View Source Boundary (boundary v0.10.4)
Definition of boundaries within the application.
A boundary is a named group of modules which can export some of its modules, and depend on other boundaries.
Boundary definitions can be used in combination with Mix.Tasks.Compile.Boundary
to restrain
cross-module dependencies. A few examples of what you can do with boundary include:
- Prevent invocations from the context layer to the web layer
- Prevent invocations from the web layer to internal context modules
- Prevent usage of Phoenix and Plug in the context layer
- Limit usage of Ecto in the web layer to only Ecto.Changeset
- Allow
:mix
modules to be used only at compile time
Quick example
The following code defines boundaries for a typical Phoenix based project generated with
mix phx.new
.
defmodule MySystem do
use Boundary, deps: [], exports: []
# ...
end
defmodule MySystemWeb do
use Boundary, deps: [MySystem], exports: [Endpoint]
# ...
end
defmodule MySystem.Application do
use Boundary, top_level?: true, deps: [MySystem, MySystemWeb]
# ...
end
These boundaries specify the allowed cross-boundary usage:
- Modules from
MySystemWeb
may use theMySystem
module, but not otherMySystem.*
modules. MySystem.Application
code may useMySystem
,MySystemWeb
, andMySystemWeb.Endpoint
modules.
To enforce these rules on project compilation, you need to include the compiler in mix.exs
:
defmodule MySystem.MixProject do
# ...
def project do
[
compilers: [:boundary] ++ Mix.compilers(),
# ...
]
end
# ...
end
See Mix.Tasks.Compile.Boundary
for more details on compilation warnings.
Defining a boundary
A boundary is defined via use Boundary
expression in the root module. For example, the context
boundary named MySystem
can be defined as follows:
defmodule MySystem do
use Boundary, opts
# ...
end
Module classification
Based on the existing definitions, modules are classified into boundaries. Each module can belong to at most one boundary. A module doesn't need to belong to a boundary, in which case we say that the module is unclassified.
Boundary membership is determined from the module name. In the previous example, we defined a
single boundary, called MySystem
. This boundary will contain the root module (MySystem
),
as well as all modules whose name starts with MySystem.
.
In addition, it's possible to extract some of the modules from a boundary into another boundary. For example:
defmodule MySystem do
use Boundary, opts
end
defmodule MySystem.Endpoint do
use Boundary, opts
end
See the "Nested boundaries" section for details.
Mix tasks
By convention, mix tasks have to reside in the Mix.Tasks
namespace, which makes it harder to
put them under the same boundary. To assist with this, boundary supports manual reclassification
of such modules.
The advised approach is to introduce the MySystem.Mix
boundary which can hold helper functions
required by the mix tasks. With such boundary in place, you can manually classify mix tasks as:
defmodule Mix.Tasks.SomeTask do
use Boundary, classify_to: MySystem.Mix
use Mix.Task
end
defmodule Mix.Tasks.AnotherTask do
use Boundary, classify_to: MySystem.Mix
use Mix.Task
end
This way, both modules will be considered as a part of the MySystem.Mix
boundary.
Note that manual classification is allowed only for mix tasks and protocol implementations (see the following section).
Protocol implementation
Consider the following protocol implementation:
defimpl String.Chars, for: MySchema, do: # ...
This code will generate the module String.Chars.MySchema
. Therefore, the module sits in a
completely different "namespace". In addition, the desired boundary of such module can vary from
one case to another. In some cases, a protocol implementation might be a UI concern, while in
others, it might be a domain concern.
For these reasons, calls from a protocol implementation are by default not checked. However, you can manually classify the protocol implementation, as follows:
defimpl String.Chars, for: MySchema do
use Boundary, classify_to: MySystem
# ...
end
In this case, the protocol implementation is considered to be a part of the MySystem
boundary,
and the code will be checked for cross-boundary calls.
Note that :classify_to
option is only allowed for protocol implementations and mix tasks.
Other modules can't be manually classified.
Exports
Exports are boundary modules which can be used by modules from other boundaries. A boundary
always exports its root module, and it may additionally export other modules, which can be
configured with the :exports
option:
defmodule MySystem do
use Boundary, exports: [User]
end
In this example, we're defining the MySystem
boundary which exports the modules MySystem
and MySystem.User
. All other modules of this boundary are considered to be internal, and
they may not be used by modules from other boundaries.
Mass exports
It's also possible to mass-export multiple modules with a single exports entry.
For example, let's say that we keep Ecto schemas under the MySystem.Schemas
namespace. Now we
want to export all of these modules except MySystem.Schemas.Base
which is a base module used
by our schemas. We could list each individual schema in the exports section but that becomes
tedious, and the use Boundary
expression might become quite long and noisy. Instead, we can
export all of these modules with the exports: [{Schemas, except: [Base]}, ...]
