Hybrid Retrieval-Augmented Generation for Multi-Language Codebases

Ragex is an MCP (Model Context Protocol) server that analyzes codebases using compiler output and language-native tools to build comprehensive knowledge graphs. It enables natural language querying of code structure, relationships, and semantics.

Features

Foundation     ▸ MCP Server Protocol: Full JSON-RPC 2.0 implementation over both stdio and socket     ▸ Elixir Code Analyzer: AST-based parser extracting modules, functions, calls, and dependencies     ▸ Knowledge Graph: ETS-based storage for code entities and relationships     ▸ MCP Tools:       ▹ `analyze_file`: Parse and index source files       ▹ `query_graph`: Search for modules, functions, and relationships       ▹ `list_nodes`: Browse indexed code entities
Multi-Language Support     ▸ Erlang Analyzer: Uses `:erl_scan` and `:erl_parse` for native Erlang AST parsing     ▸ Python Analyzer: Shells out to Python's `ast` module for comprehensive analysis     ▸ JavaScript/TypeScript Analyzer: Regex-based parsing for common JS/TS patterns     ▸ Auto-detection: Automatically detects language from file extension     ▸ Directory Analysis: Batch analyze entire projects with parallel processing     ▸ File Watching: Auto-reindex on file changes     ▸ Supported Extensions: `.ex`, `.exs`, `.erl`, `.hrl`, `.py`, `.js`, `.jsx`, `.ts`, `.tsx`, `.mjs`
Semantic Search & Hybrid Retrieval     ▸ Embeddings Foundation       ▹ Local ML Model: Bumblebee integration with sentence-transformers/all-MiniLM-L6-v2       ▹ Vector Embeddings: 384-dimensional embeddings for code entities       ▹ Automatic Generation: Embeddings created during code analysis       ▹ Text Descriptions: Natural language descriptions for modules and functions       ▹ ETS Storage: Embeddings stored alongside graph entities       ▹ No External APIs: Fully local model inference (~400MB memory)     ▸ Vector Store       ▹ Cosine Similarity: Fast vector similarity search (<50ms for 100 entities)       ▹ Parallel Search: Concurrent similarity calculations       ▹ Filtering: By node type, similarity threshold, and result limit       ▹ k-NN Search: Nearest neighbor queries       ▹ Statistics API: Vector store metrics and monitoring     ▸ Semantic Search Tools       ▹ Semantic Search: Natural language code queries ("function to parse JSON")       ▹ Getting Embeddings Stats: ML model and vector store statistics       ▹ Result Enrichment: Context with callers, callees, file locations       ▹ Flexible Filtering: By type, threshold, limit, with context inclusion     ▸ Hybrid Retrieval       ▹ Hybrid Search: Combines symbolic and semantic approaches       ▹ Three Strategies: Fusion (RRF), semantic-first, graph-first       ▹ Reciprocal Rank Fusion: Intelligent ranking combination (k=60)       ▹ Graph Constraints: Optional symbolic filtering       ▹ Performance: <100ms for typical queries     ▸ Enhanced Graph Queries       ▹ PageRank: Importance scoring based on call relationships       ▹ Path Finding: Discover call chains between functions (with limits)       ▹ Degree Centrality: In-degree, out-degree, and total degree metrics       ▹ Graph Statistics: Comprehensive codebase analysis       ▹ MCP Tools: `find_paths` and `graph_stats` tools
Production Features     ▸ Custom Embedding Models       ▹ Model Registry: 4 pre-configured embedding models       ▹ Flexible Configuration: Config file, environment variable, or default       ▹ Model Compatibility: Automatic detection of compatible models (same dimensions)       ▹ Migration Tool: `mix ragex.embeddings.migrate` for model changes       ▹ Validation: Startup checks for model compatibility     ▸ Embedding Persistence       ▹ Automatic Cache: Save on shutdown, load on startup       ▹ Model Validation: Ensures cache matches current model       ▹ Project-Specific: Isolated caches per project directory       ▹ Cache Management: Mix tasks for stats and cleanup (`mix ragex.cache.*`)       ▹ Performance: Cold start <5s vs 50s without cache       ▹ Storage: ~15MB per 1,000 entities (ETS binary format)     ▸ Incremental Embedding Updates       ▹ File Tracking: SHA256 content hashing for change detection       ▹ Smart Diff: Only re-analyzes changed files       ▹ Selective Regeneration: Updates embeddings for modified entities only       ▹ Performance: <5% regeneration on single-file changes       ▹ Mix Task: `mix ragex.cache.refresh` for incremental/full updates     ▸ Path Finding Limits       ▹ `max_paths` Parametrization: Limits returned paths (default: 100) to prevent hangs       ▹ Early Stopping: DFS traversal stops when max_paths reached       ▹ Dense Graph Detection: Automatic warnings for highly-connected nodes (≥10 edges)       ▹ Configurable Options: max_depth, max_paths, warn_dense flags       ▹ Performance: Prevents exponential explosion on dense graphs
Code Editing Capabilities     ▸ Core Editor Infrastructure       ▹ Editor Types: Change types (replace, insert, delete) with validation       ▹ Backup Management: Automatic backups with timestamps and project-specific directories       ▹ Core Editor: Atomic operations with concurrent modification detection       ▹ Rollback Support: Restore previous versions from backup history       ▹ Configuration: Backup retention, compression, and directory settings     ▸ Validation Pipeline       ▹ Validator Behavior: Behavior definition with callbacks and orchestration       ▹ Elixir Validator: Syntax validation using `Code.string_to_quoted/2`       ▹ Erlang Validator: Validation using `:erl_scan` and `:erl_parse`       ▹ Python Validator: Shell-out to Python's `ast.parse()` for syntax checking       ▹ JavaScript Validator: Node.js `vm.Script` for JS/TS validation       ▹ Automatic Detection: Language detection from file extension       ▹ Core Integration: Validators integrated with `Core.edit_file`     ▸ MCP Edit Tools       ▹ edit_file: MCP tool for safe file editing with validation       ▹ validate_edit: Preview validation before applying changes       ▹ rollback_edit: Undo recent edits via MCP       ▹ edit_history: Query backup history     ▸ Advanced Editing       ▹ Format Integration: Auto-format after edits with language-specific formatters       ▹ Formatter Detection: Automatic formatter discovery (mix, rebar3, black, prettier)       ▹ Core Integration: `:format` option in `Core.edit_file`       ▹ Multi-file Transactions: Atomic cross-file changes with automatic rollback       ▹ Transaction Validation: Pre-validate all files before applying changes       ▹ MCP Integration: `edit_files` tool for coordinated multi-file edits ▸ Semantic Refactoring ▹ AST Manipulation: Elixir-specific AST parsing and transformation ▹ Rename Function: Rename functions with automatic call site updates ▹ Rename Module: Rename modules with reference updates ▹ Graph Integration: Use knowledge graph to find all affected files ▹ Arity Support: Handle functions with multiple arities correctly ▹ Scope Control: Module-level or project-wide refactoring ▹ MCP Integration: `refactor_code` tool for semantic refactoring ▸ Advanced Refactoring ▹ Extract Function: Extract code range into new function (basic support) ▹ Inline Function: Replace all calls with function body, remove definition (fully working) ▹ Convert Visibility: Toggle between `def` and `defp` (fully working) ▹ Rename Parameter: Rename parameter within function scope (fully working) ▹ Modify Attributes: Add/remove/update module attributes (fully working) ▹ Change Signature: Add/remove/reorder/rename parameters with call site updates (fully working) ▹ Move Function: Move function between modules (deferred - requires advanced semantic analysis) ▹ Extract Module: Extract multiple functions into new module (deferred - requires advanced semantic analysis) ▹ MCP Integration: `advanced_refactor` tool with 8 operation types ▹ Status: 6 of 8 operations fully functional, 2 deferred pending semantic analysis enhancements
Advanced Graph Algorithms     ▸ Centrality Metrics       ▹ Betweenness Centrality: Identify bridge/bottleneck functions using Brandes’ algorithm       ▹ Closeness Centrality: Identify central functions based on average distance       ▹ Normalized Scores: Configurable 0-1 normalization       ▹ Performance Limits: `max_nodes` parameter for large graphs       ▹ MCP Tools: `betweenness_centrality` and `closeness_centrality`     ▸ Community Detection       ▹ Louvain Method: Modularity optimization for discovering architectural modules       ▹ Label Propagation: Fast alternative algorithm (O(m) per iteration)       ▹ Hierarchical Structure: Multi-level community detection support       ▹ Weighted Edges: Support for edge weights (call frequency)       ▹ MCP Tool: `detect_communities` with algorithm selection     ▸ Weighted Graph Support       ▹ Edge Weights: Store call frequency in edge metadata (default: 1.0)       ▹ Weighted Algorithms: Modularity computation with weights       ▹ Store Integration: `get_edge_weight` helper function ▸ Graph Visualization ▹ Graphviz DOT Export: Community clustering, colored nodes, weighted edges ▹ D3.js JSON Export: Force-directed graph format with metadata ▹ Node Coloring: By PageRank, betweenness, or degree centrality ▹ Edge Thickness: Proportional to edge weight ▹ MCP Tool: `export_graph` with format selection
MCP Resources & Prompts ▸ Resources (Read-only State Access) ▹ Graph Statistics: Node/edge counts, PageRank scores, centrality metrics ▹ Cache Status: Embedding cache health, file tracking, stale entities ▹ Model Configuration: Active model details, capabilities, readiness ▹ Project Index: Tracked files, language distribution, entity counts ▹ Algorithm Catalog: Available algorithms with parameters and complexity ▹ Analysis Summary: Pre-computed architectural insights and communities ▹ URI Format: `ragex:///` ▹ Documentation: See [RESOURCES.md](RESOURCES.md) ▸ Prompts (High-level Workflows) ▹ Analyze Architecture: Comprehensive architectural analysis (shallow/deep) ▹ Find Impact: Function importance and refactoring risk assessment ▹ Explain Code Flow: Narrative execution flow between functions ▹ Find Similar Code: Hybrid search with natural language descriptions ▹ Suggest Refactoring: Modularity, coupling, and complexity analysis ▹ Safe Rename: Impact preview for semantic refactoring operations ▹ Tool Composition: Each prompt suggests sequence of tools to use ▹ Documentation: See [PROMPTS.md](PROMPTS.md)
RAG System (:fire:) ▸ AI Provider Abstraction ▹ Provider Behaviour: Clean interface for multiple AI providers ▹ DeepSeek R1: Full integration with deepseek-chat and deepseek-reasoner models ▹ Streaming Support: All providers support streaming responses (SSE/NDJSON) ▹ Real-time Responses: Progressive content delivery with token usage tracking ▹ OpenAI: GPT-4, GPT-4-turbo, GPT-3.5-turbo support ▹ Anthropic: Claude 3 Opus, Sonnet, and Haiku models ▹ Ollama: Local LLM support (llama2, mistral, codellama, phi) ▹ Configuration System: Multi-provider with fallback support ▹ Provider Registry: GenServer for runtime provider management ▸ AI Response Caching ▹ ETS-based Cache: SHA256 key generation with TTL expiration ▹ LRU Eviction: Automatic eviction when max size reached ▹ Operation-specific TTL: Configurable per operation type ▹ Cache Statistics: Hit rate, misses, puts, evictions tracking ▹ Mix Tasks: `mix ragex.ai.cache.stats` and `mix ragex.ai.cache.clear` ▹ Performance: >50% cache hit rate for repeated queries ▸ Usage Tracking & Rate Limiting ▹ Per-provider Tracking: Requests, tokens, and cost estimation ▹ Real-time Costs: Accurate pricing