Data Processing Pipelines Technical Specification
View SourceOverview
Data processing pipelines form the foundation of AI engineering workflows, handling data ingestion, cleaning, transformation, enrichment, and quality assurance. These pipelines leverage both Claude and Gemini for intelligent data manipulation.
Pipeline Categories
1. Data Cleaning Pipelines
1.1 Standard Data Cleaning Pipeline
ID: data-cleaning-standard
Purpose: Multi-stage data cleaning with validation
Complexity: Medium
Workflow Steps:
Data Profiling (Gemini)
- Analyze data structure and types
- Identify anomalies and patterns
- Generate cleaning recommendations
Schema Validation (Gemini Function)
- Validate against expected schema
- Report schema violations
- Suggest schema corrections
Data Cleansing (Claude)
- Remove duplicates
- Handle missing values
- Standardize formats
- Fix encoding issues
Quality Check (Gemini)
- Verify cleaning effectiveness
- Generate quality report
- Flag remaining issues
Configuration Example:
workflow:
name: "data_cleaning_standard"
description: "Comprehensive data cleaning with quality assurance"
defaults:
workspace_dir: "./workspace/data_cleaning"
output_dir: "./outputs/cleaned_data"
steps:
- name: "profile_data"
type: "gemini"
role: "data_analyst"
prompt_parts:
- type: "static"
content: "Analyze this dataset and identify data quality issues:"
- type: "file"
path: "{input_file}"
options:
model: "gemini-2.5-flash"
temperature: 0.3
- name: "validate_schema"
type: "gemini"
role: "schema_validator"
gemini_functions:
- name: "validate_schema"
parameters:
schema_file: "{schema_path}"
data_file: "{input_file}"
- name: "clean_data"
type: "claude"
role: "data_engineer"
prompt_parts:
- type: "static"
content: "Clean the data based on these issues:"
- type: "previous_response"
step: "profile_data"
options:
tools: ["write", "edit", "read"]
output_format: "json"
- name: "quality_check"
type: "gemini"
role: "quality_assurance"
prompt_parts:
- type: "static"
content: "Verify the cleaned data quality"
- type: "previous_response"
step: "clean_data"
field: "cleaned_file_path"
1.2 Advanced Data Cleaning Pipeline
ID: data-cleaning-advanced
Purpose: ML-powered cleaning with anomaly detection
Complexity: High
Additional Features:
- Outlier detection using statistical methods
- Pattern-based cleaning rules
- Machine learning for missing value imputation
- Automated data type inference
2. Data Enrichment Pipelines
2.1 Entity Extraction Pipeline
ID: data-enrichment-entity
Purpose: Extract and enrich entities from unstructured data
Complexity: High
Workflow Steps:
Text Preprocessing (Claude)
- Normalize text format
- Handle encoding issues
- Segment into processable chunks
Entity Recognition (Parallel Claude)
- Identify persons, organizations, locations
- Extract dates, amounts, identifiers
- Detect custom entity types
Entity Enrichment (Gemini Functions)
- Lookup additional information
- Validate entity relationships
- Cross-reference with knowledge bases
Data Integration (Claude)
- Merge enriched data
- Resolve conflicts
- Generate enriched dataset
Key Components:
# Reusable entity extraction prompt
components/prompts/entity_extraction.yaml:
variables:
- text_content
- entity_types
- extraction_rules
template: |
Extract the following entity types from the text:
Entity Types: {entity_types}
Rules:
{extraction_rules}
Text:
{text_content}
Return as structured JSON with confidence scores.