. This will
export all MySystem.Schemas.*
modules, except for MySystem.Schemas.Base
.
You can also export all modules of the boundary with use Boundary, exports: :all
. To exclude
some modules from the export list use, use Boundary, exports: {:all, except: [SomeMod, ...]}
.
Mass export is not advised in most situations. Prefer explicitly listing exported modules. If your export list is long, it's a possible indication of an overly fragmented interface. Consider instead consolidating the interface in the main boundary module, which would act as a facade. Alternatively, perhaps the boundary needs to be split.
However, cases such as Ecto schemas present a valid exception, since these modules are typically a part of the public context interface, since they are passed back and forth between the context and the interface layer (such as web).
Dependencies
Each boundary may depend on other boundaries. These dependencies are used to define allowed cross-boundary module usage. A module from another boundary may only be used if:
- The callee boundary is a direct dependency of the caller boundary.
- The callee boundary exports the used module.
For example:
defmodule MySystem do
use Boundary, exports: [User], deps: []
end
defmodule MySystemWeb do
use Boundary, exports: [], deps: [MySystem]
end
In this example we specify the following rules:
- Code from the
MySystem
boundary can't use any module from other boundaries. - Code from the
MySystemWeb
boundary may use exports of theMySystem
boundary (MySystem
andMySystem.User
).
Of course, in-boundary cross-module dependencies are always allowed (any module may use all other modules from the same boundary).
When listing deps and exports, a "grouping" syntax can also be used:
use Boundary, deps: [Foo.{Bar, Baz}]
External dependencies
By default, all dependencies on modules from other OTP applications are permitted. However, you can restrain such
dependencies by including boundaries from the external application. For example, let's say you want to limit the ecto
usage in the web tier to only Ecto.Changeset
. This can be specified as follows:
defmodule MySystemWeb do
use Boundary, deps: [Ecto.Changeset]
end
Boundary is able to use boundary definitions from an external application, if such exists. If an external application
doesn't define any boundary, you can still reference application modules. In such case, you're creating an implicit
boundary. This is exactly what we're doing in the previous example. Ecto doesn't define its own boundaries, but we
can still include Ecto.Changeset
in the deps list. This will create an implicit boundary of the same name which will
include all of the submodules like Ecto.Changeset.Foo
, or Ecto.Changeset.Bar.Baz
. An implicit boundary exports all
of its submodules. Note that you can't define implicit boundaries in applications which define their own boundaries.
The implicit boundaries are collected based on all deps of all boundaries in your application. For example, if one
boundary specifies Ecto.Query
as a dependency, while another references Ecto.Query.API
, then two boundaries are
defined, and the latter will not be a part of the former.
In some cases you may want to completely prohibit the usage of some library. However, bear in mind that by default calls to an external application are restricted only if the client boundary references at least one dep boundary from that application. To force boundary to always restrict calls to some application, you can include the application in the check apps list:
defmodule MySystem do
use Boundary, check: [apps: [:plug]], deps: []
end
The check apps list contains additional applications which are always checked. Any calls to given applications must
be explicitly allowed via the :deps
option.
The check list can contain an application name (atom), or a {app_name, call_mode}
tuple, where call_mode
is either
:runtime
or :compile
. If only app name is specified, then both, runtime and compile-time calls will be checked.
You can also set a list of default apps checked for every boundary in mix.exs:
defmodule MySystem.MixProject do
use Mix.Project
def project do
[
# ...
boundary: [
default: [
check: [apps: [{:mix, :runtime}]]
]
]
]
end
# ...
end
In the example above, we're explicitly checking all runtime mix calls, while compile-time calls won't be checked.
In addition, you can define boundary as :strict
:
defmodule MySystem do
use Boundary, type: :strict
end
With this setting, boundary will report all calls to all external applications which are not explicitly allowed via the
:dep
option. You can also configure the strict type globally in your mix.exs:
defmodule MySystem.MixProject do
use Mix.Project
def project do
[
# ...
boundary: [
default: [
type: :strict
]
]
]
end
# ...
end
At this point, all boundaries will be checked with the strict mode. If you want to override this for some boundaries,
you can do it with use Boundary, type: :relaxed
.
Note that restraining calls to the :elixir
, :boundary
, and pure Erlang applications, such as
:crypto
or :cowboy
, is currently not possible.
If you want to discover which external applications are used by your boundaries, you can use the helper mix task
Mix.Tasks.Boundary.FindExternalDeps
.
