Interval (Interval v2.0.1)
View SourceInterval - A library for working with intervals in Elixir.
It is modelled after Postgres' range types. In cases where behaviour is ambiguous, the "correct" behaviour is whatever Postgres does.
An interval represents the points between two endpoints.
The interval can be empty. The empty interval is never contained in any other interval, and itself contains no points.
It can be left and/or right unbounded, in which case it contains all points in the unbounded direction. A fully unbounded interval contains all other intervals, except the empty interval.
Features
Supports intervals of stdlib types like DateTime
.
Also comes with support for Decimal
out of the box.
Automatically generates an Ecto.Type
for use with Postgres' range types
(see https://www.postgresql.org/docs/current/rangetypes.html)
You can very easily implement your own types into the interval
with the Interval.__using__/1
macro.
Built in intervals:
Interval.IntegerInterval
Interval.FloatInterval
Interval.DateInterval
Interval.DateTimeInterval
Interval.NaiveDateTimeInterval
Interval.DecimalInterval
Interval Notation
Throughout the documentation and comments, you'll see a notation for writing about intervals. As this library is inspired by the functionality in PostgreSQL's range types, we align ourselves with it's notation choice and borrow it (https://www.postgresql.org/docs/current/rangetypes.html)
This notation is also described in ISO 31-11.
[left-inclusive, right-inclusive]
(left-exclusive, right-exclusive)
[left-inclusive, right-exclusive)
(left-exclusive, right-inclusive]
empty
An unbounded interval is written by omitting the bound type and point:
,right-exclusive)
[left-inclusive,
When specifying bound types we sometimes leave the point out and just write the left and right bounds:
[]
()
(]
[)
(
)
[
]
Types of Interval
This library ships with a few different types of intervals. The built-in intervals are:
Interval.DateInterval
containing points of typeDate
Interval.DateTimeInterval
containing points of typeDateTime
Interval.NaiveDateTimeInterval
containing points of typeNaiveDateTime
Interval.FloatIntervalInterval
containing points of typeFloat
Interval.IntegerIntervalInterval
containing points of typeInteger
Interval.DecimalInterval
containing points of typeDecimal
(See https://hexdocs.pm/decimal/2.0.0)
However, you can quite easily implement an interval by implementing
the Interval.Behaviour
.
The easiest way to do so, is by using the Interval.__using__
macro:
defmodule MyInterval do
use Interval, type: MyType, discrete: false
end
You must implement a few functions defined in Interval.Behaviour
.
Once that's done, all operations available in the Interval
module (like
interesection, union, overlap etc) will work on your interval struct.
An obvious usecase for this would be to implement an interval that works with the https://hexdocs.pm/decimal library.
Discrete vs Continuous intervals
Depending on the behaviour you want from your interval, it is either said to be discrete or continuous.
A discrete interval represents a set of finite points (like integers). A continuous interval can be said to represent the infinite number of points between two endpoints (like an interval between two floats).
With discrete points, it is possible to define what the next and previous
point is, and we normalise these intervals to the bound type [)
.
The distinction between a discrete and continuous interval is important because the two behave slightly different in some of the library functions.
A discrete interval is adjacent to another discrete interval, if there is no points between the two interval. Contrast this to continuous intervals of real numbers where there is always an infinite number of real numbers between two distinct real numbers, and so continuous intervals are only said to be adjacent to each other if they include the same point, and one point is inclusive where the other is exclusive.
Where relevant, the function documentation will mention the differences between discrete and continuous intervals.
Create an Interval
See new/1
Normalization
When creating an interval through new/1
, it will get normalized
so that intervals that represents the same points,
are also represented in the same way in the struct.
This allows you to compare two intervals for equality by using ==
(and using pattern matching).
It is therefore not recommended to modify an interval struct directly, but instead do so by using one of the functions that modify the interval.
An interval is said to be empty if it spans zero points.
The normalized form of an empty interval is the special interval struct
where left and right is set to :empty
,
however a non-normalized empty struct will still correctly report
empty via the empty?/1
function.
Summary
Types
The bound type of an endpoint.
An endpoint of an interval.
A point in an interval.
Options are: "[]" | "()" | "(]" | "[)" | "[" | "]" | "(" | ")" | ""
Shorthand for t(any())
An interval struct, representing all points between two endpoints.
Functions
Define an interval struct of a specific point type.
Check if two intervals are adjacent.
Is the interval a
adjacent to b
, to the left of b
.