for OpenAI, Anthropic, DeepSeek ▹ Time-windowed Limits: Per-minute, per-hour, per-day controls ▹ Automatic Enforcement: Rate limit checks before API calls ▹ Mix Tasks: `mix ragex.ai.usage.stats` for monitoring ▹ MCP Tools: `get_ai_usage`, `get_ai_cache_stats` ▸ Metastatic Integration ▹ MetaAST Analyzer: Enhanced cross-language analysis via Metastatic library ▹ Supported Languages: Elixir, Erlang, Python, Ruby ▹ Fallback Strategy: Graceful degradation to native analyzers ▹ Feature Flags: Configurable `use_metastatic` option ▸ RAG Pipeline ▹ Context Builder: Format retrieval results for AI consumption (8000 char max) ▹ Prompt Templates: Query, explain, and suggest operations ▹ Full Pipeline: Retrieval → Context → Prompting → Generation → Post-processing ▹ Hybrid Retrieval: Leverages semantic + graph-based search ▹ Cache Integration: Automatic caching of AI responses ▹ Usage Tracking: All requests tracked with cost estimation ▸ MCP RAG Tools ▹ `rag_query`: Answer general codebase questions with AI ▹ `rag_explain`: Explain code with aspect focus (purpose, complexity, dependencies, all) ▹ `rag_suggest`: Suggest improvements (performance, readability, testing, security, all) ▹ `rag_query_stream`: Streaming version of rag_query (internally uses streaming) ▹ `rag_explain_stream`: Streaming version of rag_explain (internally uses streaming) ▹ `rag_suggest_stream`: Streaming version of rag_suggest (internally uses streaming) ▹ `get_ai_usage`: Query usage statistics and costs per provider ▹ `get_ai_cache_stats`: View cache performance metrics ▹ `clear_ai_cache`: Clear cache via MCP ▹ Provider Override: Select provider per-query (openai, anthropic, deepseek_r1, ollama) ▸ MetaAST-Enhanced Retrieval ▹ Context-Aware Ranking: Query intent detection (explain, refactor, example, debug) ▹ Purity Analysis: Boost pure functions, penalize side effects ▹ Complexity Scoring: Favor simple code for explanations, complex code for refactoring ▹ Cross-Language Search: Find equivalent constructs across languages via MetaAST ▹ Query Expansion: Automatic synonym injection and cross-language terms ▹ Pattern Search: Find all implementations of MetaAST patterns (map, filter, lambda, etc.) ▹ Hybrid Integration: MetaAST ranking applied to all search strategies ▹ MCP Tools: `metaast_search`, `cross_language_alternatives`, `expand_query`, `find_metaast_pattern`
AI Features (:fire:) ▸ Foundation Layer ▹ Features.Config: Per-feature flags with master switch ▹ Features.Context: Rich context builders (6 context types) ▹ Features.Cache: Automatic caching with TTL policies (3-7 days) ▹ Graceful degradation when AI disabled ▸ High-Priority Features ▹ ValidationAI: AI-enhanced validation error explanations ▹ AIPreview: Refactoring preview with risk assessment and recommendations ▸ Analysis Features ▹ AIRefiner: Dead code false positive reduction (50%+ target) ▹ AIAnalyzer: Semantic Type IV clone detection (>70% accuracy target) ▹ AIInsights: Architectural insights for coupling and circular dependencies ▹ Context-aware recommendations with technical debt scoring ▸ Configuration ▹ Opt-in via `:ai_features` config (dead_code_refinement, duplication_semantic_analysis, etc.) ▹ Master switch with per-feature overrides ▹ Integrates with existing analysis modules (DeadCode, Duplication, DependencyGraph) ▹ MCP tools: validate_with_ai, enhanced preview_refactor
Code Analysis & Quality ▸ Dead Code Detection ▹ Graph-Based Analysis: Find unused functions via call graph traversal ▹ Confidence Scoring: 0.0-1.0 score to distinguish callbacks from dead code ▹ Pattern Detection: AST-based unreachable code detection via Metastatic ▹ Intraprocedural Analysis: Constant conditionals, unreachable branches ▹ Interprocedural Analysis: Unused exports, private functions ▹ Callback Recognition: GenServer, Phoenix, and other framework callbacks ▹ MCP Tools: `find_dead_code`, `analyze_dead_code_patterns` ▸ Dependency Analysis ▹ Coupling Metrics: Afferent (Ca) and Efferent (Ce) coupling ▹ Instability: I = Ce / (Ca + Ce) ranges from 0 (stable) to 1 (unstable) ▹ Circular Dependencies: Detect cycles at module and function levels ▹ Transitive Dependencies: Optional deep dependency traversal ▹ God Module Detection: Find modules with high coupling ▹ MCP Tools: `analyze_dependencies`, `find_circular_dependencies`, `coupling_report` ▸ Code Duplication Detection ▹ AST-Based Clones: Type I-IV clone detection via Metastatic ▹ Type I: Exact clones (whitespace/comment differences only) ▹ Type II: Renamed clones (same structure, different identifiers) ▹ Type III: Near-miss clones (similar with modifications, configurable threshold) ▹ Type IV: Semantic clones (different syntax, same behavior) ▹ Embedding-Based Similarity: Semantic code similarity using ML embeddings ▹ Directory Scanning: Recursive multi-file analysis with exclusion patterns ▹ Reports: Summary, detailed, and JSON formats ▹ MCP Tools: `find_duplicates`, `find_similar_code` ▸ Impact Analysis ▹ Change Impact: Predict affected code via graph traversal ▹ Risk Scoring: Combine importance (PageRank) + coupling + complexity ▹ Test Discovery: Find affected tests automatically ▹ Effort Estimation: Estimate refactoring time/complexity for 6 operations ▹ Risk Levels: Low (<0.3), medium (0.3-0.6), high (0.6-0.8), critical (≥0.8) ▹ Complexity Levels: Low (<5 changes), medium (5-20), high (20-50), very high (50+) ▹ Support Operations: rename_function, rename_module, extract_function, inline_function, move_function, change_signature ▹ MCP Tools: `analyze_impact`, `estimate_refactoring_effort`, `risk_assessment` ▸ Code Smells Detection (Metastatic Integration) ▹ Long Function: Functions with too many statements (default: >50) ▹ Deep Nesting: Excessive nesting depth (default: >4 levels) ▹ Magic Numbers: Unexplained numeric