# View Source Nx.Defn.Kernel (Nx v0.5.2)

All imported functionality available inside `defn`

blocks.

This module can be used in `defn`

.

# Link to this section Summary

## Functions

Element-wise bitwise AND operation.

Element-wise power operator.

Element-wise multiplication operator.

Element-wise unary plus operator.

Element-wise addition operator.

Element-wise unary plus operator.

Element-wise subtraction operator.

Creates the full-slice range `0..-1//1`

.

Builds a range.

Builds a range with step.

Element-wise division operator.

Element-wise inequality operation.

Element-wise less than operation.

Element-wise left shift operation.

Element-wise less-equal operation.

Concatenates two strings.

Element-wise equality operation.

Element-wise greater than operation.

Element-wise greater-equal operation.

Element-wise right shift operation.

Reads a module attribute at compilation time.

Defines an alias, as in `Kernel.SpecialForms.alias/2`

.

Element-wise logical AND operation.

Asserts the keyword list has the given keys.

Attaches a token to an expression. See `hook/3`

.

Pattern matches the result of `expr`

against the given clauses.

Evaluates the expression corresponding to the first clause that evaluates to a truthy value.

Creates a token for hooks. See `hook/3`

.

Defines a custom gradient for the given expression.

Element-wise quotient operator.

Gets the element at the zero-based index in tuple.

Shortcut for `hook/3`

.

Defines a hook.

Shortcut for `hook_token/4`

.

Defines a hook with an existing token. See `hook/3`

.

Provides if/else expressions.

Imports functions and macros into the current scope,
as in `Kernel.SpecialForms.import/2`

.

Converts the given expression into a string.

Ensures the first argument is a `keyword`

with the given
keys and default values.

Element-wise maximum operation.

Element-wise minimum operation.

Element-wise logical NOT operation.

Element-wise logical OR operation.

Prints the given expression to the terminal.

Prints the value at runtime to the terminal.

Raises a runtime exception with the given `message`

.

Raises an `exception`

with the given `arguments`

.

Element-wise remainder operation.

Requires a module in order to use its macros, as in `Kernel.SpecialForms.require/2`

.

Rewrites the types of `expr`

recursively according to `opts`

Stops computing the gradient for the given expression.

Pipes `value`

to the given `fun`

and returns the `value`

itself.

Pipes `value`

into the given `fun`

.

Defines a `while`

loop.

Pipes the argument on the left to the function call on the right.

Element-wise bitwise OR operation.

Element-wise bitwise not operation.

# Link to this section Functions

Element-wise bitwise AND operation.

Only integer tensors are supported.
It delegates to `Nx.bitwise_and/2`

(supports broadcasting).

##
examples

Examples

```
defn and_or(a, b) do
{a &&& b, a ||| b}
end
```

Element-wise power operator.

It delegates to `Nx.pow/2`

(supports broadcasting).

##
examples

Examples

```
defn pow(a, b) do
a ** b
end
```

Element-wise multiplication operator.

It delegates to `Nx.multiply/2`

(supports broadcasting).

##
examples

Examples

```
defn multiply(a, b) do
a * b
end
```

Element-wise unary plus operator.

Simply returns the given argument.

##
examples

Examples

```
defn plus_and_minus(a) do
{+a, -a}
end
```

Element-wise addition operator.

It delegates to `Nx.add/2`

(supports broadcasting).

##
examples

Examples

```
defn add(a, b) do
a + b
end
```

Element-wise unary plus operator.

It delegates to `Nx.negate/1`

.

##
examples

Examples

```
defn plus_and_minus(a) do
{+a, -a}
end
```

Element-wise subtraction operator.

It delegates to `Nx.subtract/2`

(supports broadcasting).

##
examples

Examples

```
defn subtract(a, b) do
a - b
end
```

Creates the full-slice range `0..-1//1`

.

This function returns a range with the following properties:

When enumerated, it is empty

When used as a

`slice`

, it returns the sliced element as is

##
examples

Examples

```
iex> t = Nx.tensor([1, 2, 3])
iex> t[..]
#Nx.Tensor<
s64[3]
[1, 2, 3]
>
```

Builds a range.

Ranges are inclusive and both sides must be integers.

The step of the range is computed based on the first and last values of the range.

##
examples

Examples

```
iex> t = Nx.tensor([1, 2, 3])
iex> t[1..2]
#Nx.Tensor<
s64[2]
[2, 3]
>
```

Builds a range with step.

Ranges are inclusive and both sides must be integers.