Is the interval a
adjacent to b
, to the right of b
.
Compare the left/right side of a
with the left/right side of b
Does a
contain b
?
Does a
contain the point x
?
Computes the difference between a
and b
by subtracting all points in b
from a
.
Is the interval empty?
Is the interval left-exclusive?
Is the interval right-exclusive?
Format the interval as a string
Is the interval left-inclusive?
Is the interval right-inclusive?
Compute the intersection between a
and b
.
Return the left point.
Create a new interval.
Does a
overlap with b
?
Parse a string into an interval.
Parse a string into an interval, raises Interval.IntervalParseError
if parsing fails.
Partition an interval a
into 3 intervals using x
Return the right point.
Is a
strictly left of b
.
Is a
strictly right of b
.
Check if the interval is left-unbounded.
Check if the interval is right-unbounded.
Computes the union of a
and b
.
Types
@type bound() :: :inclusive | :exclusive
The bound type of an endpoint.
@type endpoint(t) :: :empty | :unbounded | {bound(), t}
An endpoint of an interval.
Can be either
:empty
representing an empty interval (both endpoints will be empty):unbounded
representing an unbounded endpoint{bound(), t}
representing a bounded endpoint
@type point() :: any()
A point in an interval.
@type strbounds() :: String.t()
Options are: "[]" | "()" | "(]" | "[)" | "[" | "]" | "(" | ")" | ""
Shorthand for t(any())
An interval struct, representing all points between two endpoints.
The struct has two fields: left
and right
,
representing the left (lower) and right (upper) points
in the interval.
If either left or right is set to :empty
, the both must be
set to :empty
.
The specific struct type depends on the interval implementation,
but the left
and right
field is always present, all will
be manipulated by the Interval
module regardless of the interval
implementation.
Functions
Define an interval struct of a specific point type.
Support for Ecto.Type
and the Postgrex.Range
can be automatically
generated by specifying ecto_type: <type>
when use
ing.
Options
type
- The internal point type in this interval. requireddiscrete
- Is this interval discrete?default: false
Examples
defmodule MyInterval do
use Interval, type: MyType, discrete: false
end
Check if two intervals are adjacent.
Two intervals are adjacent if they do not overlap, and there are no points between them.
This function is a shorthand for adjacent_left_of(a, b) or adjacent_right_of?(a, b)
.
Is the interval a
adjacent to b
, to the left of b
.
a
is adjacent to b
left of b
, if a
and b
do not overlap,
and there are no points between a.right
and b.left
.
# a: [---)
# b: [---)
# r: true
# a: [---]
# b: [---]
# r: false (overlaps)
# a: (---)
# b: (---)
# r: false (points exist between a.right and b.left)
Examples
iex> adjacent_left_of?(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 2, right: 3))
true
iex> adjacent_left_of?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
false
iex> adjacent_left_of?(new(module: Interval.IntegerInterval, left: 3, right: 4), new(module: Interval.IntegerInterval, left: 1, right: 2))
false
iex> adjacent_left_of?(new(module: Interval.IntegerInterval, right: 2, bounds: "[]"), new(module: Interval.IntegerInterval, left: 3))
true
Is the interval a
adjacent to b
, to the right of b
.
a
is adjacent to b
right of b
, if a
and b
do not overlap,
and there are no points between a.left
and b.right
.
# a: [---)
# b: [---)
# r: true
# a: [---)
# b: [---]
# r: false (overlaps)
# a: (---)
# b: (---)
# r: false (points exist between a.left and b.right)
Examples
iex> adjacent_right_of?(new(module: Interval.IntegerInterval, left: 2, right: 3), new(module: Interval.IntegerInterval, left: 1, right: 2))
true
iex> adjacent_right_of?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
false
iex> adjacent_right_of?(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 3, right: 4))
false
iex> adjacent_right_of?(new(module: Interval.IntegerInterval, left: 3), new(module: Interval.IntegerInterval, right: 2, bounds: "]"))
true
Compare the left/right side of a
with the left/right side of b
Returns :lt | :gt | :eq
depending on a
s relationship to b
.
Other interval operations use this function as primitive.
Does a
contain b
?
a
contains b
of all points in b
is also in a
.