literals in expressions ▹ Complex Conditionals: Deeply nested boolean operations ▹ Long Parameter List: Too many parameters (default: >5) ▹ Configurable Thresholds: Custom limits per project ▹ Severity Levels: Critical, high, medium, low ▹ Actionable Suggestions: Refactoring recommendations for each smell ▹ Directory Scanning: Recursive analysis with parallel processing ▹ Filtering: By severity or smell type ▹ MCP Tool: `detect_smells` ▸ Business Logic Analysis (20 Metastatic Analyzers) ▹ Control Flow Issues: • Callback Hell: Excessive nested callbacks (default: >3 levels) • Missing Error Handling: Functions without try/rescue or error tuples • Silent Error Case: Pattern matches that ignore error tuples • Swallowing Exception: Rescue clauses without re-raising or logging ▹ Data & Configuration: • Hardcoded Value: URLs, secrets, or config values in code • Direct Struct Update: Using `%{struct | ...}` instead of changesets/contexts • Missing Preload: Ecto queries without required preloads ▹ Performance & Scalability: • N+1 Query: Multiple database queries in iterations • Inefficient Filter: Filtering after fetching instead of in query • Unmanaged Task: `Task.start` without supervision • Blocking in Plug: Slow synchronous operations in plug pipeline • Sync Over Async: Using sync calls when async is available ▹ Observability: • Missing Telemetry for External HTTP: External API calls without telemetry • Missing Telemetry in Auth Plug: Auth operations without metrics • Missing Telemetry in LiveView Mount: LiveView lifecycle without tracking • Missing Telemetry in Oban Worker: Background jobs without observability • Telemetry in Recursive Function: Performance overhead from recursive telemetry ▹ Framework-Specific: • Missing Handle Async: LiveView async results without handlers • Inline JavaScript: JavaScript in Phoenix templates/LiveView • Missing Throttle: User-facing actions without rate limiting ▹ Tier Classification: 4 tiers from pure MetaAST to content analysis ▹ Actionable Recommendations: Specific fixes for each issue type ▹ Severity Levels: Critical, high, medium, low, info ▹ Directory Scanning: Recursive analysis with file type detection ▹ Filtering: By analyzer, minimum severity, or file patterns ▹ Reports: Summary with counts by analyzer and severity ▹ MCP Tool: `analyze_business_logic` ▹ Mix Task: `mix ragex.analyze --business-logic` ▸ Quality Metrics (Metastatic Integration) ▹ Complexity Metrics (Full Suite): • Cyclomatic Complexity: McCabe metric (decision points + 1) • Cognitive Complexity: Structural complexity with nesting penalties • Nesting Depth: Maximum nesting level tracking ▹ Halstead Metrics (Comprehensive): • Vocabulary: distinct_operators + distinct_operands • Length: total_operators + total_operands • Volume: length × log₂(vocabulary) • Difficulty: (distinct_operators / 2) × (total_operands / distinct_operands) • Effort: volume × difficulty ▹ Lines of Code (Detailed): • Physical Lines: Total lines including blank/comments • Logical Lines: Executable statements only • Comments: Comment lines count • Blank Lines: Whitespace-only lines ▹ Function Metrics: • Statement Count: Number of executable statements • Return Points: Multiple return analysis • Variable Count: Local variable tracking • Parameter Count: Function signature complexity ▹ Purity Analysis: Function purity and side-effect detection ▹ Per-Function Analysis: Individual function breakdown with all metrics ▹ Project-wide Reports: Aggregated statistics by language ▹ MCP Tools: `analyze_quality`, `quality_report`, `find_complex_code` ▸ Documentation ▹ Comprehensive Guide: See [ANALYSIS](stuff/docs/ANALYSIS.md) for complete API documentation ▹ Analysis Approaches: AST-based vs embedding-based strategies ▹ Usage Examples: API and MCP tool examples with code snippets ▹ Best Practices: Threshold recommendations, workflow tips ▹ Troubleshooting: Common issues and solutions ▹ CI/CD Integration: Pre-commit hooks, pipeline examples
CLI Improvements ▸ CLI Foundation ▹ Colors: ANSI color helpers with NO_COLOR support ▹ Output: Rich formatting (sections, lists, tables, key-value pairs, diffs) ▹ Progress: Spinners and progress indicators ▹ Prompt: Interactive prompts (confirm, select, input, number with validation) ▸ Enhanced Mix Tasks (7 upgraded) ▹ `mix ragex.cache.{stats,refresh,clear}` - Colored output, spinners, confirmations ▹ `mix ragex.embeddings.migrate` - Sections, formatted output, interactive confirmations ▹ `mix ragex.ai.{usage.stats,cache.stats,cache.clear}` - Rich formatting, color-coded metrics ▸ Interactive Wizards ▹ `mix ragex.refactor` - Interactive refactoring wizard: • 5 operations: rename_function, rename_module, change_signature, extract_function, inline_function • Parameter gathering with validation • Knowledge graph integration • Preview and confirmation before applying • Both interactive and direct CLI modes ▹ `mix ragex.configure` - Configuration wizard: • Smart project type detection • Embedding model comparison and selection • AI provider configuration with environment detection • Analysis options and cache settings • Generates complete `.ragex.exs` configuration file ▸ Live Dashboard ▹ `mix ragex.dashboard` - Real-time monitoring: • 4 stat panels: Graph, Embeddings, Cache, AI Usage • Live updating display (customizable refresh interval) • Color-coded metrics with thresholds • Activity log ▸ Shell Completions ▹ Bash, Zsh, Fish completion scripts ▹ `mix ragex.completions` - Auto-detect and install completions ▹ Task name completion with descriptions ▹ Context-aware argument completion ▸ Documentation ▹ Man pages in groff format (ragex.1) ▹ `mix ragex.install_man` - System-wide man page installation ▹ Complete command reference (10 Mix tasks) ▹ Configuration guide and usage examples