2.2 Data Augmentation Pipeline
ID: data-enrichment-augmentation
Purpose: Intelligently augment datasets for ML training
Complexity: Medium
Features:
- Synthetic data generation
- Data balancing techniques
- Feature engineering
- Cross-validation setup
3. Data Transformation Pipelines
3.1 Format Conversion Pipeline
ID: data-transformation-format
Purpose: Convert between data formats intelligently
Complexity: Low
Supported Conversions:
- CSV ↔ JSON ↔ XML ↔ Parquet
- Schema-aware transformations
- Nested structure handling
- Batch processing support
Workflow Example:
steps:
- name: "analyze_source"
type: "gemini"
role: "format_analyzer"
prompt: "Analyze the structure of this {source_format} file"
- name: "generate_mapping"
type: "claude"
role: "mapping_generator"
prompt: "Create transformation rules from {source_format} to {target_format}"
- name: "transform_data"
type: "claude_batch"
role: "data_transformer"
batch_size: 1000
prompt: "Apply transformation rules to convert data"
3.2 Data Normalization Pipeline
ID: data-transformation-normalize
Purpose: Standardize data across sources
Complexity: Medium
Normalization Types:
- Value normalization (scaling, encoding)
- Schema normalization
- Format standardization
- Reference data alignment
4. Data Quality Pipelines
4.1 Comprehensive Quality Assessment
ID: data-quality-comprehensive
Purpose: Full data quality evaluation and reporting
Complexity: High
Quality Dimensions:
- Completeness: Missing value analysis
- Accuracy: Validation against rules
- Consistency: Cross-field validation
- Timeliness: Data freshness checks
- Uniqueness: Duplicate detection
- Validity: Format and range checks
Implementation Pattern:
steps:
- name: "parallel_quality_checks"
type: "parallel_claude"
instances:
- role: "completeness_checker"
prompt: "Analyze data completeness"
- role: "accuracy_validator"
prompt: "Check data accuracy"
- role: "consistency_analyzer"
prompt: "Validate data consistency"
- name: "generate_report"
type: "claude_smart"
preset: "analysis"
prompt: "Generate comprehensive quality report"
output_file: "quality_report.md"
4.2 Real-time Quality Monitoring
ID: data-quality-monitoring
Purpose: Continuous quality monitoring with alerts
Complexity: Medium
Features:
- Streaming data quality checks
- Anomaly detection
- Alert generation
- Quality trend analysis
Reusable Components
Validation Components
# components/steps/validation/schema_validator.yaml
component:
id: "schema-validator"
type: "step"
implementation:
type: "gemini"
functions:
- name: "validate_against_schema"
description: "Validate data against JSON Schema"
parameters:
data:
type: "object"
schema:
type: "object"
strict_mode:
type: "boolean"
default: true
Transformation Components
# components/transformers/data/normalizer.yaml
component:
id: "data-normalizer"
type: "transformer"
strategies:
- min_max_scaling
- z_score_normalization
- decimal_scaling
- log_transformation
Quality Check Components
# components/steps/quality/duplicate_detector.yaml
component:
id: "duplicate-detector"
type: "step"
algorithms:
- exact_match
- fuzzy_match
- semantic_similarity
configuration:
threshold: 0.95
columns: ["all"]
Performance Considerations
1. Batch Processing
- Use
claude_batch
for large datasets - Implement chunking strategies
- Configure appropriate batch sizes
2. Parallel Execution
- Leverage
parallel_claude
for independent tasks - Distribute workload effectively
- Manage memory consumption
3. Caching Strategies
- Cache intermediate results
- Implement smart checkpointing
- Use workspace effectively
Error Handling
1. Data Validation Errors
error_handlers:
schema_validation_error:
action: "log_and_continue"
fallback: "use_previous_schema"
missing_required_field:
action: "attempt_recovery"
strategy: "infer_from_context"
2. Processing Failures
- Implement retry mechanisms
- Partial result preservation
- Graceful degradation
Testing Strategies
1. Unit Tests
- Test individual transformation functions
- Validate cleaning algorithms
- Check enrichment accuracy
2. Integration Tests
- End-to-end pipeline execution
- Data quality benchmarks
- Performance testing
3. Sample Data Sets
test_data:
small_dataset:
size: "1MB"
records: 1000
issues: ["duplicates", "missing_values"]
large_dataset:
size: "100MB"
records: 100000
issues: ["encoding", "schema_drift"]
Monitoring and Metrics
1. Pipeline Metrics
- Execution time per stage
- Data volume processed
- Quality improvement scores
- Resource utilization
2. Quality Metrics
- Data quality score trends
- Issue detection rates
- Cleaning effectiveness
- Enrichment coverage
Best Practices
- Start Simple: Begin with standard cleaning pipeline
- Profile First: Always analyze data before processing
- Validate Often: Check data quality at each stage
- Document Changes: Track all transformations
- Test Thoroughly: Use representative test data
- Monitor Continuously: Track quality metrics
Future Enhancements
- Real-time Processing: Stream processing support
- ML Integration: Advanced anomaly detection
- Custom Rules Engine: User-defined cleaning rules
- Visual Pipeline Builder: GUI for pipeline creation
- Auto-optimization: Performance tuning based on data characteristics