For an interval a
to contain an interval b
, all points
in b
must be contained in a
:
# a: [-------]
# b: [---]
# r: true
# a: [---]
# b: [---]
# r: true
# a: [---]
# b: (---)
# r: true
# a: (---)
# b: [---]
# r: false
# a: [---]
# b: [-------]
# r: false
This means that a.left
is less than b.left
(or unbounded), and a.right
is greater than
b.right
(or unbounded)
If a
and b
's point match, then b
is "in" a
if a
and b
share bound types.
E.g. if a.left
and b.left
matches, then a
contains b
if both a
and b
's
left
is inclusive or exclusive.
If either of b
endpoints are unbounded, then a
only contains b
if the corresponding endpoint in a
is also unbounded.
Examples
iex> contains?(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 1, right: 2))
true
iex> contains?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 3))
true
iex> contains?(new(module: Interval.IntegerInterval, left: 2, right: 3), new(module: Interval.IntegerInterval, left: 1, right: 4))
false
iex> contains?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 1, right: 2))
true
iex> contains?(new(module: Interval.IntegerInterval, left: 1, right: 2, bounds: "()"), new(module: Interval.IntegerInterval, left: 1, right: 3))
false
iex> contains?(new(module: Interval.IntegerInterval, right: 1), new(module: Interval.IntegerInterval, left: 0, right: 1))
true
Does a
contain the point x
?
Examples
iex> contains_point?(new(module: Interval.IntegerInterval, left: 1, right: 2), 0)
false
iex> contains_point?(new(module: Interval.IntegerInterval, left: 1, right: 2), 1)
true
Computes the difference between a
and b
by subtracting all points in b
from a
.
b
must not be contained in a
in such a way that the difference would not be a single interval.
Examples:
Discrete:
# a: [-----)
# b: [-----)
# c: [---)
iex> difference(Interval.IntegerInterval.new(1, 4), Interval.IntegerInterval.new(3, 5))
Interval.IntegerInterval.new(1, 3)
# a: [-----)
# b: [-----)
# c: [---)
iex> difference(Interval.IntegerInterval.new(3, 5), Interval.IntegerInterval.new(1, 4))
Interval.IntegerInterval.new(4, 5)
Continuous:
# a: [------)
# b: [-----)
# c: [---)
iex> difference(Interval.FloatInterval.new(1.0, 4.0), Interval.FloatInterval.new(3.0, 5.0))
Interval.FloatInterval.new(1.0, 3.0)
# a: [-----)
# b: (-----)
# c: [---]
iex> difference(Interval.FloatInterval.new(1.0, 4.0), Interval.FloatInterval.new(3.0, 5.0, "()"))
Interval.FloatInterval.new(1.0, 3.0, "[]")
Is the interval empty?
An empty interval is an interval that represents no points. Any interval containing no points is considered empty.
An unbounded interval is never empty.
For continuous points, the interval is empty when the left and right points are identical, and the point is not included in the interval.
For discrete points, the interval is empty when the left and right point isn't inclusive, and there are no points between the left and right point.
Examples
iex> empty?(new(module: Interval.IntegerInterval, left: 0, right: 0))
true
iex> empty?(new(module: Interval.FloatInterval, left: 1.0))
false
iex> empty?(new(module: Interval.IntegerInterval, left: 1, right: 2))
false
Is the interval left-exclusive?
The interval is left-exclusive if the left endpoint value is excluded from the interval.
Note
Discrete intervals (like Interval.IntegerInterval
and Interval.DateInterval
) are always normalized
to be left-inclusive right-exclusive ([)
).
iex> exclusive_left?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[]"))
false
iex> exclusive_left?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "(]"))
true
iex> exclusive_left?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "()"))
true
Is the interval right-exclusive?
The interval is right-exclusive if the right endpoint value is excluded from the interval.
Note
Discrete intervals (like Interval.IntegerInterval
and Interval.DateInterval
) are always normalized
to be left-inclusive right-exclusive ([)
).
iex> exclusive_right?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[]"))
false
iex> exclusive_right?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[)"))
true
iex> exclusive_right?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "()"))
true
Format the interval as a string
Is the interval left-inclusive?
The interval is left-inclusive if the left endpoint value is included in the interval.
Note
Discrete intervals (like Interval.IntegerInterval
and Interval.DateInterval
) are always normalized
to be left-inclusive right-exclusive ([)
).
iex> inclusive_left?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[]"))
true
iex> inclusive_left?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[)"))
true
iex> inclusive_left?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "()"))
false
Is the interval right-inclusive?
The interval is right-inclusive if the right endpoint value is included in the interval.
