Frequently-Asked Questions
This is a collection of questions that often come up as people are getting started with Nerves. If you tried to go through the Getting Started guide or some of the example projects and got stuck, hopefully one of the following answers will help. If not, please let us know in the #nerves channel on the Elixir-Lang Slack, or create an Issue or Pull Request to improve this documentation.
Using a USB Serial Console
By default on the Raspberry Pi family of targets (except for the Raspberry Pi Zero), the iex
console is displayed on the screen attached to the HDMI port, which tends to be easier for new people because they can simply connect their target device to a monitor or TV.
For troubleshooting start-up issues and for more advanced development workflows, it’s often desirable to connect from your development host to the target using a serial port, for example using the popular FTDI Cable.
This allows you to interact with the console of the target device using a terminal emulator (like screen
) on your development host.
To override the default, you need to locate the erlinit.config
for the system you’re using and modify it to replace the -c
option to control the console.
You can figure out what the correct value is by referring to the hardware description table in the README of your target’s system repository.
For example, for the Raspberry Pi 3 target, you can find the hardware description README here and the default erlinit.config
here.
Download the default
erlinit.config
file from the system repository for your target.Place it in your project folder under
rootfs_overlay/etc/erlinit.config
.Modify the
-c
console setting to match the value shown in theUART
row of the hardware description table (rpi3
example shown):# rootfs_overlay/etc/erlinit.config ... # Specify the UART port that the shell should use. #-c tty1 -c ttyS0
Configure your project to replace this file in your firmware.
# config/config.exs use Mix.Config config :nerves, :firmware, rootfs_overlay: "rootfs_overlay"
Connect your USB serial cable to the desired UART pins (per the I/O pin-out for your particular hardware).
On your development host, connect to the serial console.
- On Linux and Mac OS, use
screen /dev/tty<device>
. You may need to specify the baud rate as well, for example:screen /dev/tty<device> 115200
. - On Windows, use the
Serial
option to connect toCOM<device>
.
- On Linux and Mac OS, use
Change Behavior on BEAM Failure
Similar to the previous question, we have chosen to have the device default to halting on certain kinds of failures that cause the Erlang VM to crash. This allows you to more easily read the error and diagnose the problem during development.
For a production deployment, it’s recommended that you change the behavior to restart on failure instead. That way, in the unlikely event that your application crashes, the entire device will reload in a known-good state and continue to operate.
This setting is also configured using the erlinit.config
file described above.
To have the device restart instead of hang on failure, make a copy of the erlinit.config
file and make sure the --hang-on-exit
option is commented out.
# Uncomment to hang the board rather than rebooting when Erlang exits
#--hang-on-exit
You can also have the device drop into a shell when the Erlang VM crashes, allowing you to troubleshoot at the Linux OS level.
# Optionally run a program if the Erlang VM exits
#--run-on-exit /bin/sh
Platform-Specific Hardware Support
Some target hardware has particular features that can be used from your application, but they’re not covered in the general Nerves documentation. In general, platform-specific features will be documented in the target’s system documentation. You may also find what you need by looking at the community-maintained list of libraries that work well with Nerves.
If you still don’t see what you’re looking for, please let us know in the #nerves channel on the Elixir-Lang Slack, or create an Issue or Pull Request to the relevant nerves_system-<target>
repository.