##
examples

Examples

```
iex> t = Nx.tensor([1, 2, 3])
iex> t[1..2//1]
#Nx.Tensor<
s64[2]
[2, 3]
>
```

Element-wise division operator.

It delegates to `Nx.divide/2`

(supports broadcasting).

##
examples

Examples

```
defn divide(a, b) do
a / b
end
```

Element-wise inequality operation.

It delegates to `Nx.not_equal/2`

.

##
examples

Examples

```
defn check_inequality(a, b) do
a != b
end
```

Element-wise less than operation.

It delegates to `Nx.less/2`

.

##
examples

Examples

```
defn check_less_than(a, b) do
a < b
end
```

Element-wise left shift operation.

Only integer tensors are supported.
It delegates to `Nx.left_shift/2`

(supports broadcasting).

##
examples

Examples

```
defn shift_left_and_right(a, b) do
{a <<< b, a >>> b}
end
```

Element-wise less-equal operation.

It delegates to `Nx.less_equal/2`

.

##
examples

Examples

```
defn check_less_equal(a, b) do
a <= b
end
```

Concatenates two strings.

Equivalent to `Kernel.<>/2`

.

Element-wise equality operation.

It delegates to `Nx.equal/2`

.

##
examples

Examples

```
defn check_equality(a, b) do
a == b
end
```

Element-wise greater than operation.

It delegates to `Nx.greater/2`

.

##
examples

Examples

```
defn check_greater_than(a, b) do
a > b
end
```

Element-wise greater-equal operation.

It delegates to `Nx.greater_equal/2`

.

##
examples

Examples

```
defn check_greater_equal(a, b) do
a >= b
end
```

Element-wise right shift operation.

Only integer tensors are supported.
It delegates to `Nx.right_shift/2`

(supports broadcasting).

##
examples

Examples

```
defn shift_left_and_right(a, b) do
{a <<< b, a >>> b}
end
```

Reads a module attribute at compilation time.

It is useful to inject code constants into `defn`

.
It delegates to `Kernel.@/1`

.

##
examples

Examples

```
@two_per_two Nx.tensor([[1, 2], [3, 4]])
defn add_2x2_attribute(t), do: t + @two_per_two
```

Defines an alias, as in `Kernel.SpecialForms.alias/2`

.

An alias allows you to refer to a module using its aliased name. For example:

```
defn some_fun(t) do
alias Math.Helpers, as: MH
MH.fft(t)
end
```

If the `:as`

option is not given, the alias defaults to
the last part of the given alias. For example,

`alias Math.Helpers`

is equivalent to:

`alias Math.Helpers, as: Helpers`

Finally, note that aliases define outside of a function also apply to the function, as they have lexical scope:

```
alias Math.Helpers, as: MH
defn some_fun(t) do
MH.fft(t)
end
```

Element-wise logical AND operation.

Zero is considered false, all other numbers are considered true.

It delegates to `Nx.logical_and/2`

(supports broadcasting).

##
examples

Examples

```
defn and_or(a, b) do
{a and b, a or b}
end
```

Asserts the keyword list has the given keys.

If it succeeds, it returns the given keyword list. Raises an error otherwise.

##
examples

Examples

To assert the tensor is a scalar, you can pass the empty tuple `shape`

:

```
iex> assert_keys([one: 1, two: 2], [:one, :two])
[one: 1, two: 2]
```

If the keys are not available, an error is raised:

```
iex> assert_keys([one: 1, two: 2], [:three])
** (ArgumentError) expected key :three in keyword list, got: [one: 1, two: 2]
```

Attaches a token to an expression. See `hook/3`

.

Pattern matches the result of `expr`

against the given clauses.

For example:

```
case Nx.shape(tensor) do
{_} -> implementation_for_rank_one(tensor)
{_, _} -> implementation_for_rank_two(tensor)
_ -> implementation_for_rank_n(tensor)
end
```

Opposite to `cond/2`

and `if/2`

, which can execute the branching
in the device, `case`

s are always expanded when building the
expression, and never on the device. This allows `case/2`

to work
very similarly to Elixir's own `Kernel.SpecialForms.case/2`

,
with only the following restrictions in place:

`case`

inside defn only accepts structs, atoms, integers, and tuples as arguments`case`

can match on struct names but not on its fields- guards in
`case`

inside defn can only access variables defined within the pattern

Here is an example of `case`

with guards:

```
case Nx.shape(tensor) do
{x, y} when x > y -> implementation_for_tall(tensor)
{x, y} when x < y -> implementation_for_wide(tensor)
{x, x} -> implementation_for_square(tensor)
end
```

Evaluates the expression corresponding to the first clause that evaluates to a truthy value.

