Code Generation Pipelines Technical Specification

View Source

Overview

Code generation pipelines automate the creation of software artifacts including APIs, tests, documentation, and refactored code. These pipelines leverage AI to understand requirements, apply best practices, and generate production-quality code.

Pipeline Categories

1. API Generation Pipelines

1.1 REST API Generator Pipeline

ID: code-api-rest-generator
Purpose: Generate complete REST APIs with documentation
Complexity: High

Workflow Steps:

  1. Requirements Analysis (Claude)

    • Parse API specifications
    • Extract entities and relationships
    • Define endpoints and methods
  2. Schema Design (Gemini Instructor)

    • Generate data models
    • Create validation schemas
    • Define relationships
  3. Code Generation (Claude Smart)

    • Generate controllers/handlers
    • Create service layers
    • Implement data access
  4. Test Generation (Claude)

    • Unit tests for each endpoint
    • Integration test suites
    • Mock data generation
  5. Documentation (Claude Extract)

    • OpenAPI/Swagger specs
    • README with examples
    • Deployment guides

Configuration Example:

workflow:
  name: "rest_api_generator"
  description: "Generate complete REST API from specifications"
  
  defaults:
    workspace_dir: "./workspace/api_generation"
    output_dir: "./generated/api"
    
  steps:
    - name: "analyze_requirements"
      type: "claude"
      role: "api_architect"
      prompt_parts:
        - type: "static"
          content: "Analyze these API requirements and extract entities:"
        - type: "file"
          path: "{spec_file}"
      options:
        tools: ["write", "edit"]
        output_format: "json"
        
    - name: "generate_schemas"
      type: "gemini_instructor"
      role: "schema_designer"
      output_schema:
        entities:
          type: "array"
          items:
            name: "string"
            fields: "array"
            relationships: "array"
            
    - name: "generate_api_code"
      type: "claude_smart"
      preset: "development"
      role: "backend_developer"
      prompt_parts:
        - type: "static"
          content: |
            Generate {framework} REST API with:
            - Controllers for each entity
            - Service layer with business logic
            - Repository pattern for data access
            - Input validation
            - Error handling
        - type: "previous_response"
          step: "generate_schemas"
          
    - name: "generate_tests"
      type: "claude"
      role: "test_engineer"
      prompt: "Generate comprehensive test suite"
      options:
        workspace_dir: "./tests"
        
    - name: "generate_docs"
      type: "claude_extract"
      role: "technical_writer"
      extraction_targets:
        - openapi_spec
        - readme
        - examples

1.2 GraphQL API Generator Pipeline

ID: code-api-graphql-generator
Purpose: Create GraphQL APIs with resolvers
Complexity: High

Features:

  • Schema-first development
  • Resolver generation
  • DataLoader implementation
  • Subscription support
  • Federation compatibility

1.3 gRPC Service Generator Pipeline

ID: code-api-grpc-generator
Purpose: Generate gRPC services with protobuf
Complexity: Medium

Components:

components/prompts/grpc_service.yaml:
  template: |
    Generate gRPC service for {service_name}:
    
    1. Proto file with:
       - Service definitions
       - Message types
       - RPC methods
       
    2. Server implementation:
       - Service handlers
       - Business logic
       - Error handling
       
    3. Client libraries:
       - Language: {client_language}
       - Retry logic
       - Connection pooling

2. Test Generation Pipelines

2.1 Comprehensive Test Suite Generator

ID: code-test-comprehensive
Purpose: Generate full test coverage
Complexity: High

Test Categories:

  1. Unit Tests

    • Function-level tests
    • Edge case coverage
    • Mock generation
  2. Integration Tests

    • API endpoint tests
    • Database interactions
    • External service mocks
  3. E2E Tests

    • User flow scenarios
    • Cross-system testing
    • Performance benchmarks

Implementation Pattern:

steps:
  - name: "analyze_codebase"
    type: "claude"
    role: "test_analyst"
    prompt: "Analyze code structure and identify test requirements"
    options:
      tools: ["read", "glob", "grep"]
      
  - name: "generate_test_plan"
    type: "gemini"
    role: "test_strategist"
    prompt: "Create comprehensive test strategy"
    output_file: "test_plan.md"
    