Planned Features

  • [✓] Streaming RAG responses
  • [✓] MCP streaming notifications
  • [✓] MetaAST-enhanced retrieval
  • [✓] Code quality analysis
  • [✓] Impact analysis and risk assessment
  • [✓] CLI improvements (interactive wizards, dashboard, completions, man pages)
  • [✗] Provider health checks and auto-failover
  • [✗] Production optimizations
  • [✗] Additional language support
  • [✗] Cross-language refactoring via Metastatic
  • [✗] Enhanced editor integrations

Architecture

graph TD
    MCP["MCP Server (stdio)<br/>28 Tools + 6 Resources + 6 Prompts"]
    
    MCP --> Tools["Tools Handler"]
    MCP --> Resources["Resources Handler"]
    MCP --> Prompts["Prompts Handler"]
    MCP --> Analyzers["Analyzers<br/>(Elixir, Erlang, Metastatic)"]
    MCP --> Graph["Graph Store<br/>(ETS Knowledge Graph)"]
    MCP --> Vector["Vector Store<br/>(Cosine Similarity)"]
    MCP --> Bumblebee["Bumblebee Embedding<br/>(all-MiniLM-L6-v2)"]
    
    Tools <--> Analyzers
    Analyzers <--> Graph
    Resources --> Graph
    Resources --> Vector
    Resources --> Bumblebee
    Prompts --> Tools
    
    Tools --> Hybrid["Hybrid Retrieval (RRF)<br/>Semantic + Graph + Fusion"]
    Graph --> Hybrid
    Vector --> Hybrid
    
    Tools --> RAG["RAG Pipeline<br/>Cache → Context → Prompts → AI"]
    Hybrid --> RAG
    RAG --> Cache["AI Cache<br/>(TTL + LRU)"]
    RAG --> Usage["Usage Tracker<br/>(Costs + Limits)"]
    RAG --> AIProvider["AI Providers<br/>(OpenAI, Anthropic, DeepSeek, Ollama)"]
    
    style MCP fill:#e1f5ff,color:#01579b,stroke:#01579b,stroke-width:2px
    style Hybrid fill:#f3e5f5,color:#4a148c,stroke:#4a148c,stroke-width:2px
    style Graph fill:#e8f5e9,color:#1b5e20,stroke:#1b5e20,stroke-width:2px
    style Vector fill:#fff3e0,color:#e65100,stroke:#e65100,stroke-width:2px
    style Bumblebee fill:#fce4ec,color:#880e4f,stroke:#880e4f,stroke-width:2px
    style Resources fill:#e0f2f1,color:#004d40,stroke:#004d40,stroke-width:2px
    style Prompts fill:#fff9c4,color:#f57f17,stroke:#f57f17,stroke-width:2px
    style RAG fill:#ffebee,color:#b71c1c,stroke:#b71c1c,stroke-width:2px
    style AIProvider fill:#e8eaf6,color:#1a237e,stroke:#1a237e,stroke-width:2px
    style Cache fill:#e0f7fa,color:#006064,stroke:#006064,stroke-width:2px
    style Usage fill:#fff8e1,color:#f57c00,stroke:#f57c00,stroke-width:2px

Use as MCP Server

The only MCP client currently supported is LunarVim (technically, any NeoVim, but I never tested it.)

To enable Ragex support in LunarVim, copy files from lvim.cfg/lua/user/ to where your LunarVim configs are (typically, it’s ~/.config/lvim/lua/user/) and amend your config.lua as shown below.