Compile-time dependencies
By default, a dependency allows calls at both, compile time and runtime. In some cases you may want to permit calls to
some dependency only at compile-time. A typical example are modules from the :mix
application. These modules are
not safe to be used at runtime. Limiting their usage to compile-time only can be done as follows:
# option 1: force check all runtime calls to mix
use Boundary, check: [{:mix, :runtime}]
# option 2: permit `Mix` implicit boundary at compile time only
use Boundary, deps: [{Mix, :compile}]
With such configuration, the following calls are allowed:
- Function invocations at compile time (i.e. outside of any function, or in
unquote(...)
). - Macro invocations anywhere in the code.
- Any invocations made from a public macro.
Note that you might have some modules which will require runtime dependency on mix, such as custom mix tasks. It's
advised to group such modules under a common boundary, such as MySystem.Mix
, and allow mix
as a runtime
dependency only in that boundary.
Finally, it's worth noting that it's not possible permitting some dependency only at runtime. If a dependency is allowed at runtime, then it can also be used at compile time.
Controlling checks
Occasionally you may need to relax the rules in some parts of the code.
One typical example is when boundary
is introduced to the existing, possibly large project, which has many complex
dependencies that can't be untangled trivially. In this case it may be difficult to satisfy all boundary constraints
immediately, and you may want to tolerate some violations.
Boundary supports two mechanisms for this: dirty xrefs and ignored checks.
A dirty xref is an invocation to another module that won't be checked by boundary. For example, suppose that in your
context layer you invoke MySystemWeb.Router.Helpers.some_url(...)
. If you don't have the time to clean up such
invocations immediately, you can add the module to the dirty_xrefs
list:
defmodule MySystem do
use Boundary,
# Invocations to these modules will not be checked.
dirty_xrefs: [MySystemWeb.Router.Helpers, ...]
end
In addition, you can tell boundary to avoid checking outgoing and/or incoming call for some boundary. This can be
controlled with the :check
. The default value is check: [in: true, out: true]
, which means that all incoming and
outgoing calls will be checked.
The in: false
setting will allow any boundary to use modules from this boundary. The out: false
setting will allow
this boundary to use any other boundary. If both options are set to false, boundary becomes ignored. These settings
can only be provided for top-level boundaries. If a boundary has some check disabled, it may not contain
sub-boundaries.
Ignoring checks can be useful for the test support modules. By introducing a top-level boundary for such modules (e.g.
MySystemTest
), and marking the in and out checks as false, you can effectively instruct boundary to avoid checking
the test support modules.
Alias references
Boundary can also check plain alias references (Foo.Bar
). This check is by default disabled. To enable it, you can
include check: [aliases: true]
in global or boundary options. An alias reference is only checked if it corresponds
to an existing module.
Nested boundaries
It is possible to define boundaries within boundaries. Nested boundaries allow you to further control the dependency graph inside the boundary, and make some in-boundary modules private to others.
Let's see this in an example. Suppose that we're building a Phoenix-powered blog engine. Our context layer,
BlogEngine
, exposes two modules, Accounts
and Articles
(note that BlogEngine.
prefix is omitted for brevity)
to the web tier:
defmodule BlogEngine do
use Boundary, exports: [Accounts, Articles]
end
defmodule BlogEngineWeb do
use Boundary, deps: [BlogEngine]
end
But beyond this, we want to further manage the dependencies inside the context. The context tier consists of the
modules Repo
, Articles
, Accounts
, and Accounts.Mailer
. We'd like to introduce the following constraints:
Articles
can useAccounts
(but not the other way around).- Both
Articles
andAccounts
can useRepo
, butRepo
can't use any other module. - Only the
Accounts
module can use the internalAccounts.Mailer
module.
Here's how we can do that:
defmodule BlogEngine.Repo do
use Boundary
end
defmodule BlogEngine.Articles do
use Boundary, deps: [BlogEngine.{Accounts, Repo}]
end
defmodule BlogEngine.Accounts do
use Boundary, deps: [BlogEngine.Repo]
end
Conceptually, we've built a boundary sub-tree inside BlogEngine
which looks as:
BlogEngine
|
+----Repo
|
+----Articles
|
+----Accounts
With the following dependencies:
Articles ----> Repo
| ^
v |
Accounts -------+
Root module
The root module of a sub-boundary plays a special role. This module can be exported by the parent boundary, and at the
same time it defines its own boundary. This can be seen in the previous example, where all three modules, Articles
,
Accounts
, and Repo
are exported by BlogEngine
, while at the same time these modules define their own
sub-boundaries.
This demonstrates the main purpose of sub-boundaries. They are a mechanism which allows you to control the
dependencies within the parent boundary. The parent boundary still gets to decide which of these sub-modules it will
export. In this example, Articles
and Accounts
are exported, while Repo
isn't. The sub-boundaries decide what
will they depend on themselves.