It has the format of:

```
cond do
condition1 ->
expr1
condition2 ->
expr2
true ->
expr3
end
```

The conditions must be a scalar. Zero is considered false,
any other number is considered true. The booleans `false`

and
`true`

are supported, but any other value will raise.

All clauses are normalized to the same type and are broadcast to the same shape. The last condition must always evaluate to true. All clauses are executed in the device, unless they can be determined to always be true/false while building the numerical expression.

##
examples

Examples

```
cond do
Nx.all(Nx.greater(a, 0)) -> b * c
Nx.all(Nx.less(a, 0)) -> b + c
true -> b - c
end
```

When a `defn`

is invoked, all `cond`

clauses are traversed
and expanded in order to build their expressions. This means that,
**if you attempt to raise in any clause, then it will always raise**.
You can only `raise`

in limited situations inside `defn`

, see
`raise/2`

for more information.

Creates a token for hooks. See `hook/3`

.

Defines a custom gradient for the given expression.

It also expects a list of inputs of the gradient and a `fun`

to compute the gradient. The function will be called with the
current gradient. It must return a list of arguments and their
updated gradient to continue applying `grad`

on.

##
examples

Examples

For example, if the gradient of `cos(t)`

were to be
implemented by hand:

```
def cos(t) do
custom_grad(Nx.cos(t), [t], fn g ->
[-g * Nx.sin(t)]
end)
end
```

Element-wise quotient operator.

It delegates to `Nx.quotient/2`

(supports broadcasting).

##
examples

Examples

```
defn quotient(a, b) do
div(a, b)
end
```

Gets the element at the zero-based index in tuple.

It raises ArgumentError when index is negative or it is out of range of the tuple elements.

##
examples

Examples

```
iex> tuple = {1, 2, 3}
iex> elem(tuple, 0)
1
```

Shortcut for `hook/3`

.

Defines a hook.

Hooks are a mechanism to execute an anonymous function for side-effects with runtime tensor values.

Let's see an example:

```
defmodule Hooks do
import Nx.Defn
defn add_and_mult(a, b) do
add = hook(a + b, fn tensor -> IO.inspect({:add, tensor}) end)
mult = hook(a * b, fn tensor -> IO.inspect({:mult, tensor}) end)
{add, mult}
end
end
```

Note a hook can only access the variables passed as arguments
to the hook. It cannot access any other variable defined in
`defn`

outside of the hook.

The `defn`

above defines two hooks, one is called with the
value of `a + b`

and another with `a * b`

. Once you invoke
the function above, you should see this printed:

```
Hooks.add_and_mult(2, 3)
{:add, #Nx.Tensor<
s64
5
>}
{:mult, #Nx.Tensor<
s64
6
>}
```

In other words, the `hook`

function accepts a tensor
expression as argument and it will invoke a custom
function with a tensor value at runtime. `hook`

returns
the result of the given expression. The expression can
be any tensor or a `Nx.Container`

.

Note **you must return the result of the hook call**.
For example, the code below won't inspect the

`:add`

tuple, because the hook is not returned from `defn`

:```
defn add_and_mult(a, b) do
_add = hook(a + b, fn tensor -> IO.inspect({:add, tensor}) end)
mult = hook(a * b, fn tensor -> IO.inspect({:mult, tensor}) end)
mult
end
```

We will learn how to hook into a value that is not part of the result in the "Hooks and tokens" section.

##
named-hooks

Named hooks

It is possible to give names to the hooks. This allows them
to be defined or overridden by calling `Nx.Defn.jit/2`

or
`Nx.Defn.stream/2`

. Let's see an example:

```
defmodule Hooks do
import Nx.Defn
defn add_and_mult(a, b) do
add = hook(a + b, :hooks_add)
mult = hook(a * b, :hooks_mult)
{add, mult}
end
end
```

Now you can pass the hook as argument as follows:

```
hooks = %{
hooks_add: fn tensor ->
IO.inspect {:add, tensor}
end
}
fun = Nx.Defn.jit(&Hooks.add_and_mult/2, hooks: hooks)
fun.(Nx.tensor(2), Nx.tensor(3))
```

Important!We recommend to prefix your hook names by the name of your project to avoid conflicts.

If a named hook is not given, compilers can optimize that away and not transfer the tensor from the device in the first place.

You can also mix named hooks with callbacks:

```
defn add_and_mult(a, b) do
add = hook(a + b, :hooks_add, fn tensor -> IO.inspect({:add, tensor}) end)
mult = hook(a * b, :hooks_mult, fn tensor -> IO.inspect({:mult, tensor}) end)
{add, mult}
end
```

If a hook with the same name is given to `Nx.Defn.jit/2`

or `Nx.Defn.stream/2`

, then it will override the default
callback.

##
hooks-and-tokens

Hooks and tokens

So far, we have always returned the result of the `hook`

call. However, what happens if the values we want to
hook are not part of the return value, such as below?