-- Ragex integration
local ragex = require("user.ragex")
local ragex_telescope = require("user.ragex_telescope")

-- Setup Ragex with configuration
ragex.setup({
  ragex_path = vim.fn.expand("~/Proyectos/Ammotion/ragex"),
  enabled = true,
  debug = false,
})

-- Ragex keybindings (using "r" prefix for Ragex)
lvim.builtin.which_key.mappings["r"] = {
  name = "Ragex",
  s = { function() ragex_telescope.ragex_search() end, "Semantic Search" },
  w = { function() ragex_telescope.ragex_search_word() end, "Search Word" },
  f = { function() ragex_telescope.ragex_functions() end, "Find Functions" },
  m = { function() ragex_telescope.ragex_modules() end, "Find Modules" },
  a = { function() ragex.analyze_current_file() end, "Analyze File" },
  d = { function() ragex.analyze_directory(vim.fn.getcwd()) end, "Analyze Directory" },
  c = { function() ragex.show_callers() end, "Find Callers" },
  r = {
    function()
      vim.ui.input({ prompt = "New name: " }, function(name)
        if name then
          ragex.rename_function(name)
        end
      end)
    end,
    "Rename Function",
  },
  R = {
    function()
      vim.ui.input({ prompt = "Old module: " }, function(old_name)
        if old_name then
          vim.ui.input({ prompt = "New module: " }, function(new_name)
            if new_name then
              ragex.rename_module(old_name, new_name)
            end
          end)
        end
      end)
    end,
    "Rename Module",
  },
  g = { 
    function()
      local result = ragex.graph_stats()
      if result and result.result then
        -- Unwrap MCP response
        local stats = result.result
        if stats.content and stats.content[1] and stats.content[1].text then
          local ok, parsed = pcall(vim.fn.json_decode, stats.content[1].text)
          if ok then
            stats = parsed
          end
        end
        
        -- Format stats for display
        local lines = {
          "# Graph Statistics",
          "",
          string.format("**Nodes**: %d", stats.node_count or 0),
          string.format("**Edges**: %d", stats.edge_count or 0),
          string.format("**Average Degree**: %.2f", stats.average_degree or 0),
          string.format("**Density**: %.4f", stats.density or 0),
          "",
          "## Node Types",
        }
        
        if stats.node_counts_by_type then
          for node_type, count in pairs(stats.node_counts_by_type) do
            table.insert(lines, string.format("- %s: %d", node_type, count))
          end
        end
        
        if stats.top_by_degree and #stats.top_by_degree > 0 then
          table.insert(lines, "")
          table.insert(lines, "## Top by Degree")
          for i, node in ipairs(stats.top_by_degree) do
            if i > 10 then break end
            table.insert(lines, string.format("- %s (in:%d, out:%d, total:%d)",
              node.node_id or "unknown",
              node.in_degree or 0,
              node.out_degree or 0,
              node.total_degree or 0))
          end
        end
        
        ragex.show_in_float("Ragex Graph Statistics", lines)
      else
        vim.notify("No graph statistics available", vim.log.levels.WARN)
      end
    end,
    "Graph Stats"
  },
  W = { function() ragex.watch_directory(vim.fn.getcwd()) end, "Watch Directory" },
  t = { function() ragex.toggle_auto_analyze() end, "Toggle Auto-Analysis" },
  -- Advanced Graph Algorithms
  b = { function() ragex.show_betweenness_centrality() end, "Betweenness Centrality" },
  o = { function() ragex.show_closeness_centrality() end, "Closeness Centrality" },
  n = { function() ragex.show_communities("louvain") end, "Detect Communities (Louvain)" },
  l = { function() ragex.show_communities("label_propagation") end, "Detect Communities (Label Prop)" },
  e = { 
    function()
      vim.ui.select({ "graphviz", "d3" }, {
        prompt = "Export format:",
      }, function(format)
        if format then
          local ext = format == "graphviz" and "dot" or "json"
          vim.ui.input({
            prompt = "Save as: ",
            default = vim.fn.getcwd() .. "/graph." .. ext,
          }, function(filepath)
            if filepath then
              ragex.export_graph_to_file(format, filepath)
            end
          end)
        end
      end)
    end,
    "Export Graph"
  },
}

-- Register Telescope commands for Ragex
vim.api.nvim_create_user_command("RagexSearch", ragex_telescope.ragex_search, {})
vim.api.nvim_create_user_command("RagexFunctions", ragex_telescope.ragex_functions, {})
vim.api.nvim_create_user_command("RagexModules", ragex_telescope.ragex_modules, {})
vim.api.nvim_create_user_command("RagexSearchWord", ragex_telescope.ragex_search_word, {})
vim.api.nvim_create_user_command("RagexToggleAuto", function() ragex.toggle_auto_analyze() end, {})

-- Add Ragex status to lualine
local function ragex_status()
  if ragex.config.enabled then
    return "  Ragex"
  end
  return ""
end

This should result in the following <leader>r update:

Captura de pantalla_20260102_100918

Installation

Prerequisites

  • Elixir 1.19 or later
  • Erlang/OTP 28 or later
  • Python 3.x (optional, for Python code analysis)
  • Node.JS (optional, for Javascript code analysis)
  • ~500MB RAM for embedding model (first run downloads ~90MB)

Build

cd ragex
mix deps.get
mix compile

Note: First compilation will take longer due to ML dependencies. The embedding model (~90MB) will download on first run and be cached at ~/.cache/huggingface/.

Demo

A comprehensive demo showcasing all Ragex features is available in examples/product_cart/.