  - name: "generate_unit_tests"
    type: "claude_batch"
    role: "unit_test_developer"
    batch_config:
      files_per_batch: 5
      output_pattern: "tests/unit/{filename}_test.{ext}"
      
  - name: "generate_integration_tests"
    type: "claude"
    role: "integration_tester"
    prompt: "Generate integration test suite"
    
  - name: "generate_e2e_tests"
    type: "claude_smart"
    preset: "development"
    role: "e2e_tester"
    prompt: "Create end-to-end test scenarios"

2.2 Property-Based Test Generator

ID: code-test-property-based
Purpose: Generate property-based tests
Complexity: Medium

Features:

  • Property identification
  • Generator functions
  • Shrinking strategies
  • Invariant testing

2.3 Mutation Test Generator

ID: code-test-mutation
Purpose: Create mutation testing suites
Complexity: Medium

Mutation Strategies:

  • Statement mutations
  • Value mutations
  • Decision mutations
  • Coverage analysis

3. Documentation Generation Pipelines

3.1 API Documentation Generator

ID: code-docs-api
Purpose: Generate comprehensive API documentation
Complexity: Medium

Documentation Types:

  1. Reference Documentation

    • Endpoint descriptions
    • Parameter details
    • Response schemas
    • Error codes
  2. Tutorial Documentation

    • Getting started guides
    • Authentication flows
    • Common use cases
    • Best practices
  3. Interactive Documentation

    • Swagger UI setup
    • Postman collections
    • Code examples
    • Try-it-out features

Workflow Example:

steps:
  - name: "extract_api_info"
    type: "claude_extract"
    role: "api_analyzer"
    extraction_config:
      targets:
        - endpoints
        - parameters
        - responses
        - authentication
        
  - name: "generate_openapi"
    type: "gemini_instructor"
    role: "openapi_generator"
    output_schema:
      openapi: "3.0.0"
      info: "object"
      paths: "object"
      components: "object"
      
  - name: "generate_guides"
    type: "claude_session"
    role: "technical_writer"
    session_tasks:
      - quick_start_guide
      - authentication_guide
      - best_practices
      - troubleshooting

3.2 Code Documentation Generator

ID: code-docs-inline
Purpose: Generate inline code documentation
Complexity: Low

Documentation Elements:

  • Function docstrings
  • Class documentation
  • Module overviews
  • Type annotations

3.3 Architecture Documentation Generator

ID: code-docs-architecture
Purpose: Generate system architecture docs
Complexity: High

Documentation Sections:

  • System overview
  • Component diagrams
  • Sequence diagrams
  • Deployment architecture
  • Decision records

4. Refactoring Pipelines

4.1 Intelligent Code Refactoring Pipeline

ID: code-refactor-intelligent
Purpose: Automated code improvement
Complexity: High

Refactoring Types:

  1. Structural Refactoring

    • Extract methods/classes
    • Inline redundant code
    • Move functionality
    • Rename for clarity
  2. Performance Refactoring

    • Algorithm optimization
    • Caching implementation
    • Query optimization
    • Memory efficiency
  3. Pattern Implementation

    • Design pattern application
    • SOLID principles
    • DRY enforcement
    • Code organization

Implementation Approach:

steps:
  - name: "code_analysis"
    type: "claude"
    role: "code_analyst"
    prompt: "Analyze code for refactoring opportunities"
    options:
      tools: ["read", "grep", "glob"]
      
  - name: "identify_patterns"
    type: "gemini"
    role: "pattern_detector"
    gemini_functions:
      - name: "detect_code_smells"
      - name: "suggest_patterns"
      - name: "calculate_complexity"
      
  - name: "plan_refactoring"
    type: "claude_smart"
    preset: "analysis"
    role: "refactoring_planner"
    prompt: "Create detailed refactoring plan"
    
  - name: "execute_refactoring"
    type: "claude_robust"
    role: "refactoring_engineer"
    error_handling:
      syntax_errors: "rollback"
      test_failures: "iterate"
    options:
      tools: ["edit", "multiedit", "write"]
      