Note
Discrete intervals (like Interval.IntegerInterval
and Interval.DateInterval
) are always normalized
to be left-inclusive right-exclusive ([)
).
iex> inclusive_right?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[]"))
true
iex> inclusive_right?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "[)"))
false
iex> inclusive_right?(new(module: Interval.FloatInterval, left: 1.0, right: 2.0, bounds: "()"))
false
Compute the intersection between a
and b
.
The intersection contains all of the points that are both in a
and b
.
If either a
or b
are empty, the returned interval will be empty.
# a: [----]
# b: [----]
# r: [-]
# a: (----)
# b: (----)
# r: (-)
# a: [----)
# b: [----)
# r: [-)
Examples:
Discrete:
# a: [----)
# b: [----)
# c: [-)
iex> intersection(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
new(module: Interval.IntegerInterval, left: 2, right: 3)
Continuous:
# a: [----)
# b: [----)
# c: [-)
iex> intersection(new(module: Interval.FloatInterval, left: 1.0, right: 3.0), new(module: Interval.FloatInterval, left: 2.0, right: 4.0))
new(module: Interval.FloatInterval, left: 2.0, right: 3.0)
# a: (----)
# b: (----)
# c: (-)
iex> intersection(
...> new(module: Interval.FloatInterval, left: 1.0, right: 3.0, bounds: "()"),
...> new(module: Interval.FloatInterval, left: 2.0, right: 4.0, bounds: "()")
...> )
new(module: Interval.FloatInterval, left: 2.0, right: 3.0, bounds: "()")
# a: [-----)
# b: [-------
# c: [---)
iex> intersection(new(module: Interval.FloatInterval, left: 1.0, right: 3.0), new(module: Interval.FloatInterval, left: 2.0))
new(module: Interval.FloatInterval, left: 2.0, right: 3.0)
Return the left point.
This function always returns nil when no point exist.
Use the functions empty?/1
, inclusive_left?/1
and unbounded_left?/1
to check for the meaning of the point.
Example
iex> left(new(module: Interval.IntegerInterval, left: 1, right: 2))
1
Create a new interval.
Options
left
The left (or lower) endpoint value of the interval (default::unbounded
)right
The right (or upper) endpoint value of the interval (default::unbounded
)bounds
The bound mode to use (default:"[)"
)empty
If set totrue
, the interval will be empty (default:false
)module
The interval implementation to use. When callingnew/1
from anInterval.Behaviour
this is inferred.
Specifying left
or right
as nil
will be interpreted as :unbounded
.
The endpoint will also be considered unbounded if the bounds
explicitly sets it as unbounded.
Specifying left
or right
as :empty
will create an empty interval.
Bounds
The bounds
options contains the left and right bound mode to use.
The bound can be inclusive, exclusive or unbounded.
The following valid bound values are supported:
"[)"
left-inclusive, right-exclusive (default)"(]"
left-exclusive, right-inclusive"[]"
left-inclusive, right-inclusive"()"
left-exclusive, right-exclusive")"
left-unbounded, right-exclusive"]"
left-unbounded, right-inclusive"("
left-exclusive, right-unbounded"["
left-inclusive, right-unbounded
Examples
iex> new(module: Interval.IntegerInterval)
iex> new(module: Interval.IntegerInterval, empty: true)
iex> new(module: Interval.IntegerInterval, left: 1)
iex> new(module: Interval.IntegerInterval, left: 1, right: 1, bounds: "[]")
iex> new(module: Interval.IntegerInterval, left: 10, right: 20, bounds: "()")
Does a
overlap with b
?
a
overlaps with b
if any point in a
is also in b
.
# a: [---)
# b: [---)
# r: true
# a: [---)
# b: [---)
# r: false
# a: [---]
# b: [---]
# r: true
# a: (---)
# b: (---)
# r: false
# a: [---)
# b: [---)
# r: false
Examples
# [--a--)
# [--b--)
iex> overlaps?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
true
# [--a--)
# [--b--)
iex> overlaps?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 3, right: 5))
false
# [--a--]
# [--b--]
iex> overlaps?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
true
# (--a--)
# (--b--)
iex> overlaps?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 3, right: 5))
false
# [--a--)
# [--b--)
iex> overlaps?(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 3, right: 4))
false
Parse a string into an interval.
Parse a string into an interval, raises Interval.IntervalParseError
if parsing fails.
Partition an interval a
into 3 intervals using x
:
- The interval with all points from
a
wherea
<x
- The interval with
x
- The interval with all points from
a
wherea
>x
If x
is not in a
this function returns an empty list.