The demo uses an intentionally mediocre e-commerce cart application to demonstrate:

  • Security vulnerability scanning (8+ issues detected)
  • Code complexity analysis (cyclomatic, cognitive, Halstead metrics)
  • Code smell detection (long functions, deep nesting, magic numbers)
  • Code duplication detection (Type I-IV clones)
  • Dead code analysis (4 unused functions)
  • Dependency and coupling analysis
  • Impact analysis and refactoring suggestions
  • AI-enhanced features (ValidationAI, AIPreview, AIRefiner, AIAnalyzer, AIInsights)

Quick Start:

cd examples/product_cart
./run_demo.sh

The demo generates 11 detailed reports showing:

  • 8 security vulnerabilities (2 critical, 3 high)
  • 18 code smells across 5 types
  • 52 lines of duplicated code (10% of codebase)
  • 28 lines of dead code (7% of codebase)
  • 8 prioritized refactoring suggestions
  • Expected improvement: 65% better maintainability

See Produce Cart’s README for full details and Product Cart’s DEMO for step-by-step walkthrough.

Usage

As an MCP Server

Run the server (it will listen on both stdin and socket):

./start_mcp.sh

Note: The stdio server is validated and production-ready.

Auto-Analyze Directories on Startup

You can configure Ragex to automatically analyze specific directories when it starts. Add to config/config.exs:

config :ragex, :auto_analyze_dirs, [
  "/opt/Proyectos/MyProject",
  "~/workspace/important-lib"
]

This pre-loads your frequently used codebases into the knowledge graph, making them immediately available for querying. See CONFIGURATION for details.

MCP Protocol Example

Initialize the server:

{"jsonrpc":"2.0","method":"initialize","params":{"clientInfo":{"name":"test-client","version":"1.0"}},"id":1}

List available tools:

{"jsonrpc":"2.0","method":"tools/list","id":2}

Analyze a file (with auto-detection):

{
  "jsonrpc": "2.0",
  "method": "tools/call",
  "params": {
    "name": "analyze_file",
    "arguments": {
      "path": "lib/ragex.ex"
    }
  },
  "id": 3
}

Or specify the language explicitly:

{
  "jsonrpc": "2.0",
  "method": "tools/call",
  "params": {
    "name": "analyze_file",
    "arguments": {
      "path": "script.py",
      "language": "python"
    }
  },
  "id": 3
}

Query the graph:

{
  "jsonrpc": "2.0",
  "method": "tools/call",
  "params": {
    "name": "query_graph",
    "arguments": {
      "query_type": "find_module",
      "params": {"name": "Ragex"}
    }
  },
  "id": 4
}

Development

Running Tests

mix test

Interactive Development

RAGEX_NO_SERVER=1 iex -S mix
# Analyze a file
{:ok, content} = File.read("lib/ragex.ex")
{:ok, analysis} = Ragex.Analyzers.Elixir.analyze(content, "lib/ragex.ex")

# Check graph stats, it’s expected to be empty for this single file
Ragex.stats()

MCP Tools Reference

Core Analysis Tools

analyze_file

Analyzes a source file and extracts code structure into the knowledge graph.

Parameters:

  • path (string, required): Path to the file
  • language (string, optional): Programming language - elixir, erlang, python, javascript, typescript, or auto (default: auto-detect from extension)
  • generate_embeddings (boolean, optional): Generate embeddings for semantic search (default: true)

analyze_directory

Batch analyzes all source files in a directory.

Parameters:

  • path (string, required): Directory path
  • language (string, optional): Language to filter files (default: auto-detect)
  • recursive (boolean, optional): Recursively analyze subdirectories (default: true)
  • generate_embeddings (boolean, optional): Generate embeddings (default: true)

query_graph

Queries the knowledge graph for code entities and relationships (symbolic search).

Parameters:

  • query_type (string, required): Type of query
    • find_module: Find a module by name
    • find_function: Find a function by module and name
    • get_calls: Get function call relationships
    • get_dependencies: Get module dependencies
  • params (object, required): Query-specific parameters

list_nodes

Lists all nodes in the knowledge graph with optional filtering.

Parameters:

  • node_type (string, optional): Filter by type (module, function, etc.)
  • limit (integer, optional): Maximum results (default: 100)

File Watching Tools

watch_directory

Automatically re-index files when they change.

Parameters:

  • path (string, required): Directory to watch

unwatch_directory

Stop watching a directory.

Parameters:

  • path (string, required): Directory to stop watching

list_watched

List all watched directories.

Parameters: None

Semantic Search Tools

semantic_search

Performs natural language code search using vector embeddings.

Parameters:

  • query (string, required): Natural language query (e.g., "function to parse JSON")
  • limit (integer, optional): Maximum results (default: 10)
  • threshold (number, optional): Minimum similarity score 0.0-1.0 (default: 0.7)
  • node_type (string, optional): Filter by type (module, function)
  • include_context (boolean, optional): Include caller/callee context (default: false)

Example:

{
  "query": "HTTP request handler",
  "limit": 5,
  "threshold": 0.75,
  "node_type": "function"
}

hybrid_search

Combines symbolic graph queries with semantic search for best results.

Parameters:

  • query (string, required): Search query
  • strategy (string, optional): Search strategy:
    • fusion (default): RRF fusion of both approaches
    • semantic_first: Semantic search then graph filtering
    • graph_first: Graph query then semantic ranking
  • limit (integer, optional): Maximum results (default: 10)
  • threshold (number, optional): Minimum similarity (default: 0.7)
  • graph_filter (object, optional): Optional symbolic constraints
  • include_context (boolean, optional): Include context (default: false)

Example:

{
  "query": "database connection",
  "strategy": "fusion",
  "limit": 10,
  "graph_filter": {"module": "DB"}
}

get_embeddings_stats

Returns ML model and vector store statistics.

Parameters: None

Returns:

  • Model information (name, dimensions, status)
  • Vector store metrics (total embeddings, by type)
  • Graph statistics (nodes, edges)

Code Editing Tools

edit_file

Safely edit a single file with automatic backup, validation, and atomic operations.