Exporting from sub-boundaries
The parent boundary may export modules that are exported by its sub-boundaries:
defmodule BlogEngine do
use Boundary, exports: [Accounts, Articles, Articles.Article]
end
defmodule BlogEngine.Articles do
use Boundary, deps: [BlogEngine.{Accounts, Repo}], exports: [Article]
end
In this example, BlogEngine
exports Articles.Article
which belongs to a sub-boundary.
If you want to export all exports of a sub-boundary, you can use the mass export syntax:
use Boundary, exports: [{Articles, []}, ...]
This will export the Articles
module together with all the modules exported by the articles
sub-boundary.
The parent boundary may not export a module that isn't exported by its owner boundary.
Dependencies
A sub-boundary inherits the deps from its ancestors by default. If you want to be more explicit, you can set the
sub-boundary's type to :strict
, in which case nothing is inherited by default, and sub-boundary must list its
deps. Ancestors deps are inherited up to the first :strict
ancestor.
When listing deps, a boundary may only depend on its direct siblings, its parent, and any dependency of its ancestors. In other words, a boundary inherits all the constraints of its ancestors, and it can't bring in any new deps that are not know to some ancestor.
A boundary can't depend on its descendants. However, the modules from the parent boundary are implicitly allowed to use the exports of the child sub-boundaries (but not of the descendants). This property holds even if boundary is declared as strict.
Cross-app dependencies
If the external lib defines its own boundaries, you can only depend on the top-level boundaries. If implicit boundaries are used (app doesn't define its own boundaries), all such boundaries are considered as top-level, and you can depend on any boundary from such app.
Promoting boundaries to top-level
It's possible to turn a nested boundary into a top-level boundary:
defmodule BlogEngine.Application do
use Boundary, top_level?: true
end
In this case BlogEngine.Application
is not considered to be a sub-boundary of BlogEngine
. This option is
discouraged because it introduces a mismatch between the namespace hierarchy, and the logical model. Conceptually,
BlogEngine.Application
is a sibling of BlogEngine
and BlogEngineWeb
, but in the namespace hierarchy it usually
resides under the context namespace (courtesy of generators such as mix new
and mix phx.new
).
An alternative is to rename the module to MySystemApp
:
defmodule MySystemApp do
use Application
use Boundary, deps: [MySystem, MySystemWeb]
end
That way the namespace hierarchy will match the logical model.
Summary
Functions
Returns definitions of all boundaries of the main app.
Returns the application of the given module.
Returns all boundary errors.
Returns the definition of the given boundary.
Returns the definition of the given boundary.
Returns definition of the boundary to which the given module belongs.
Returns the definition of the given boundary.
Returns the immediate parent of the boundary, or nil if the boundary is a top-level boundary.
Returns true if the module is an implementation of some protocol.
Returns true if given boundaries are siblings.
Returns the collection of unclassified modules.
Types
@type dep_error() :: %{name: name(), file: String.t(), line: pos_integer()}
@type error() :: {:empty_boundary, dep_error()} | {:ignored_dep, dep_error()} | {:cycle, [name()]} | {:unclassified_module, [module()]} | {:invalid_reference, reference_error()}
@type mode() :: :compile | :runtime
@type name() :: module()
@type ref() :: %{ to: module(), from: module(), from_function: {function :: atom(), arity :: non_neg_integer()} | nil, type: :call | :struct_expansion | :alias_reference, mode: :compile | :runtime, file: String.t(), line: non_neg_integer() }
@type t() :: %{ name: name(), ancestors: [name()], deps: [{name(), mode()}], exports: [export()], dirty_xrefs: MapSet.t(module()), check: %{ apps: [{atom(), mode()}], in: boolean(), out: boolean(), aliases: boolean() }, type: :strict | :relaxed, file: String.t(), line: pos_integer(), implicit?: boolean(), app: atom(), errors: [term()] }
@type view() :: %{ version: String.t(), main_app: Application.app(), classifier: classifier(), unclassified_modules: MapSet.t(module()), module_to_app: %{required(module()) => Application.app()}, external_deps: MapSet.t(module()), boundary_defs: %{required(module()) => %{required(atom()) => any()}}, protocol_impls: MapSet.t(module()) }
Functions
Returns definitions of all boundaries of the main app.
You shouldn't access the data in this result directly, as it may change significantly without warnings. Use exported functions of this module to acquire the information you need.
Returns the application of the given module.
@spec errors(view(), Enumerable.t()) :: [error()]
Returns all boundary errors.
Returns the definition of the given boundary.
Returns the definition of the given boundary.
Returns definition of the boundary to which the given module belongs.
Returns the definition of the given boundary.
Returns the immediate parent of the boundary, or nil if the boundary is a top-level boundary.
Returns true if the module is an implementation of some protocol.
Returns true if given boundaries are siblings.
Returns the collection of unclassified modules.