```
defn add_and_mult(a, b) do
_add = hook(a + b, :hooks_add, &IO.inspect({:add, &1}))
mult = hook(a * b, :hooks_mult, &IO.inspect({:mult, &1}))
mult
end
```

In such cases, you must use tokens. Tokens are used to create an ordering over hooks, ensuring hooks execute in a certain sequence:

```
defn add_and_mult(a, b) do
token = create_token()
{token, _add} = hook_token(token, a + b, :hooks_add, &IO.inspect({:add, &1}))
{token, mult} = hook_token(token, a * b, :hooks_mult, &IO.inspect({:mult, &1}))
attach_token(token, mult)
end
```

The example above creates a token and uses `hook_token/4`

to create hooks attached to their respective tokens. By using a token,
we guarantee that those hooks will be invoked in the order
in which they were defined. Then, at the end of the function,
we attach the token (and its associated hooks) to the result `mult`

.

In fact, the `hook/3`

function is implemented roughly like this:

```
def hook(tensor_expr, name, function) do
{token, result} = hook_token(create_token(), tensor_expr, name, function)
attach_token(token, result)
end
```

Note you must attach the token at the end, otherwise the hooks will be "lost", as if they were not defined. This also applies to conditionals and loops. The token must be attached within the branch they are used. For example, this won't work:

```
token = create_token()
{token, result} =
if Nx.any(value) do
hook_token(token, some_value)
else
hook_token(token, another_value)
end
attach_token(token, result)
```

Instead, you must write:

```
token = create_token()
if Nx.any(value) do
{token, result} = hook_token(token, some_value)
attach_token(token, result)
else
{token, result} = hook_token(token, another_value)
attach_token(token, result)
end
```

Shortcut for `hook_token/4`

.

Defines a hook with an existing token. See `hook/3`

.

Provides if/else expressions.

The first argument must be a scalar. Zero is considered false,
any other number is considered true. The booleans `false`

and
`true`

are supported, but any other value will raise.

The second argument is a keyword list with `do`

and `else`

blocks. The sides are broadcast to return the same shape
and normalized to return the same type.

##
examples

Examples

```
if Nx.any(Nx.equal(t, 0)) do
0.0
else
1 / t
end
```

In case else is not given, it is assumed to be 0 with the
same as the do clause. If you want to nest multiple conditionals,
see `cond/1`

instead.

When a `defn`

is invoked, both `do`

/`else`

clauses are traversed
and expanded in order to build their expressions. This means that,
**if you attempt to raise in any clause, then it will always raise**.
You can only `raise`

in limited situations inside `defn`

, see
`raise/2`

for more information.

Imports functions and macros into the current scope,
as in `Kernel.SpecialForms.import/2`

.

Imports are typically discouraged in favor of `alias/2`

.

##
examples

Examples

```
defn some_fun(t) do
import Math.Helpers
fft(t)
end
```

Converts the given expression into a string.

`inspect/2`

is used to convert expressions into strings, typically
to be used as part of error messages. If you want to inspect for
debugging, consider using `print_expr/2`

, to print the underlying
expression, or `print_value/2`

to print the value during execution.

```
defn square_shape(tensor) do
case Nx.shape(tensor) do
{n, n} -> n
shape -> raise ArgumentError, "expected a square tensor: #{inspect(shape)}"
end
end
```

Ensures the first argument is a `keyword`

with the given
keys and default values.

The second argument must be a list of atoms, specifying
a given key, or tuples specifying a key and a default value.
If any of the keys in the `keyword`

is not defined on
`values`

, it raises an error.

This does not validate required keys. For such, use `assert_keys/2`

instead.

This is equivalent to Elixir's `Keyword.validate!/2`

.

##
examples

Examples

```
iex> keyword!([], [one: 1, two: 2]) |> Enum.sort()
[one: 1, two: 2]
iex> keyword!([two: 3], [one: 1, two: 2]) |> Enum.sort()
[one: 1, two: 3]
```

If atoms are given, they are supported as keys but do not provide a default value:

```
iex> keyword!([], [:one, two: 2]) |> Enum.sort()
[two: 2]
iex> keyword!([one: 1], [:one, two: 2]) |> Enum.sort()
[one: 1, two: 2]
```

Passing an unknown key raises:

```
iex> keyword!([three: 3], [one: 1, two: 2])
** (ArgumentError) unknown key :three in [three: 3], expected one of [:one, :two]
```

Element-wise maximum operation.

It delegates to `Nx.max/2`

(supports broadcasting).

##
examples

Examples

```
defn min_max(a, b) do
{min(a, b), max(a, b)}
end
```

Element-wise minimum operation.

It delegates to `Nx.min/2`

(supports broadcasting).

##
examples

Examples

```
defn min_max(a, b) do
{min(a, b), max(a, b)}
end
```

Element-wise logical NOT operation.

Zero is considered false, all other numbers are considered true.

It delegates to `Nx.logical_not/1`

.

##
examples

Examples

`defn logical_not(a), do: not a`

Element-wise logical OR operation.

Zero is considered false, all other numbers are considered true.

It delegates to `Nx.logical_or/2`

(supports broadcasting).

##
examples

Examples

```
defn and_or(a, b) do
{a and b, a or b}
end
```

Prints the given expression to the terminal.

It returns the given expressions.

##
examples

Examples

```
defn tanh_grad(t) do
grad(t, &Nx.tanh/1) |> print_expr()
end
```

When invoked, it will print the expression being built by `defn`

:

```
#Nx.Tensor<
Nx.Defn.Expr
parameter a s64
parameter c s64
b = tanh [ a ] f64
d = pow [ c, 2 ] s64
e = add [ b, d ] f64
>
```

Prints the value at runtime to the terminal.

This function is implemented on top of `hook/3`

and therefore
has the following restrictions:

- It can only inspect tensors and
`Nx.Container`

- The return value of this function must be part of the output

All options are passed to `IO.inspect/2`

.

##
examples

Examples

```
defn tanh_grad(t) do
grad(t, fn t ->
t
|> Nx.tanh()
|> print_value()
end)
end
defn tanh_grad(t) do
grad(t, fn t ->
t
|> Nx.tanh()
|> print_value(label: "tanh")
end)
end
```

Raises a runtime exception with the given `message`

.

See `raise/2`

for more information on exceptions inside `defn`

.

Raises an `exception`

with the given `arguments`

.

`raise/2`

is invoked while building the numerical expression,
not inside the device. This means that `raise`

may be invoked
on unexpected situations, as we build the numerical expression.
To better understand those cases, let's see some examples.

First, let's start with a valid use case for `raise/2`

: raise
on mismatched shapes. Inside `defn`

, we know the tensor shapes
and types, but not their values, so we can assert on the shape
while building the numerical expression:

```
defn square_shape(tensor) do
case Nx.shape(tensor) do
{n, n} -> n
shape -> raise ArgumentError, "expected a square tensor: #{inspect(shape)}"
end
end
```

In the example above, only the matching branch of the case is executed, so if you give it a 2x2 tensor, it will return 2. However, if you give it a non-square tensor, it will raise.

Now consider this code:

```
defn some_check(a, b) do
if a != b do
a * b
else
raise "expected different tensors, got: #{inspect(a)} and #{inspect(b)}"
end
end
```

In this case, both `a`

and `b`

are tensors and we are comparing their values.
However, their values are unknown, which means we need to convert the whole
`if`

to a numerical expression and run it on the device. Therefore, once we
convert the `else`

branch, it will execute `raise/2`

, making it so the code
above always raises!

In such cases, there are no alternatives. We can't execute exceptions in the CPU/GPU, so you need to approach the problem under a different perspective.

Element-wise remainder operation.

It delegates to `Nx.remainder/2`

(supports broadcasting).

##
examples

Examples

```
defn divides_by_5?(a) do
rem(a, 5)
|> Nx.any()
|> Nx.equal(Nx.tensor(1))
end
```

Requires a module in order to use its macros, as in `Kernel.SpecialForms.require/2`

.

##
examples

Examples