  - name: "verify_behavior"
    type: "claude"
    role: "test_runner"
    prompt: "Run tests to verify behavior preservation"
    options:
      tools: ["bash"]

4.2 Legacy Code Modernization Pipeline

ID: code-refactor-modernize
Purpose: Update legacy codebases
Complexity: High

Modernization Aspects:

  • Language version updates
  • Framework migrations
  • Dependency updates
  • Security improvements

4.3 Code Style Standardization Pipeline

ID: code-refactor-style
Purpose: Enforce consistent code style
Complexity: Low

Style Elements:

  • Formatting rules
  • Naming conventions
  • Import organization
  • Comment standards

Reusable Components

Code Analysis Components

# components/steps/analysis/code_analyzer.yaml
component:
  id: "code-analyzer"
  type: "step"
  
  analysis_types:
    - complexity_metrics
    - dependency_analysis
    - dead_code_detection
    - security_vulnerabilities
    - performance_bottlenecks
    
  outputs:
    report_format: ["json", "markdown", "html"]
    metrics: ["cyclomatic", "cognitive", "halstead"]

Code Generation Templates

# components/prompts/code/api_controller.yaml
component:
  id: "api-controller-template"
  type: "prompt"
  
  variables:
    - entity_name
    - operations
    - validation_rules
    - auth_requirements
    
  template: |
    Generate {language} REST controller for {entity_name}:
    
    Operations: {operations}
    
    Requirements:
    - Input validation: {validation_rules}
    - Authentication: {auth_requirements}
    - Error handling with proper status codes
    - Logging for debugging
    - OpenAPI annotations

Test Generation Functions

# components/functions/test_generation.yaml
functions:
  - name: "generate_test_cases"
    description: "Generate test cases from code"
    parameters:
      code_file: "string"
      coverage_target: "number"
      test_types: "array"
      
  - name: "generate_mocks"
    description: "Create mock objects"
    parameters:
      dependencies: "array"
      mock_framework: "string"

Quality Assurance

1. Code Quality Checks

quality_gates:
  generated_code:
    - syntax_valid: true
    - tests_pass: true
    - coverage: ">= 80%"
    - linting_errors: 0
    - security_issues: 0
    
  documentation:
    - completeness: ">= 95%"
    - examples_provided: true
    - links_valid: true

2. Review Process

  • Automated code review
  • Style guide compliance
  • Best practice verification
  • Security scanning

Performance Optimization

1. Generation Strategies

  • Template caching
  • Incremental generation
  • Parallel processing
  • Smart batching

2. Resource Management

  • Token optimization
  • Memory efficiency
  • Rate limit handling
  • Cost tracking

Integration Patterns

1. Version Control Integration

vcs_integration:
  pre_generation:
    - branch_creation
    - conflict_check
    
  post_generation:
    - commit_changes
    - create_pr
    - run_ci_checks

2. CI/CD Integration

  • Automated testing
  • Code quality gates
  • Deployment triggers
  • Monitoring setup

3. IDE Integration

  • Code completion
  • Inline suggestions
  • Refactoring tools
  • Documentation hover

Best Practices

  1. Iterative Generation: Build incrementally
  2. Human Review: Always review generated code
  3. Test First: Generate tests before code
  4. Documentation: Keep docs in sync
  5. Version Control: Track all changes
  6. Security First: Scan for vulnerabilities

Advanced Features

1. Context-Aware Generation

  • Project structure understanding
  • Coding standard detection
  • Framework convention following

2. Learning from Feedback

  • Code review incorporation
  • Pattern learning
  • Style adaptation

3. Multi-Language Support

  • Cross-language generation
  • Language-specific optimizations
  • Framework expertise

Monitoring and Metrics

1. Generation Metrics

  • Lines of code generated
  • Test coverage achieved
  • Documentation completeness
  • Generation time
  • Token usage

2. Quality Metrics

  • Code complexity scores
  • Bug detection rate
  • Performance benchmarks
  • Security scan results

Future Enhancements

  1. AI Code Review: Automated PR reviews
  2. Predictive Refactoring: Proactive improvements
  3. Architecture Generation: Full system design
  4. Performance Optimization: AI-driven tuning
  5. Security Hardening: Automated security fixes