Note: Since 2.0.0, x
can be a point or an interval.
When x
is a point, the middle interval will be an interval such that [x,x]
.
If there are no points in a to the left of x
, an empty interval is returned for the left side.
The same of course applies to the right side of x
.
Examples
iex> partition(Interval.IntegerInterval.new(1, 5, "[]"), 3)
[
Interval.IntegerInterval.new(1, 3, "[)"),
Interval.IntegerInterval.new(3, 3, "[]"),
Interval.IntegerInterval.new(3, 5, "(]")
]
iex> partition(Interval.IntegerInterval.new(1, 5), -10)
[]
iex> partition(Interval.IntegerInterval.new(1, 6), Interval.IntegerInterval.new(3, 4))
[
Interval.IntegerInterval.new(1, 3, "[)"),
Interval.IntegerInterval.new(3, 4, "[)"),
Interval.IntegerInterval.new(4, 6, "[)")
]
iex> partition(Interval.FloatInterval.new(1.0, 6.0), Interval.FloatInterval.new(1.0, 3.0, "[]"))
[
Interval.FloatInterval.new(1.0, 1.0, "[)"),
Interval.FloatInterval.new(1.0, 3.0, "[]"),
Interval.FloatInterval.new(3.0, 6.0, "()")
]
Return the right point.
This function always returns nil when no point exist.
Use the functions empty?/1
, inclusive_right?/1
and unbounded_right?/1
to check for the meaning of the point.
Example
iex> right(new(module: Interval.IntegerInterval, left: 1, right: 2))
2
Is a
strictly left of b
.
a
is strictly left of b
if no point in a
is in b
,
and all points in a
is left (<) of all points in b
.
Examples
# a: [---)
# b: [---)
# r: true
# a: [---)
# b: [---)
# r: true
# a: [---)
# b: [---)
# r: false (overlaps)
iex> strictly_left_of?(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 3, right: 4))
true
iex> strictly_left_of?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
false
iex> strictly_left_of?(new(module: Interval.IntegerInterval, left: 3, right: 4), new(module: Interval.IntegerInterval, left: 1, right: 2))
false
Is a
strictly right of b
.
a
is strictly right of b
if no point in a
is in b
,
and all points in a
is right (>) of all points in b
.
Examples
# a: [---)
# b: [---)
# r: true
# a: [---)
# b: [---)
# r: true
# a: [---)
# b: [---)
# r: false (overlaps)
iex> strictly_right_of?(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 3, right: 4))
false
iex> strictly_right_of?(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
false
iex> strictly_right_of?(new(module: Interval.IntegerInterval, left: 3, right: 4), new(module: Interval.IntegerInterval, left: 1, right: 2))
true
Check if the interval is left-unbounded.
The interval is left-unbounded if all points left of the right bound is included in this interval.
Examples
iex> unbounded_left?(new(module: Interval.IntegerInterval))
true
iex> unbounded_left?(new(module: Interval.IntegerInterval, right: 2))
true
iex> unbounded_left?(new(module: Interval.IntegerInterval, left: 1, right: 2))
false
Check if the interval is right-unbounded.
The interval is right-unbounded if all points right of the left bound is included in this interval.
Examples
iex> unbounded_right?(new(module: Interval.IntegerInterval, right: 1))
false
iex> unbounded_right?(new(module: Interval.IntegerInterval))
true
iex> unbounded_right?(new(module: Interval.IntegerInterval, left: 1))
true
Computes the union of a
and b
.
The union contains all of the points that are either in a
or b
.
If either a
or b
are empty, the returned interval will be the non-empty interval.
# a: [---)
# b: [---)
# r: [-----)
Examples
# [--A--)
# [--B--)
# [----C----)
iex> union(new(module: Interval.IntegerInterval, left: 1, right: 3), new(module: Interval.IntegerInterval, left: 2, right: 4))
new(module: Interval.IntegerInterval, left: 1, right: 4)
# [-A-)
# [-B-)
# [---C---)
iex> union(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 2, right: 3))
new(module: Interval.IntegerInterval, left: 1, right: 3)
iex> union(new(module: Interval.IntegerInterval, left: 1, right: 2), new(module: Interval.IntegerInterval, left: 3, right: 4))
** (Interval.IntervalOperationError) cannot union non-overlapping non-adjacent intervals as the result would be non-contiguous