => action_id()}, similarity_score: float(), transfer_compatibility: float() }
@type embedding_model() :: atom()
@type embedding_space() :: %{ dimensions: integer(), object_embeddings: %{required(object_id()) => embedding_vector()}, domain_embeddings: %{required(domain_id()) => embedding_vector()}, task_embeddings: %{required(task_id()) => embedding_vector()}, embedding_model: embedding_model() }
@type embedding_vector() :: [float()]
@type episode() :: map()
@type feature_id() :: String.t()
@type learning_episode() :: map()
@type mapping_rule() :: map()
@type meta_learning_state() :: %{ adaptation_parameters: map(), learning_to_learn_history: [learning_episode()], meta_gradients: map(), adaptation_strategies: [adaptation_strategy()] }
@type object_id() :: String.t()
@type procedure() :: map()
@type t() :: %Object.TransferLearning{ analogy_engine: analogy_engine(), domain_mappings: %{required(domain_id()) => domain_mapping()}, embedding_space: embedding_space(), knowledge_base: knowledge_base(), meta_learning_state: meta_learning_state(), object_id: String.t(), similarity_metrics: [similarity_metric()], transfer_history: [transfer_record()] }
@type task_id() :: String.t()
@type transfer_method() :: atom()
@type transfer_record() :: %{ timestamp: DateTime.t(), source_domain: domain_id(), target_domain: domain_id(), transfer_method: transfer_method(), success_metric: float(), knowledge_transferred: term(), adaptation_steps: integer() }
Functions
Computes similarity between two objects using multiple metrics.
Parameters
transfer_system
- Transfer learning system structsource_object
- First object for comparisontarget_object
- Second object for comparison
Returns
Map containing:
:overall_similarity
- Weighted average similarity score (0.0-1.0):detailed_scores
- Individual metric scores:confidence
- Confidence in similarity measurement
Evaluates the effectiveness of transfer learning.
Parameters
transfer_system
- Transfer learning system struct
Returns
Map containing:
:overall_effectiveness
- Aggregate effectiveness score (0.0-1.0):detailed_metrics
- Individual performance metrics:recommendations
- Improvement recommendations
Identifies transfer opportunities from source to target domain.
Parameters
transfer_system
- Transfer learning system structsource_domain
- Source domain specificationtarget_domain
- Target domain specification
Returns
Map with comprehensive transfer analysis:
:domain_similarity
- Similarity metrics between domains:analogical_mappings
- Structural correspondences found:transfer_feasibility
- Assessment of transfer viability:recommendations
- Specific transfer method recommendations:estimated_benefit
- Expected benefit of transfer
Executes meta-learning for rapid adaptation to new tasks.
Parameters
transfer_system
- Transfer learning system structadaptation_task
- Task specification for adaptationfew_shot_examples
- Limited examples for rapid learning
Returns
{:ok, adapted_parameters, updated_system}
- Success with adapted parameters{:error, reason}
- Adaptation failed
Creates a new transfer learning system for an object.
Parameters
object_id
- Unique identifier for the objectopts
- Configuration options::embedding_dimensions
- Size of embedding vectors (default: 64):embedding_model
- Type of embedding model (default: :neural_embedding)
Returns
New transfer learning system struct with initialized components
Examples
iex> Object.TransferLearning.new("agent_1", embedding_dimensions: 128)
%Object.TransferLearning{object_id: "agent_1", ...}
Performs analogical reasoning to find structural correspondences.
Parameters
transfer_system
- Transfer learning system structsource_structure
- Source structure for analogytarget_structure
- Target structure for analogy
Returns
Map containing:
:correspondences
- Structural element mappings:template_matches
- Template-based analogy matches:inferences
- Generated analogical inferences:confidence
- Overall confidence in analogical reasoning
Transfers knowledge from source object to target object.
Parameters
transfer_system
- Transfer learning system structsource_object
- Object providing knowledgetarget_object
- Object receiving knowledgetransfer_method
- Method to use (:automatic
,:policy_distillation
,:feature_mapping
,:analogical
,:meta_learning
)
Returns
{:ok, transferred_knowledge, updated_system}
- Success with transferred knowledge{:error, reason}
- Transfer failed
Updates object embeddings in the shared embedding space.
Parameters
transfer_system
- Transfer learning system structobject
- Object whose embedding should be updatednew_experiences
- Recent experiences to incorporate
Returns
Updated transfer learning system with modified embedding space