```
defn some_fun(t) do
require NumericalMacros
NumericalMacros.some_macro t do
...
end
end
```

Rewrites the types of `expr`

recursively according to `opts`

##
options

Options

`:max_unsigned_type`

- replaces all signed tensors with size equal to or greater then the given type by the given type`:max_signed_type`

- replaces all signed tensors with size equal to or greater then the given type by the given type`:max_float_type`

- replaces all float tensors with size equal to or greater then the given type by the given type

##
examples

Examples

`rewrite_types(expr, max_float_type: {:f, 32})`

Stops computing the gradient for the given expression.

It effectively annotates the gradient for the given expression is 1.0.

##
examples

Examples

`expr = stop_grad(expr)`

Pipes `value`

to the given `fun`

and returns the `value`

itself.

Useful for running synchronous side effects in a pipeline.

##
examples

Examples

Let's suppose you want to inspect an expression in the middle of a pipeline. You could write:

```
a
|> Nx.add(b)
|> tap(&print_expr/1)
|> Nx.multiply(c)
```

Pipes `value`

into the given `fun`

.

In other words, it invokes `fun`

with `value`

as argument.
This is most commonly used in pipelines, allowing you
to pipe a value to a function outside of its first argument.

##
examples

Examples

```
a
|> Nx.add(b)
|> then(&Nx.subtract(c, &1))
```

Defines a `while`

loop.

It expects the `initial`

arguments, a `condition`

expression, and
a `block`

:

```
while initial, condition do
block
end
```

`condition`

must return a scalar tensor where 0 is false and any
other number is true. The given `block`

will be executed while
`condition`

is true. Each invocation of `block`

must return a
value in the same shape as `initial`

arguments.

`while`

will return the value of the last execution of `block`

.
If `block`

is never executed because the initial `condition`

is
false, it returns `initial`

.

Note: you must prefer to use the operations in the

`Nx`

module, whenever available, instead of writing your own loops.

##
examples

Examples

A simple loop that increments `x`

until it is `10`

can be written as:

```
while x = 0, Nx.less(x, 10) do
x + 1
end
```

However, it is important to note that all variables you intend
to use inside the "while" must be explicitly given as argument
to "while". For example, imagine the amount we want to increment
by in the example above is given by a variable `y`

. The following
example is invalid:

```
while x = 0, Nx.less(x, 10) do
x + y
end
```

Instead, both `x`

and `y`

must be passed as variables to `while`

:

```
while {x = 0, y}, Nx.less(x, 10) do
{x + y, y}
end
```

Similarly, to compute the factorial of `x`

using `while`

:

```
defn factorial(x) do
{factorial, _} =
while {factorial = 1, x}, Nx.greater(x, 1) do
{factorial * x, x - 1}
end
factorial
end
```

##
generators

Generators

Inspired by Elixir's for-comprehensions,
`while`

in `defn`

supports generators. Generators may be tensors or ranges.

###
tensor-generators

Tensor generators

When the generator is a tensor, Nx will traverse its highest dimension. For example, you could sum a one dimensional tensor as follows:

```
while acc = 0, i <- tensor do
acc + i
end
```

Note: implementing

`sum`

using`while`

, as above, is done as an example. In practice, you must prefer to use the operations in the`Nx`

module, whenever available, instead of writing your own loops.

One advantage of using generators is that you can also unroll the loop for performance:

```
while acc = 0, i <- tensor, unroll: true do
acc + i
end
```

Or unroll it in batches:

```
while acc = 0, i <- tensor, unroll: 4 do
acc + i
end
```

Unrolling means that the the `while`

body is automatically duplicated
a certain amount of times, as if you wrote all iterations by hand. This
makes the final expression larger, which causes a longer compilation
time, however it enables additional compile-time optimizations (such as
fusion), improving the runtime efficiency.

###
range-generators

Range generators

A range can also be given as a generator. The range may be increasing or decreasing. Also remember that ranges in Elixir are inclusive on both begin and end. The sum example from the previous section could also be written with ranges:

```
while {tensor, acc = 0}, i <- 0..Nx.axis_size(tensor, 0)-1 do
acc + tensor[i]
end
```

Pipes the argument on the left to the function call on the right.

It delegates to `Kernel.|>/2`

.

##
examples

Examples

```
defn exp_sum(t) do
t
|> Nx.exp()
|> Nx.sum()
end
```

Element-wise bitwise OR operation.

Only integer tensors are supported.
It delegates to `Nx.bitwise_or/2`

(supports broadcasting).

##
examples

Examples

```
defn and_or(a, b) do
{a &&& b, a ||| b}
end
```

Element-wise bitwise not operation.

Only integer tensors are supported.
It delegates to `Nx.bitwise_not/1`

.

##
examples

Examples

`defn bnot(a), do: ~~~a`