Justify (justify v1.2.0)

Justify makes it easy to validate unstructured data.

Inspired heavily by Ecto.Changeset, Justify allows you to pipe a plain map into a series of validation functions using a simple and familiar API. No schemas or casting required.

Example

dataset =
  %{email: "madebyanthony"}
  |> Justify.validate_required(:email)
  |> Justify.validate_format(:email, ~r/S+@S+/)

dataset.errors #=> [email: {"has invalid format", validation: :format}]
dataset.valid? #=> false

Each validation function will return a Justify.Dataset struct which can be passed into the next function. If a validation error is encountered the dataset will be marked as invalid and an error will be added to the struct.

Custom Validations

You can provide your own custom validations using the Justify.add_error/4 function.

Example

defmodule MyValidator do
  def validate_color(data, field, color) do
    dataset = Justify.Dataset.new(data)

    value = Map.get(dataset.data, :field)

    if value == color do
      dataset
    else
      Justify.add_error(dataset, field, "wrong color", validation: :color)
    end
  end
end

Your custom validation can be used as part of a validation pipeline.

Example

dataset =
  %{color: "brown"}
  |> Justify.validation_required(:color)
  |> MyValidator.validate_color(:color, "green")

dataset.errors #=> [color: {"wrong color", validation: :color}]
dataset.valid? #=> false

Supported Validations

Link to this section Summary

Functions

Adds an error to the dataset.

Validates the given field has a value of true.

Validates the value of a given field matches it's confirmation field.

Applies a validator function to a field containing an embedded value.

Validates the value for the given field is not contained within the provided enumerable.

Validates the value of the given field matches the provided format.

Validates the value for the given field is contained within the provided enumerable.

Validates the length of a string or list.

Validates that one or more fields has a value.

Validates that the value of a field is a specific type.

Link to this section Types

Specs

type_t() ::
  :boolean | :float | :integer | :non_neg_integer | :pos_integer | :string

Link to this section Functions

Link to this function

add_error(dataset, field, message, keys \\ [])

Specs

Adds an error to the dataset.

An optional keyword list can be used to provide additional contextual information about the error.

Link to this function

validate_acceptance(dataset, field, opts \\ [])

Specs

validate_acceptance(map(), atom(), Keyword.t()) :: Justify.Dataset.t()

Validates the given field has a value of true.

Options

  • :message - error message, defaults to "must be accepted"
Link to this function

validate_confirmation(dataset, field, opts \\ [])

Specs

validate_confirmation(map(), atom(), Keyword.t()) :: Justify.Dataset.t()

Validates the value of a given field matches it's confirmation field.

By default, the field will be checked against a field with the same name but appended with _confirmation. It’s possible to provide a custom field by providing a value to the :confirmation_field option.

Note that if the confirmation field is nil or missing, by default, an error will not be added. You can specify that the confirmation field is required in the options (see below).

Options

  • :confirmation_field - name of the field to validate against
  • :message - error message, defaults to "does not match"
  • :required? - whether the confirmation field must contain a value
Link to this function

validate_embed(dataset, field, validator)

Specs

validate_embed(map(), atom(), (... -> any())) :: Justify.Dataset.t()

Applies a validator function to a field containing an embedded value.

An embedded value can be either a map or a list of maps.

Example

validator = fn(metadata) -> Justify.validate_required(metadata, :key) end

data = %{metadata: [%{value: "a value"}]}

validate_embed(data, :metadata, validator)
#> %Justify.Dataset{errors: [metadata: [[key: {"can't be blank", validation: :required}]]], valid?: false}
Link to this function

validate_exclusion(dataset, field, enum, opts \\ [])

Specs

validate_exclusion(map(), atom(), Enum.t(), Keyword.t()) :: Justify.Dataset.t()

Validates the value for the given field is not contained within the provided enumerable.

Options

  • :message - error message, defaults to "is reserved"
Link to this function

validate_format(dataset, field, format, opts \\ [])

Specs

validate_format(map(), atom(), Regex.t(), Keyword.t()) :: Justify.Dataset.t()

Validates the value of the given field matches the provided format.

Options

  • :message - error message, defaults to "has invalid format"
Link to this function

validate_inclusion(dataset, field, enum, opts \\ [])

Specs

validate_inclusion(map(), atom(), Enum.t(), Keyword.t()) :: Justify.Dataset.t()

Validates the value for the given field is contained within the provided enumerable.

Options

  • :message - error message, defaults to "is invalid"
Link to this function

validate_length(dataset, field, opts)

Specs

validate_length(map(), atom(), Keyword.t()) :: Justify.Dataset.t()

Validates the length of a string or list.

Options

  • :count - how to calculate the length of a string. Must be one of
           `:codepoints`, `:graphemes` or `:bytes`. Defaults to
           `:graphemes`.
  • :is - the exact length match
  • :min - match a length greater than or equal to
  • :max - match a length less than or equal to
  • :message - error message, defaults to one of the following variants:
    • for strings
      • “should be %{count} character(s)”
      • “should be at least %{count} character(s)”
      • “should be at most %{count} character(s)”
    • for binary
      • “should be %{count} byte(s)”
      • “should be at least %{count} byte(s)”
      • “should be at most %{count} byte(s)”
    • for lists
      • “should have %{count} item(s)”
      • “should have at least %{count} item(s)”
      • “should have at most %{count} item(s)”
Link to this function

validate_required(dataset, fields, opts \\ [])

Specs

validate_required(map(), atom() | [atom()], Keyword.t()) :: Justify.Dataset.t()

Validates that one or more fields has a value.

Options

  • :message - error message, defaults to "must be accepted"
  • :trim? - remove whitespace before validating, defaults to true
Link to this function

validate_type(dataset, field, type, opts \\ [])

Specs

validate_type(map(), atom(), type_t(), Keyword.t()) :: Justify.Dataset.t()

Validates that the value of a field is a specific type.

Supported types:

  • :boolean
  • :float
  • :integer
  • :non_neg_integer
  • :pos_integer
  • :string

Options

  • :message - error message, defaults to "has invalid type"