Parameters:

  • path (string, required): Path to the file to edit
  • changes (array, required): List of changes to apply
    • type (string): replace, insert, or delete
    • line_start (integer): Starting line number (1-indexed)
    • line_end (integer): Ending line number (for replace/delete)
    • content (string): New content (for replace/insert)
  • validate (boolean, optional): Validate syntax before applying (default: true)
  • create_backup (boolean, optional): Create backup before editing (default: true)
  • format (boolean, optional): Format code after editing (default: false)
  • language (string, optional): Explicit language for validation (auto-detected from extension)

Example:

{
  "path": "lib/my_module.ex",
  "changes": [
    {
      "type": "replace",
      "line_start": 10,
      "line_end": 15,
      "content": "def new_function do\n  :ok\nend"
    }
  ],
  "validate": true,
  "format": true
}

edit_files

Atomically edit multiple files with coordinated rollback on failure.

Parameters:

  • files (array, required): List of files to edit
    • path (string): Path to the file
    • changes (array): List of changes (same format as edit_file)
    • validate (boolean, optional): Override transaction-level validation
    • format (boolean, optional): Override transaction-level formatting
    • language (string, optional): Explicit language for this file
  • validate (boolean, optional): Validate all files before applying (default: true)
  • create_backup (boolean, optional): Create backups for all files (default: true)
  • format (boolean, optional): Format all files after editing (default: false)

Example:

{
  "files": [
    {
      "path": "lib/module_a.ex",
      "changes": [{"type": "replace", "line_start": 5, "line_end": 5, "content": "@version \"2.0.0\""}]
    },
    {
      "path": "lib/module_b.ex",
      "changes": [{"type": "replace", "line_start": 10, "line_end": 12, "content": "# Updated"}]
    }
  ],
  "validate": true,
  "format": true
}

validate_edit

Preview validation of changes without applying them.

Parameters:

  • path (string, required): Path to the file
  • changes (array, required): List of changes to validate
  • language (string, optional): Explicit language for validation

rollback_edit

Undo a recent edit by restoring from backup.

Parameters:

  • path (string, required): Path to the file to rollback
  • backup_id (string, optional): Specific backup to restore (default: most recent)

edit_history

Query backup history for a file.

Parameters:

  • path (string, required): Path to the file
  • limit (integer, optional): Maximum number of backups to return (default: 10)

refactor_code

Semantic refactoring operations using AST analysis and knowledge graph.

Parameters:

  • operation (string, required): Type of refactoring - rename_function or rename_module
  • params (object, required): Operation-specific parameters
    • For rename_function:
      • module (string): Module containing the function
      • old_name (string): Current function name
      • new_name (string): New function name
      • arity (integer): Function arity
    • For rename_module:
      • old_name (string): Current module name
      • new_name (string): New module name
  • scope (string, optional): module (same file only) or project (all files, default: project)
  • validate (boolean, optional): Validate before/after (default: true)
  • format (boolean, optional): Format code after (default: true)

Example - Rename Function:

{
  "operation": "rename_function",
  "params": {
    "module": "MyModule",
    "old_name": "old_function",
    "new_name": "new_function",
    "arity": 2
  },
  "scope": "project",
  "validate": true,
  "format": true
}

Example - Rename Module:

{
  "operation": "rename_module",
  "params": {
    "old_name": "OldModule",
    "new_name": "NewModule"
  },
  "validate": true
}

RAG (AI-Powered) Tools

rag_query

Query the codebase using Retrieval-Augmented Generation with AI assistance.

Parameters:

  • query (string, required): Natural language query about the codebase
  • limit (integer, optional): Maximum number of code snippets to retrieve (default: 10)
  • include_code (boolean, optional): Include full code snippets in context (default: true)
  • provider (string, optional): AI provider override (deepseek_r1)

Example:

{
  "query": "How does authentication work in this codebase?",
  "limit": 15,
  "include_code": true
}

Returns:

  • AI-generated response based on retrieved code context
  • Sources count and model information

rag_explain

Explain code using RAG with AI assistance and aspect-focused analysis.

Parameters:

  • target (string, required): File path or function identifier (e.g., MyModule.function/2)
  • aspect (string, optional): What to explain - purpose, complexity, dependencies, or all (default: all)

Example:

{
  "target": "Ragex.Graph.Store.add_node/3",
  "aspect": "complexity"
}

Returns:

  • AI-generated explanation based on code analysis
  • Related code context and dependencies

rag_suggest

Suggest code improvements using RAG with AI analysis.

Parameters:

  • target (string, required): File path or function identifier
  • focus (string, optional): Improvement focus - performance, readability, testing, security, or all (default: all)

Example:

{
  "target": "lib/ragex/editor/core.ex",
  "focus": "performance"
}

Returns:

  • AI-generated improvement suggestions
  • Code context and rationale

Configuration:

RAG tools require the DEEPSEEK_API_KEY environment variable:

export DEEPSEEK_API_KEY="sk-xxxxxxxxxxxxx"

Documentation

Cache Management

Ragex automatically caches embeddings for faster startup:

# View cache statistics
mix ragex.cache.stats

# Clear current project cache
mix ragex.cache.clear --current

# Clear all caches
mix ragex.cache.clear --all --force

Supported Languages

LanguageExtensionsParserStatus
Elixir.ex, .exsNative AST (Code.string_to_quoted)✓ Full
Erlang.erl, .hrlNative AST (:erl_scan, :erl_parse)✓ Full
Python.pyPython ast module (subprocess)✓ Full
JavaScript/TypeScript.js, .jsx, .ts, .tsx, .mjsRegex-based✗ Basic